1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
|
/*************************************************************************
This project implements a complete(!) JPEG (Recommendation ITU-T
T.81 | ISO/IEC 10918-1) codec, plus a library that can be used to
encode and decode JPEG streams.
It also implements ISO/IEC 18477 aka JPEG XT which is an extension
towards intermediate, high-dynamic-range lossy and lossless coding
of JPEG. In specific, it supports ISO/IEC 18477-3/-6/-7/-8 encoding.
Note that only Profiles C and D of ISO/IEC 18477-7 are supported
here. Check the JPEG XT reference software for a full implementation
of ISO/IEC 18477-7.
Copyright (C) 2012-2018 Thomas Richter, University of Stuttgart and
Accusoft. (C) 2019-2020 Thomas Richter, Fraunhofer IIS.
This program is available under two licenses, GPLv3 and the ITU
Software licence Annex A Option 2, RAND conditions.
For the full text of the GPU license option, see README.license.gpl.
For the full text of the ITU license option, see README.license.itu.
You may freely select between these two options.
For the GPL option, please note the following:
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*************************************************************************/
/*
**
** Base class for all upsamplers, common for all upsampling processes
** and independent of the upsampling factors.
**
** $Id: downsamplerbase.cpp,v 1.16 2020/08/31 07:50:44 thor Exp $
**
*/
/// Includes
#include "tools/environment.hpp"
#include "tools/rectangle.hpp"
#include "upsampling/downsamplerbase.hpp"
#include "upsampling/downsampler.hpp"
#include "upsampling/interdownsampler.hpp"
#include "std/string.hpp"
///
/// DownsamplerBase::DownsamplerBase
DownsamplerBase::DownsamplerBase(class Environ *env,int sx,int sy,
ULONG width,ULONG height,bool interpolate)
: JKeeper(env), m_ulWidth(width), m_lTotalLines(height), m_lY(0), m_lHeight(0),
m_ucSubX(sx), m_ucSubY(sy), m_pInputBuffer(NULL), m_pLastRow(NULL), m_pFree(NULL),
m_bInterpolate(interpolate)
{
}
///
/// DownsamplerBase::~DownsamplerBase
DownsamplerBase::~DownsamplerBase(void)
{
struct Line *row;
while((row = m_pInputBuffer)) {
m_pInputBuffer = row->m_pNext;
if (row->m_pData)
m_pEnviron->FreeMem(row->m_pData,(m_ulWidth + 2 + (m_ucSubX << 3)) * sizeof(LONG));
delete row;
}
while((row = m_pFree)) {
m_pFree = row->m_pNext;
m_pEnviron->FreeMem(row->m_pData,(m_ulWidth + 2 + (m_ucSubX << 3)) * sizeof(LONG));
delete row;
}
}
///
/// DownsamplerBase::SetBufferedRegion
// Define the region to be buffered, clipping off what has been applied
// here before. This extends the internal buffer to hold at least
// the regions here.
void DownsamplerBase::SetBufferedRegion(const RectAngle<LONG> ®ion)
{
//
// Does just the same right now...
ExtendBufferedRegion(region);
}
///
/// DownsamplerBase::ExtendBufferedRegion
// Make the buffered region larger to include at least the given rectangle.
// The rectangle is given in image/canvas coordinates.
void DownsamplerBase::ExtendBufferedRegion(const RectAngle<LONG> ®ion)
{
// Create all lines between the current last line, m_lY+m_lHeight-1 and
// the last line of the rectangle, region.ra_MaxY
while(m_lY + m_lHeight < region.ra_MaxY + 1) {
struct Line *qrow,*alloc = NULL;
//
// Get a new pixel row, either from the buffered
// rows or from the heap.
if (m_pFree) {
qrow = m_pFree;
m_pFree = qrow->m_pNext;
qrow->m_pNext = NULL;
} else {
alloc = new(m_pEnviron) struct Line;
qrow = alloc;
}
//
//
if (m_pLastRow) {
m_pLastRow->m_pNext = qrow;
m_pLastRow = qrow;
} else {
assert(m_pInputBuffer == NULL);
m_pLastRow = m_pInputBuffer = qrow;
}
//
// Allocate the memory for it.
if (alloc) {
alloc->m_pData = (LONG *)m_pEnviron->AllocMem((m_ulWidth + 2 + (m_ucSubX << 3)) * sizeof(LONG));
}
m_lHeight++;
}
}
///
/// DownsamplerBase::DefineRegion
// Define the region to contain the given data, copy it to the line buffers
// for later downsampling. Coordinates are in 8x8 blocks.
void DownsamplerBase::DefineRegion(LONG x,LONG y,const LONG *data)
{
struct Line *line = m_pInputBuffer;
LONG topy = y << 3;
LONG yf = m_lY;
LONG ofs = x << 3;
LONG cnt = 8;
LONG ovl = (m_ucSubX << 3) - ((m_bInterpolate)?0:1); // number of pixels extended to the right.
assert(topy >= m_lY && topy < m_lY + m_lHeight);
while(yf < topy) {
line = line->m_pNext;
yf++;
}
assert(line);
do {
LONG *dst = line->m_pData + ((m_bInterpolate)?(1):(0));
UBYTE i;
// In case of interpolation being turned on, fill the data with the
// offset +1 to simplify the access to neighbouring samples in the
// actual downsampler.
//
// Overlab at the boundary, extend to the right to keep the downsampling simple
memcpy(dst + ofs,data,8 * sizeof(LONG));
// Mirror-extend to the right.
if (ofs + 8 >= LONG(m_ulWidth)) {
// Actually, any type of extension is suitable as long as the
// mean is sensible.
for(i = 0; i < ovl;i++) {
dst[m_ulWidth + i] = dst[(m_ulWidth > i)?(m_ulWidth - 1 - i):0];
}
}
// Mirror-extend to the left.
if (ofs == 0 && m_bInterpolate) {
dst[-1] = dst[(m_ulWidth > 1)?1:0];
}
line = line->m_pNext;
data += 8;
} while(--cnt && line);
}
///
/// DownsamplerBase::RemoveBlocks
// Remove the blocks of the given block line, given in downsampled
// block coordinates.
void DownsamplerBase::RemoveBlocks(ULONG by)
{
LONG firstkeep = ((by + 1) << 3) * m_ucSubY; // The first line that has to be kept.
// If interpolation is enabled, one additional line has to be kept.
if (m_bInterpolate)
firstkeep--;
while(m_lY < firstkeep) {
struct Line *row;
// The current Y line is no longer required, drop it. If it is there.
row = m_pInputBuffer;
if (row) {
m_pInputBuffer = row->m_pNext;
if (m_pInputBuffer == NULL) {
assert(row == m_pLastRow);
assert(m_lHeight == 1);
// it hopefully is as it has no following line
m_pLastRow = NULL;
}
row->m_pNext = m_pFree;
m_pFree = row;
m_lHeight--;
}
m_lY++;
}
}
///
/// DownsamplerBase::GetCollectedBlocks
// Return a rectangle of block coordinates in the downsampled domain
// that is ready for output.
void DownsamplerBase::GetCollectedBlocks(RectAngle<LONG> &rect) const
{
LONG ymin = m_lY;
LONG ymax = m_lY;
//
// One less line
if (m_bInterpolate) {
ymin++;
ymax--;
}
//
// Everything in horizontal direction.
rect.ra_MinX = 0;
rect.ra_MaxX = (((m_ulWidth + m_ucSubX - 1) / m_ucSubX + 7) >> 3) - 1;
// In vertical direction, start at the upper edge of the first buffered line,
// but use the first complete block.
rect.ra_MinY = ((ymin / m_ucSubY) + 7) >> 3;
// Find the first block that is not buffered, remove that block.
// If we are at the end of the image, just return the last block and
// complete even if not all lines are ready.
if (m_lY + m_lHeight >= m_lTotalLines) {
rect.ra_MaxY = (((m_lTotalLines + m_ucSubY - 1) / m_ucSubY + 7) >> 3) - 1;
} else {
rect.ra_MaxY = (((ymax + m_lHeight) / m_ucSubY) >> 3) - 1;
}
}
///
/// DownsamplerBase::CreateDownsampler
// Create an upsampler for the given upsampling factors. Currently, only
// factors from 1x1 to 4x4 are supported.
class DownsamplerBase *DownsamplerBase::CreateDownsampler(class Environ *env,int sx,int sy,
ULONG width,ULONG height,bool interpolate)
{
if (interpolate) {
switch(sy) {
case 1:
switch(sx) {
case 1:
return new(env) InterDownsampler<1,1>(env,width,height);
break;
case 2:
return new(env) InterDownsampler<2,1>(env,width,height);
break;
case 3:
return new(env) InterDownsampler<3,1>(env,width,height);
break;
case 4:
return new(env) InterDownsampler<4,1>(env,width,height);
break;
}
break;
case 2:
switch(sx) {
case 1:
return new(env) InterDownsampler<1,2>(env,width,height);
break;
case 2:
return new(env) InterDownsampler<2,2>(env,width,height);
break;
case 3:
return new(env) InterDownsampler<3,2>(env,width,height);
break;
case 4:
return new(env) InterDownsampler<4,2>(env,width,height);
break;
}
break;
case 3:
switch(sx) {
case 1:
return new(env) InterDownsampler<1,3>(env,width,height);
break;
case 2:
return new(env) InterDownsampler<2,3>(env,width,height);
break;
case 3:
return new(env) InterDownsampler<3,3>(env,width,height);
break;
case 4:
return new(env) InterDownsampler<4,3>(env,width,height);
break;
}
break;
case 4:
switch(sx) {
case 1:
return new(env) InterDownsampler<1,4>(env,width,height);
break;
case 2:
return new(env) InterDownsampler<2,4>(env,width,height);
break;
case 3:
return new(env) InterDownsampler<3,4>(env,width,height);
break;
case 4:
return new(env) InterDownsampler<4,4>(env,width,height);
break;
}
break;
}
} else {
switch(sy) {
case 1:
switch(sx) {
case 1:
return new(env) Downsampler<1,1>(env,width,height);
break;
case 2:
return new(env) Downsampler<2,1>(env,width,height);
break;
case 3:
return new(env) Downsampler<3,1>(env,width,height);
break;
case 4:
return new(env) Downsampler<4,1>(env,width,height);
break;
}
break;
case 2:
switch(sx) {
case 1:
return new(env) Downsampler<1,2>(env,width,height);
break;
case 2:
return new(env) Downsampler<2,2>(env,width,height);
break;
case 3:
return new(env) Downsampler<3,2>(env,width,height);
break;
case 4:
return new(env) Downsampler<4,2>(env,width,height);
break;
}
break;
case 3:
switch(sx) {
case 1:
return new(env) Downsampler<1,3>(env,width,height);
break;
case 2:
return new(env) Downsampler<2,3>(env,width,height);
break;
case 3:
return new(env) Downsampler<3,3>(env,width,height);
break;
case 4:
return new(env) Downsampler<4,3>(env,width,height);
break;
}
break;
case 4:
switch(sx) {
case 1:
return new(env) Downsampler<1,4>(env,width,height);
break;
case 2:
return new(env) Downsampler<2,4>(env,width,height);
break;
case 3:
return new(env) Downsampler<3,4>(env,width,height);
break;
case 4:
return new(env) Downsampler<4,4>(env,width,height);
break;
}
break;
}
}
{
class Environ *m_pEnviron = env;
JPG_THROW(NOT_IMPLEMENTED,"DownsamplerBase::CreateUpsampler",
"subsampling factors larger than 4x4 are not supported, sorry");
}
return NULL;
}
///
|