1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
|
/*************************************************************************
This project implements a complete(!) JPEG (Recommendation ITU-T
T.81 | ISO/IEC 10918-1) codec, plus a library that can be used to
encode and decode JPEG streams.
It also implements ISO/IEC 18477 aka JPEG XT which is an extension
towards intermediate, high-dynamic-range lossy and lossless coding
of JPEG. In specific, it supports ISO/IEC 18477-3/-6/-7/-8 encoding.
Note that only Profiles C and D of ISO/IEC 18477-7 are supported
here. Check the JPEG XT reference software for a full implementation
of ISO/IEC 18477-7.
Copyright (C) 2012-2018 Thomas Richter, University of Stuttgart and
Accusoft. (C) 2019-2020 Thomas Richter, Fraunhofer IIS.
This program is available under two licenses, GPLv3 and the ITU
Software licence Annex A Option 2, RAND conditions.
For the full text of the GPU license option, see README.license.gpl.
For the full text of the ITU license option, see README.license.itu.
You may freely select between these two options.
For the GPL option, please note the following:
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*************************************************************************/
/*
**
** This file defines a class that implements the component upsampling
** procedure.
**
** $Id: cositedupsampler.cpp,v 1.3 2017/05/23 11:40:15 thor Exp $
**
*/
/// Includes
#include "upsampling/cositedupsampler.hpp"
#include "std/string.hpp"
///
/// Horizontal and vertical filter cores
// The actual implementations: Filter vertically from the line into the 8x8 buffer
template<int sy>
void VerticalCoFilterCore(int ymod,struct Line *top,struct Line *cur,struct Line *bot,LONG offset,LONG *target);
template<int sx>
void HorizontalCoFilterCore(int xmod,LONG *target);
///
/// CositedUpsampler::CositedUpsampler
template<int sx,int sy>
CositedUpsampler<sx,sy>::CositedUpsampler(class Environ *env,ULONG width,ULONG height)
: UpsamplerBase(env,sx,sy,width,height)
{
}
///
/// CositedUpsampler::~CositedUpsampler
template<int sx,int sy>
CositedUpsampler<sx,sy>::~CositedUpsampler(void)
{
}
///
/// CositedUpsampler::UpsampleRegion
// The actual upsampling process.
template<int sx,int sy>
void CositedUpsampler<sx,sy>::UpsampleRegion(const RectAngle<LONG> &r,LONG *buffer) const
{
LONG y = (r.ra_MinY / sy); // The line offset of the current line.
LONG x = (r.ra_MinX / sx) + 1; // the data offset such that data + offset + 0 is the pixel at the point
LONG cy = m_lY;
struct Line *top,*cur,*bot; // Line pointers.
assert(y >= m_lY && y < m_lY + m_lHeight); // Must be in the buffer.
// Get the topmost line, one above the current position.
top = m_pInputBuffer;
while(cy < y - 1) {
top = top->m_pNext;
cy++;
}
//
// Get the next line.
cur = top;
if (y > m_lY)
cur = cur->m_pNext; // duplicate the top line for the first line.
bot = cur;
if (bot->m_pNext)
bot = bot->m_pNext; // duplicate bottom at the last line.
if (sx > 1)
x--; // copy one additional pixel from the left in case we need to expand horizontally.
VerticalCoFilterCore<sy>(r.ra_MinY % sy,top,cur,bot,x,buffer);
HorizontalCoFilterCore<sx>(r.ra_MinX % sx,buffer);
}
///
/// VerticalCoFilterCore<1>
// The actual implementations: Filter vertically from the line into the 8x8 buffer
template<>
void UpsamplerBase::VerticalCoFilterCore<1>(int,struct Line *,struct Line *cur,struct Line *,
LONG offset,LONG *target)
{
int lines = 8;
do {
memcpy(target,cur->m_pData + offset,8 * sizeof(LONG));
if (cur->m_pNext)
cur = cur->m_pNext;
target += 8;
} while(--lines);
}
///
/// VerticalCoFilterCore<2>
// The actual implementations: Filter vertically from the line into the 8x8 buffer
template<>
void UpsamplerBase::VerticalCoFilterCore<2>(int ymod,struct Line *,struct Line *cur,struct Line *bot,
LONG offset,LONG *target)
{
int lines = 8;
do {
LONG *out = target;
LONG *end = target + 8;
LONG *c = cur->m_pData + offset;
LONG *b = bot->m_pData + offset;
LONG r = 0;
switch(ymod) {
case 0: // even lines
memcpy(out,c,8 * sizeof(LONG));
ymod++;
break;
case 1: // odd lines
do {
*out++ = (*b++ + *c++ + r) >> 1;
} while(out < end);
ymod = 0;
cur = bot;
if (bot->m_pNext) bot = bot->m_pNext;
break;
}
target += 8; // next line.
r ^= 1;
} while(--lines);
}
///
/// VerticalCoFilterCore<3>
// The actual implementations: Filter vertically from the line into the 8x8 buffer
template<>
void UpsamplerBase::VerticalCoFilterCore<3>(int ymod,struct Line *,struct Line *cur,struct Line *bot,
LONG offset,LONG *target)
{
int lines = 8;
//
// This is not exactly a bilinear filter, but it is easer
// to implement this way. The filter coefficients would ideally
// be (1/3,2/3), not (1/4,3/4).
do {
LONG *out = target;
LONG *end = target + 8;
LONG *c = cur->m_pData + offset;
LONG *b = bot->m_pData + offset;
LONG r = 1;
switch(ymod) {
case 0:
memcpy(out,c,8 * sizeof(LONG));
ymod++;
break;
case 1:
do {
*out++ = (*b++ + 3 * *c++ + r) >> 2;
} while(out < end);
ymod++;
break;
case 2:
do {
*out++ = (*c++ + 3 * *b++ + r) >> 2;
} while(out < end);
ymod = 0;
cur = bot;
if (bot->m_pNext) bot = bot->m_pNext;
break;
}
target += 8; // next line.
r ^= 3;
} while(--lines);
}
///
/// VerticalCoFilterCore<4>
// The actual implementations: Filter vertically from the line into the 8x8 buffer
template<>
void UpsamplerBase::VerticalCoFilterCore<4>(int ymod,struct Line *,struct Line *cur,struct Line *bot,
LONG offset,LONG *target)
{
int lines = 8;
//
do {
LONG *out = target;
LONG *end = target + 8;
LONG *c = cur->m_pData + offset;
LONG *b = bot->m_pData + offset;
LONG r = 1;
switch(ymod) {
case 0:
memcpy(out,c,8 * sizeof(LONG));
ymod++;
break;
case 1:
do {
*out++ = (1 * *b++ + 3 * *c++ + r) >> 2;
} while(out < end);
ymod++;
break;
case 2:
do {
*out++ = (*b++ + *c++ + r) >> 2;
} while(out < end);
ymod++;
break;
case 3:
do {
*out++ = (3 * *b++ + *c++ + r) >> 2;
} while(out < end);
ymod = 0;
cur = bot;
if (bot->m_pNext) bot = bot->m_pNext;
break;
}
target += 8; // next line.
r ^= 3;
} while(--lines);
}
///
/// HorizontalCoFilterCore<1>
// The actual implementations: Filter horizontally from the line into the 8x8 buffer
template<>
void UpsamplerBase::HorizontalCoFilterCore<1>(int,LONG *)
{
// Here the buffer is already aligned correctly. Nothing else to do.
}
///
/// HorizontalFilterCore<2>
// The actual implementations: Filter horizontally from the line into the 8x8 buffer
template<>
void UpsamplerBase::HorizontalCoFilterCore<2>(int xmod,LONG *target)
{
int lines = 8;
assert(xmod == 0); // blocks are aligned by multiples of eight
NOREF(xmod);
do {
LONG *src = target + 1; // src[-1] is the pixel to the left, input is offset by one pixel.
LONG *out = target;
LONG t;
out[7] = (src[ 4] + src[3] + 1) >> 1;
out[6] = src[3];
out[5] = (src[ 3] + src[2] + 0) >> 1;
out[4] = src[2];
out[3] = (src[ 2] + src[1] + 1) >> 1;
out[2] = src[1]; t = src[0]; // will be overwritten as out[1]
out[1] = (src[ 1] + t + 0) >> 1;
out[0] = t;
target += 8;
} while(--lines);
}
///
/// HorizontalCoFilterCore<3>
// The actual implementations: Filter horizontally from the line into the 8x8 buffer
template<>
void UpsamplerBase::HorizontalCoFilterCore<3>(int xmod,LONG *target)
{
int lines = 8;
do {
LONG *src = target + 1; // src[-1] is the pixel to the left, input is offset by one pixel.
LONG *out = target;
LONG t;
switch(xmod) {
case 1:
out[7] = src[2];
out[6] = (src[ 1] + 3 * src[2] + 2) >> 2;
out[5] = (src[ 2] + 3 * src[1] + 1) >> 2;
out[4] = src[1];
out[3] = (src[ 0] + 3 * src[1] + 1) >> 2;
out[2] = (src[ 1] + 3 * src[0] + 2) >> 2;
out[0] = (src[-1] + 3 * src[0] + 1) >> 2;
out[1] = src[0]; // out[1] is src[0]
break;
case 0:
out[7] = (src[ 3] + 3 * src[ 2] + 2) >> 2;
out[6] = src[2];
out[5] = (src[ 1] + 3 * src[ 2] + 1) >> 2;
out[4] = (src[ 2] + 3 * src[ 1] + 2) >> 2;
out[3] = src[1]; t = src[0];
out[2] = ( t + 3 * src[ 1] + 2) >> 2;
out[1] = (src[ 1] + 3 * t + 1) >> 2;
out[0] = t;
break;
case 2:
out[7] = (src[ 2] + 3 * src[ 3] + 2) >> 2;
out[6] = (src[ 3] + 3 * src[ 2] + 1) >> 2;
out[5] = src[2];
out[4] = (src[ 1] + 3 * src[ 2] + 1) >> 2;
out[3] = (src[ 2] + 3 * src[ 1] + 2) >> 2;
out[2] = src[1]; t = src[0]; // will be overwritten
out[1] = (t + 3 * src[1] + 2) >> 2;
out[0] = (src[1] + 3 * t + 1) >> 2;
break;
}
target += 8;
} while(--lines);
}
///
/// HorizontalFilterCore<4>
// The actual implementations: Filter horizontally from the line into the 8x8 buffer
template<>
void UpsamplerBase::HorizontalCoFilterCore<4>(int xmod,LONG *target)
{
int lines = 8;
LONG r = 0;
assert(xmod == 0); // blocks are aligned by multiples of eight
NOREF(xmod);
do {
LONG *src = target + 1; // src[-1] is the pixel to the left, input is offset by one pixel.
LONG *out = target;
LONG t;
out[7] = (3 * src[ 2] + 1 * src[1] + 1) >> 2;
out[6] = ( src[ 2] + src[1] + 2) >> 1;
out[5] = (1 * src[ 2] + 3 * src[1] + 1) >> 2;
out[4] = src[1]; t = src[0]; // is out[1]
out[3] = (3 * src[ 1] + 1 * t + 1) >> 2;
out[2] = ( src[ 1] + t + 2) >> 1;
out[1] = (1 * src[ 1] + 3 * t + 1) >> 2;
out[0] = t;
r ^= 1;
target += 8;
} while(--lines);
}
///
/// Explicit instaciations
template class CositedUpsampler<1,1>;
template class CositedUpsampler<1,2>;
template class CositedUpsampler<1,3>;
template class CositedUpsampler<1,4>;
template class CositedUpsampler<2,1>;
template class CositedUpsampler<2,2>;
template class CositedUpsampler<2,3>;
template class CositedUpsampler<2,4>;
template class CositedUpsampler<3,1>;
template class CositedUpsampler<3,2>;
template class CositedUpsampler<3,3>;
template class CositedUpsampler<3,4>;
template class CositedUpsampler<4,1>;
template class CositedUpsampler<4,2>;
template class CositedUpsampler<4,3>;
template class CositedUpsampler<4,4>;
///
|