1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
|
/*************************************************************************
This project implements a complete(!) JPEG (Recommendation ITU-T
T.81 | ISO/IEC 10918-1) codec, plus a library that can be used to
encode and decode JPEG streams.
It also implements ISO/IEC 18477 aka JPEG XT which is an extension
towards intermediate, high-dynamic-range lossy and lossless coding
of JPEG. In specific, it supports ISO/IEC 18477-3/-6/-7/-8 encoding.
Note that only Profiles C and D of ISO/IEC 18477-7 are supported
here. Check the JPEG XT reference software for a full implementation
of ISO/IEC 18477-7.
Copyright (C) 2012-2018 Thomas Richter, University of Stuttgart and
Accusoft. (C) 2019-2020 Thomas Richter, Fraunhofer IIS.
This program is available under two licenses, GPLv3 and the ITU
Software licence Annex A Option 2, RAND conditions.
For the full text of the GPU license option, see README.license.gpl.
For the full text of the ITU license option, see README.license.itu.
You may freely select between these two options.
For the GPL option, please note the following:
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*************************************************************************/
/*
**
** This class implements the binary arithmetic coder used in
** Recommendation ITU-T T.81 | ISO/IEC 10918-1.
**
** $Id: qmcoder.hpp,v 1.20 2018/07/27 06:56:43 thor Exp $
**
*/
#ifndef CODING_QMCODER_HPP
#define CODING_QMCODER_HPP
/// Includes
#include "interface/types.hpp"
#include "tools/environment.hpp"
#include "io/bytestream.hpp"
#include "std/string.hpp"
///
/// Defines
#undef DEBUG_QMCODER
#define FAST_QMCODER
///
/// Forwards
class QMCoder;
class Checksum;
///
/// QMContext
// A context bin of the QM coder
#if ACCUSOFT_CODE
class QMContext : public JObject {
friend class QMCoder;
UBYTE m_ucIndex; // status in the index table
bool m_bMPS; // most probable symbol
//
#ifdef DEBUG_QMCODER
// The ID of the QM Coder as four characters
public:
UBYTE m_ucID[4];
#endif
//
public:
void Init(void)
{
m_ucIndex = 0;
m_bMPS = false;
}
//
void Init(UBYTE state)
{
m_ucIndex = state;
m_bMPS = false;
}
//
void Init(UBYTE state,bool mps)
{
m_ucIndex = state;
m_bMPS = mps;
}
//
#ifdef DEBUG_QMCODER
void Init(const char *name)
{
Init();
memcpy(m_ucID,name,4);
}
//
void Init(UBYTE state,const char *name)
{
Init(state);
memcpy(m_ucID,name,4);
}
//
void Print(void)
{
if ((m_ucIndex >= 9 && m_ucIndex <= 13) ||
(m_ucIndex >= 72 && m_ucIndex <= 77) ||
(m_ucIndex >= 99 && m_ucIndex <= 11)) {
printf("%c%c%c%c : %d(%d)\n",m_ucID[0],m_ucID[1],m_ucID[2],m_ucID[3],m_ucIndex,m_bMPS);
}
}
#endif
};
#endif
///
/// QMCoder
// The coder itself.
#if ACCUSOFT_CODE
class QMCoder : public JObject {
//
// The coding interval size
ULONG m_ulA;
//
// For decoding: The short version of it.
UWORD m_usA;
//
// The computation register
ULONG m_ulC;
//
// The MSBs of C for decoding only.
UWORD m_usC;
//
// The bit counter.
UBYTE m_ucCT;
//
// The output register
UBYTE m_ucB;
//
// Coding flags.
UBYTE m_bF;
//
// Count delayed 0xff.
UWORD m_usST;
//
// Count delayed 0x00 - this is not stricly required,
// but simplifies the flushing process where trailing
// 0x00's shall be discarded.
UWORD m_usSZ;
//
// The bytestream we code from or code into.
class ByteStream *m_pIO;
//
// The checksum we keep updating.
class Checksum *m_pChk;
//
// Qe probability estimates.
static const UWORD Qe_Value[];
//
// MSB/LSB switch flag.
static const bool Qe_Switch[];
//
// Next state for MPS coding.
static const UBYTE Qe_NextMPS[];
//
// Next state for LPS coding.
static const UBYTE Qe_NextLPS[];
//
// Flush the upper bits of the computation register.
void ByteOut(void);
//
// Fill the byte input buffer
void ByteIn(void);
//
#ifdef FAST_QMCODER
//
// Read a single bit from the MQ coder in the given context.
bool GetSlow(class QMContext &ctxt);
//
// Write a single bit.
void PutSlow(class QMContext &ctxt,bool bit);
//
#endif
//
public:
//
QMCoder(void)
{
// Nothing really here.
}
//
~QMCoder(void)
{
}
//
// Return the underlying bytestream.
class ByteStream *ByteStreamOf(void) const
{
return m_pIO;
}
//
// Return the checksum.
class Checksum *ChecksumOf(void) const
{
return m_pChk;
}
//
// Open for writing.
void OpenForWrite(class ByteStream *io,class Checksum *chk);
//
// Open for reading.
void OpenForRead(class ByteStream *io,class Checksum *chk);
//
#ifndef FAST_QMCODER
//
// Read a single bit from the MQ coder in the given context.
bool Get(class QMContext &ctxt);
//
// Write a single bit.
void Put(class QMContext &ctxt,bool bit);
#else
//
bool Get(class QMContext &ctxt)
{
UWORD q = Qe_Value[ctxt.m_ucIndex];
m_usA -= q;
if (((WORD)m_usA < 0) && m_usC < m_usA) {
// Short MPS case
return ctxt.m_bMPS;
}
return GetSlow(ctxt);
}
//
//
void Put(class QMContext &ctxt,bool bit)
{
ULONG q = Qe_Value[ctxt.m_ucIndex];
m_ulA -= q;
// Check for MPS and LPS coding
if ((m_ulA & 0x8000) && bit == ctxt.m_bMPS) {
// Short MPS case
return;
} else {
PutSlow(ctxt,bit);
}
}
#endif
//
// Flush out the remaining bits. This must be called before completing
// the MQCoder write.
void Flush();
//
// The uniform state
enum {
Uniform_State = 113
};
};
#endif
///
///
#endif
|