1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
|
/** \file
* Defines the interface for the KDTree class.
*
* \author Martin F. Krafft <libkdtree@pobox.madduck.net>
*
* Paul Harris figured this stuff out (below)
* Notes:
* This is similar to a binary tree, but its not the same.
* There are a few important differences:
*
* * Each level is sorted by a different criteria (this is fundamental to the design).
*
* * It is possible to have children IDENTICAL to its parent in BOTH branches
* This is different to a binary tree, where identical children are always to the right
* So, KDTree has the relationships:
* * The left branch is <= its parent (in binary tree, this relationship is a plain < )
* * The right branch is <= its parent (same as binary tree)
*
* This is done for mostly for performance.
* Its a LOT easier to maintain a consistent tree if we use the <= relationship.
* Note that this relationship only makes a difference when searching for an exact
* item with find() or find_exact, other search, erase and insert functions don't notice
* the difference.
*
* In the case of binary trees, you can safely assume that the next identical item
* will be the child leaf,
* but in the case of KDTree, the next identical item might
* be a long way down a subtree, because of the various different sort criteria.
*
* So erase()ing a node from a KDTree could require serious and complicated
* tree rebalancing to maintain consistency... IF we required binary-tree-like relationships.
*
* This has no effect on insert()s, a < test is good enough to keep consistency.
*
* It has an effect on find() searches:
* * Instead of using compare(child,node) for a < relationship and following 1 branch,
* we must use !compare(node,child) for a <= relationship, and test BOTH branches, as
* we could potentially go down both branches.
*
* It has no real effect on bounds-based searches (like find_nearest, find_within_range)
* as it compares vs a boundary and would follow both branches if required.
*
* This has no real effect on erase()s, a < test is good enough to keep consistency.
*/
#ifndef INCLUDE_KDTREE_KDTREE_HPP
#define INCLUDE_KDTREE_KDTREE_HPP
#include <vector>
#ifdef KDTREE_DEFINE_OSTREAM_OPERATORS
# include <ostream>
# include <stack>
#endif
#include <cmath>
#include <cstddef>
#include <cassert>
#include <kdtree++/accessor.hpp>
#include <kdtree++/allocator.hpp>
#include <kdtree++/iterator.hpp>
#include <kdtree++/node.hpp>
#include <kdtree++/region.hpp>
namespace KDTree
{
#ifdef KDTREE_CHECK_PERFORMANCE
size_t num_dist_calcs = 0;
#endif
template <size_t const __K, typename _Val,
typename _Acc = _Bracket_accessor<_Val>,
typename _Cmp = std::less<typename _Acc::result_type>,
typename _Alloc = std::allocator<_Node<_Val> > >
class KDTree : protected _Alloc_base<_Val, _Alloc>
{
protected:
// typedef _Alloc allocator_type;
typedef _Alloc_base<_Val, _Alloc> _Base;
typedef typename _Base::allocator_type allocator_type;
typedef _Node_base* _Base_ptr;
typedef _Node_base const* _Base_const_ptr;
typedef _Node<_Val>* _Link_type;
typedef _Node<_Val> const* _Link_const_type;
typedef _Node_compare<_Val, _Acc, _Cmp> _Node_compare;
typedef _Region<__K, _Val, typename _Acc::result_type, _Acc, _Cmp>
_Region;
public:
typedef _Region Region;
typedef _Val value_type;
typedef value_type* pointer;
typedef value_type const* const_pointer;
typedef value_type& reference;
typedef value_type const& const_reference;
typedef typename _Acc::result_type subvalue_type;
typedef subvalue_type distance_type; // NEW TYPE - for returning distances
// I wanted to distinguish it from subvaluetype, for the future when/if we have
// types that need a fancy distance calculation.
// This is not complete yet, eg Region still uses subvalue_type for distance_type.
typedef size_t size_type;
typedef ptrdiff_t difference_type;
KDTree( _Acc const& acc = _Acc(), const allocator_type& __a = allocator_type()) throw ()
: _Base(__a), _M_header(_Base::_M_allocate_node()), _M_count(0), _M_acc(acc)
{
_M_empty_initialise();
}
KDTree(const KDTree& __x) throw ()
: _Base(__x.get_allocator()), _M_header(_Base::_M_allocate_node()), _M_count(0), _M_acc(__x._M_acc)
{
_M_empty_initialise();
this->insert(begin(), __x.begin(), __x.end());
this->optimise();
}
template<typename _InputIterator>
KDTree(_InputIterator __first, _InputIterator __last,
_Acc const& acc = _Acc(), const allocator_type& __a = allocator_type()) throw ()
: _Base(__a), _M_header(_Base::_M_allocate_node()), _M_count(0), _M_acc(acc)
{
_M_empty_initialise();
this->insert(begin(), __first, __last);
this->optimise();
}
KDTree&
operator=(const KDTree& __x)
{
if (this != &__x)
{
this->clear();
this->insert(begin(),__x.begin(),__x.end());
this->optimize();
}
return *this;
}
~KDTree() throw ()
{
this->clear();
_M_deallocate_node(_M_header);
}
allocator_type
get_allocator() const
{
return _Base::get_allocator();
}
size_type
size() const
{
return _M_count;
}
size_type
max_size() const
{
return size_type(-1);
}
bool
empty() const
{
return this->size() == 0;
}
void
clear()
{
_M_erase_subtree(_M_get_root());
_M_set_leftmost(_M_header);
_M_set_rightmost(_M_header);
_M_set_root(NULL);
_M_count = 0;
}
// typedef _Iterator<_Val, reference, pointer> iterator;
typedef _Iterator<_Val, const_reference, const_pointer> const_iterator;
// No mutable iterator at this stage
typedef const_iterator iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
const_iterator begin() const { return const_iterator(_M_get_leftmost()); }
const_iterator end() const { return const_iterator(_M_header); }
const_reverse_iterator rbegin() const { return const_reverse_iterator(_M_get_rightmost()); }
const_reverse_iterator rend() const { return const_reverse_iterator(_M_header); }
// iterator begin() { return iterator(_M_get_leftmost()); }
// iterator end() { return iterator(_M_header); }
// reverse_iterator rbegin() { return reverse_iterator(end()); }
// reverse_iterator rend() { return reverse_iterator(begin()); }
iterator
insert(iterator /* ignored */, const_reference __V) throw (std::bad_alloc)
{
return this->insert(__V);
}
iterator
insert(const_reference __V) throw (std::bad_alloc)
{
if (!_M_get_root())
{
_Link_type __n = _M_new_node(__V, _M_header);
++_M_count;
_M_set_root(__n);
_M_set_leftmost(__n);
_M_set_rightmost(__n);
return iterator(__n);
}
return _M_insert(_M_get_root(), __V, 0);
}
template <class _InputIterator>
void insert(_InputIterator __first, _InputIterator __last) {
for (; __first != __last; ++__first)
this->insert(*__first);
}
void
insert(iterator __pos, size_type __n, const value_type& __x)
{
for (; __n > 0; --__n)
this->insert(__pos, __x);
}
template<typename _InputIterator>
void
insert(iterator __pos, _InputIterator __first, _InputIterator __last) {
for (; __first != __last; ++__first)
this->insert(__pos, *__first);
}
// Note: this uses the find() to location the item you want to erase.
// find() compares by equivalence of location ONLY. See the comments
// above find_exact() for why you may not want this.
//
// If you want to erase ANY item that has the same location as __V,
// then use this function.
//
// If you want to erase a PARTICULAR item, and not any other item
// that might happen to have the same location, then you should use
// erase_exact().
void
erase(const_reference __V) throw () {
this->erase(this->find(__V));
}
void
erase_exact(const_reference __V) throw () {
this->erase(this->find_exact(__V));
}
// note: kept as const because its easier to const-cast it away
void
erase(const_iterator const& __IT) throw ()
{
assert(__IT != this->end());
_Link_const_type target = static_cast<_Link_const_type>(__IT._M_node);
_Link_const_type n = target;
size_t level = 0;
while ((n = _S_parent(n)) != _M_header)
++level;
_M_erase( const_cast<_Link_type>(target), level );
_M_delete_node( const_cast<_Link_type>(target) );
--_M_count;
}
/* this does not work since erasure changes sort order
void
erase(const_iterator __A, const_iterator const& __B) throw ()
{
if (0 && __A == this->begin() && __B == this->end())
{
this->clear();
}
else
{
while (__A != __B)
this->erase(__A++);
}
}
*/
// compares via equivalence
// so if you are looking for any item with the same location,
// according to the standard accessor comparisions,
// then this is the function for you.
const_iterator
find(const_reference __V) const throw ()
{
if (!_M_get_root()) return this->end();
return _M_find(_M_get_root(), __V, 0);
}
// compares via equality
// if you are looking for a particular item in the tree,
// and (for example) it has an ID that is checked via an == comparison
// eg
// struct Item
// {
// unsigned int unique_id;
// bool operator==(Item const& a, Item const& b) { return a.unique_id == b.unique_id; }
// Location location;
// };
// Two items may be equivalent in location. find() would return
// either one of them. But no two items have the same ID, so
// find_exact() would always return the item with the same location AND id.
//
const_iterator
find_exact(const_reference __V) const throw ()
{
if (!_M_get_root()) return this->end();
return _M_find_exact(_M_get_root(), __V, 0);
}
size_t
count_within_range(const_reference __V, subvalue_type const __R) const throw ()
{
if (!_M_get_root()) return 0;
_Region __region(_M_acc,__V,__R);
return this->count_within_range(__region);
}
size_t
count_within_range(_Region const& __REGION) const throw ()
{
if (!_M_get_root()) return 0;
_Region __bounds(__REGION);
return _M_count_within_range(_M_get_root(),
__REGION, __bounds, 0);
}
template <typename SearchVal, class Visitor>
Visitor
visit_within_range(SearchVal V, subvalue_type const R, Visitor visitor) const throw ()
{
if (!_M_get_root()) return visitor;
_Region region(_M_acc,V,R);
return this->visit_within_range(region, visitor);
}
template <class Visitor>
Visitor
visit_within_range(_Region const& REGION, Visitor visitor) const throw ()
{
if (_M_get_root())
{
_Region bounds(REGION);
return _M_visit_within_range(visitor, _M_get_root(), REGION, bounds, 0);
}
return visitor;
}
template <typename SearchVal, typename _OutputIterator>
_OutputIterator
find_within_range(SearchVal __V, subvalue_type const __R,
_OutputIterator __out) const throw ()
{
if (!_M_get_root()) return __out;
_Region __region(_M_acc,__V,__R);
return this->find_within_range(__region, __out);
}
template <typename _OutputIterator>
_OutputIterator
find_within_range(_Region const& __REGION,
_OutputIterator __out) const throw ()
{
if (_M_get_root())
{
_Region __bounds(__REGION);
__out = _M_find_within_range(__out, _M_get_root(),
__REGION, __bounds, 0);
}
return __out;
}
template <typename SearchVal>
std::pair<const_iterator,distance_type>
find_nearest(SearchVal __V, subvalue_type const __Max_R ) const throw ()
{
if (!_M_get_root())
return std::pair<const_iterator,distance_type>(this->end(),__Max_R);
_Region __region(_M_acc,__V); // note: zero-area!
typename _Region::_CenterPt __pt(__region,__Max_R);
return this->find_nearest(__pt);
}
template <typename SearchVal, class Predicate>
std::pair<const_iterator,distance_type>
find_nearest_if(SearchVal __V, subvalue_type const __Max_R, Predicate predicate ) const throw ()
{
if (!_M_get_root())
return std::pair<const_iterator,distance_type>(this->end(),__Max_R);
_Region __region(_M_acc,__V); // note: zero-area!
typename _Region::_CenterPt __pt(__region,__Max_R);
return this->find_nearest_if(__pt,predicate);
}
std::pair<const_iterator,distance_type>
find_nearest( typename _Region::_CenterPt const& __CENTER ) const throw ()
{
if (_M_get_root())
{
// note: we set the initial 'bounds' to the exact point.
// they expand from there outwards.
_Region __bounds(__CENTER.first);
std::pair<const_iterator,distance_type> best = _M_find_nearest(_M_get_root(), __CENTER, __bounds, 0, always_true());
// ensure we return end() if we didn't find it
// however, also return the best distance we did find, it might be useful to someone.
if (best.second > __CENTER.second)
best.first = this->end();
return best;
}
return std::pair<const_iterator,distance_type>(this->end(),__CENTER.second);
}
template <class Predicate>
std::pair<const_iterator,distance_type>
find_nearest_if( typename _Region::_CenterPt const& __CENTER, Predicate predicate ) const throw ()
{
if (_M_get_root())
{
// note: we set the initial 'bounds' to the exact point.
// they expand from there outwards.
_Region __bounds(__CENTER.first);
std::pair<const_iterator,distance_type> best = _M_find_nearest(_M_get_root(), __CENTER, __bounds, 0, predicate);
// ensure we return end() if we didn't find it
// however, also return the best distance we did find, it might be useful to someone.
if (best.second > __CENTER.second)
best.first = this->end();
return best;
}
return std::pair<const_iterator,distance_type>(this->end(),__CENTER.second);
}
void
optimise()
{
std::vector<value_type> __v(this->begin(),this->end());
this->clear();
_M_optimise(__v.begin(), __v.end(), 0);
}
void
optimize()
{ // cater for people who cannot spell :)
this->optimise();
}
void check_tree()
{
_M_check_node(_M_get_root(),0);
}
protected:
void _M_check_children( _Link_const_type child, _Link_const_type parent, size_t const level, bool to_the_left )
{
assert(parent);
if (child)
{
_Node_compare compare(level % __K,_M_acc);
// REMEMBER! its a <= relationship for BOTH branches
// for left-case (true), child<=node --> !(node<child)
// for right-case (false), node<=child --> !(child<node)
assert(!to_the_left or !compare(parent,child)); // check the left
assert(to_the_left or !compare(child,parent)); // check the right
// and recurse down the tree, checking everything
_M_check_children(_S_left(child),parent,level,to_the_left);
_M_check_children(_S_right(child),parent,level,to_the_left);
}
}
void _M_check_node( _Link_const_type node, size_t const level )
{
if (node)
{
// (comparing on this level)
// everything to the left of this node must be smaller than this
_M_check_children( _S_left(node), node, level, true );
// everything to the right of this node must be larger than this
_M_check_children( _S_right(node), node, level, false );
_M_check_node( _S_left(node), level+1 );
_M_check_node( _S_right(node), level+1 );
}
}
void _M_empty_initialise()
{
_M_set_leftmost(_M_header);
_M_set_rightmost(_M_header);
_M_set_root(NULL);
}
iterator
_M_insert_left(_Link_type __N, const_reference __V)
{
_S_set_left(__N, _M_new_node(__V)); ++_M_count;
_S_set_parent( _S_left(__N), __N );
if (__N == _M_get_leftmost())
_M_set_leftmost( _S_left(__N) );
return iterator(_S_left(__N));
}
iterator
_M_insert_right(_Link_type __N, const_reference __V)
{
_S_set_right(__N, _M_new_node(__V)); ++_M_count;
_S_set_parent( _S_right(__N), __N );
if (__N == _M_get_rightmost())
_M_set_rightmost( _S_right(__N) );
return iterator(_S_right(__N));
}
iterator
_M_insert(_Link_type __N, const_reference __V,
size_t const __L) throw (std::bad_alloc)
{
if (_Node_compare(__L % __K,_M_acc)(__V, __N))
{
if (!_S_left(__N))
return _M_insert_left(__N, __V);
return _M_insert(_S_left(__N), __V, __L+1);
}
else
{
if (!_S_right(__N) || __N == _M_get_rightmost())
return _M_insert_right(__N, __V);
return _M_insert(_S_right(__N), __V, __L+1);
}
}
_Link_type
_M_erase(_Link_type dead_dad, size_t const level) throw ()
{
// find a new step_dad, he will become a drop-in replacement.
_Link_type step_dad = _M_get_erase_replacement(dead_dad, level);
// tell dead_dad's parent that his new child is step_dad
if (dead_dad == _M_get_root())
_S_set_parent(_M_header, step_dad);
else if (_S_left(_S_parent(dead_dad)) == dead_dad)
_S_set_left(_S_parent(dead_dad), step_dad);
else
_S_set_right(_S_parent(dead_dad), step_dad);
// deal with the left and right edges of the tree...
// if the dead_dad was at the edge, then substitude...
// but if there IS no new dead, then left_most is the dead_dad's parent
if (dead_dad == _M_get_leftmost())
_M_set_leftmost( (step_dad ? step_dad : _S_parent(dead_dad)) );
if (dead_dad == _M_get_rightmost())
_M_set_rightmost( (step_dad ? step_dad : _S_parent(dead_dad)) );
if (step_dad)
{
// step_dad gets dead_dad's parent
_S_set_parent(step_dad, _S_parent(dead_dad));
// first tell the children that step_dad is their new dad
if (_S_left(dead_dad))
_S_set_parent(_S_left(dead_dad), step_dad);
if (_S_right(dead_dad))
_S_set_parent(_S_right(dead_dad), step_dad);
// step_dad gets dead_dad's children
_S_set_left(step_dad, _S_left(dead_dad));
_S_set_right(step_dad, _S_right(dead_dad));
}
return step_dad;
}
_Link_type
_M_get_erase_replacement(_Link_type node, size_t const level) throw ()
{
// if 'node' is null, then we can't do any better
if (_S_is_leaf(node))
return NULL;
std::pair<_Link_type,size_t> candidate;
// if there is nothing to the left, find a candidate on the right tree
if (!_S_left(node))
candidate = _M_get_j_min( std::pair<_Link_type,size_t>(_S_right(node),level), level+1);
// ditto for the right
else if ((!_S_right(node)))
candidate = _M_get_j_max( std::pair<_Link_type,size_t>(_S_left(node),level), level+1);
// we have both children ...
else
{
// we need to do a little more work in order to find a good candidate
// this is actually a technique used to choose a node from either the
// left or right branch RANDOMLY, so that the tree has a greater change of
// staying balanced.
// If this were a true binary tree, we would always hunt down the right branch.
// See top for notes.
_Node_compare compare(level % __K,_M_acc);
// compare the children based on this level's criteria...
// (this gives virtually random results)
if (compare(_S_right(node), _S_left(node)))
// the right is smaller, get our replacement from the SMALLEST on the right
candidate = _M_get_j_min(std::pair<_Link_type,size_t>(_S_right(node),level), level+1);
else
candidate = _M_get_j_max( std::pair<_Link_type,size_t>(_S_left(node),level), level+1);
}
// we have a candidate replacement by now.
// remove it from the tree, but don't delete it.
// it must be disconnected before it can be reconnected.
_Link_type parent = _S_parent(candidate.first);
if (_S_left(parent) == candidate.first)
_S_set_left(parent, _M_erase(candidate.first, candidate.second));
else
_S_set_right(parent, _M_erase(candidate.first, candidate.second));
return candidate.first;
}
std::pair<_Link_type,size_t>
_M_get_j_min( std::pair<_Link_type,size_t> const node, size_t const level) throw ()
{
typedef std::pair<_Link_type,size_t> Result;
if (_S_is_leaf(node.first))
return Result(node.first,level);
_Node_compare compare(node.second % __K,_M_acc);
Result candidate = node;
if (_S_left(node.first))
{
Result left = _M_get_j_min(Result(_S_left(node.first), node.second), level+1);
if (compare(left.first, candidate.first))
candidate = left;
}
if (_S_right(node.first))
{
Result right = _M_get_j_min( Result(_S_right(node.first),node.second), level+1);
if (compare(right.first, candidate.first))
candidate = right;
}
if (candidate.first == node.first)
return Result(candidate.first,level);
return candidate;
}
std::pair<_Link_type,size_t>
_M_get_j_max( std::pair<_Link_type,size_t> const node, size_t const level) throw ()
{
typedef std::pair<_Link_type,size_t> Result;
if (_S_is_leaf(node.first))
return Result(node.first,level);
_Node_compare compare(node.second % __K,_M_acc);
Result candidate = node;
if (_S_left(node.first))
{
Result left = _M_get_j_max( Result(_S_left(node.first),node.second), level+1);
if (compare(candidate.first, left.first))
candidate = left;
}
if (_S_right(node.first))
{
Result right = _M_get_j_max(Result(_S_right(node.first),node.second), level+1);
if (compare(candidate.first, right.first))
candidate = right;
}
if (candidate.first == node.first)
return Result(candidate.first,level);
return candidate;
}
void
_M_erase_subtree(_Link_type __n)
{
while (__n)
{
_M_erase_subtree(_S_right(__n));
_Link_type __t = _S_left(__n);
_M_delete_node(__n);
__n = __t;
}
}
const_iterator
_M_find(_Link_const_type node, const_reference value, size_t const level) const throw ()
{
// be aware! This is very different to normal binary searches, because of the <=
// relationship used. See top for notes.
// Basically we have to check ALL branches, as we may have an identical node
// in different branches.
const_iterator found = this->end();
_Node_compare compare(level % __K,_M_acc);
if (!compare(node,value)) // note, this is a <= test
{
// this line is the only difference between _M_find_exact() and _M_find()
if (_M_matches_node_in_other_ds(node, value, level))
return const_iterator(node); // return right away
if (_S_left(node))
found = _M_find(_S_left(node), value, level+1);
}
if ( _S_right(node) && found == this->end() && !compare(value,node)) // note, this is a <= test
found = _M_find(_S_right(node), value, level+1);
return found;
}
const_iterator
_M_find_exact(_Link_const_type node, const_reference value, size_t const level) const throw ()
{
// be aware! This is very different to normal binary searches, because of the <=
// relationship used. See top for notes.
// Basically we have to check ALL branches, as we may have an identical node
// in different branches.
const_iterator found = this->end();
_Node_compare compare(level % __K,_M_acc);
if (!compare(node,value)) // note, this is a <= test
{
// this line is the only difference between _M_find_exact() and _M_find()
if (value == *const_iterator(node))
return const_iterator(node); // return right away
if (_S_left(node))
found = _M_find_exact(_S_left(node), value, level+1);
}
// note: no else! items that are identical can be down both branches
if ( _S_right(node) && found == this->end() && !compare(value,node)) // note, this is a <= test
found = _M_find_exact(_S_right(node), value, level+1);
return found;
}
bool
_M_matches_node_in_d(_Link_const_type __N, const_reference __V,
size_t const __L) const throw ()
{
_Node_compare compare(__L % __K,_M_acc);
return !(compare(__N, __V) || compare(__V, __N));
}
bool
_M_matches_node_in_other_ds(_Link_const_type __N, const_reference __V,
size_t const __L = 0) const throw ()
{
size_t __i = __L;
while ((__i = (__i + 1) % __K) != __L % __K)
if (!_M_matches_node_in_d(__N, __V, __i)) return false;
return true;
}
bool
_M_matches_node(_Link_const_type __N, const_reference __V,
size_t __L = 0) const throw ()
{
return _M_matches_node_in_d(__N, __V, __L)
&& _M_matches_node_in_other_ds(__N, __V, __L);
}
size_t
_M_count_within_range(_Link_const_type __N, _Region const& __REGION,
_Region const& __BOUNDS,
size_t const __L) const throw ()
{
size_t count = 0;
if (__REGION.encloses(_S_value(__N)))
{
++count;
}
if (_S_left(__N))
{
_Region __bounds(__BOUNDS);
__bounds.set_high_bound(_S_value(__N), __L);
if (__REGION.intersects_with(__bounds))
count += _M_count_within_range(_S_left(__N),
__REGION, __bounds, __L+1);
}
if (_S_right(__N))
{
_Region __bounds(__BOUNDS);
__bounds.set_low_bound(_S_value(__N), __L);
if (__REGION.intersects_with(__bounds))
count += _M_count_within_range(_S_right(__N),
__REGION, __bounds, __L+1);
}
return count;
}
template <class Visitor>
Visitor
_M_visit_within_range(Visitor visitor,
_Link_const_type N, _Region const& REGION,
_Region const& BOUNDS,
size_t const L) const throw ()
{
if (REGION.encloses(_S_value(N)))
{
visitor(_S_value(N));
}
if (_S_left(N))
{
_Region bounds(BOUNDS);
bounds.set_high_bound(_S_value(N), L);
if (REGION.intersects_with(bounds))
visitor = _M_visit_within_range(visitor, _S_left(N),
REGION, bounds, L+1);
}
if (_S_right(N))
{
_Region bounds(BOUNDS);
bounds.set_low_bound(_S_value(N), L);
if (REGION.intersects_with(bounds))
visitor = _M_visit_within_range(visitor, _S_right(N),
REGION, bounds, L+1);
}
return visitor;
}
template <typename _OutputIterator>
_OutputIterator
_M_find_within_range(_OutputIterator __out,
_Link_const_type __N, _Region const& __REGION,
_Region const& __BOUNDS,
size_t const __L) const throw ()
{
if (__REGION.encloses(_S_value(__N)))
{
*__out++ = _S_value(__N);
}
if (_S_left(__N))
{
_Region __bounds(__BOUNDS);
__bounds.set_high_bound(_S_value(__N), __L);
if (__REGION.intersects_with(__bounds))
__out = _M_find_within_range(__out, _S_left(__N),
__REGION, __bounds, __L+1);
}
if (_S_right(__N))
{
_Region __bounds(__BOUNDS);
__bounds.set_low_bound(_S_value(__N), __L);
if (__REGION.intersects_with(__bounds))
__out = _M_find_within_range(__out, _S_right(__N),
__REGION, __bounds, __L+1);
}
return __out;
}
// quick little power function
// next-best is __gnu_cxx::power
// std::pow() is probably not ideal for simple powers. I forget exact details...
distance_type _M_square( distance_type x ) const { return x*x; }
// WARNING: Calculates and RETURNS dist^2 (for speed)
// NOTE: CENTER is a region of zero area. It is the point we are aiming for.
//
// How it works: Starting with a centerpt (single-pt in a region, with a range
// attached to it), and bounds, it first calculates the distance to THIS node,
// and adjusts the center's range DOWN if its closer. No point looking further
// than it needs to look. A form of a dynamic find_within_range.
// It expands the bounds as usual and sees if it intersects the centerpt+range.
// And so it goes ...
// substitude predicate for normal find_nearest()s
struct always_true
{
bool operator()( _Val const& ) const { return true; }
};
template <class Predicate>
std::pair<const_iterator,distance_type>
_M_find_nearest( _Link_const_type __N, typename _Region::_CenterPt __CENTER,
_Region const& __BOUNDS,
size_t const __L,
Predicate predicate ) const throw ()
{
std::pair<const_iterator,distance_type> best(this->end(),__CENTER.second);
// we ignore this node if the predicate isn't true
if (predicate(*const_iterator(__N)))
{
distance_type dist = 0;
for ( size_t i = 0; i != __K; ++i )
{
dist += _M_square( __CENTER.first._M_low_bounds[i] - _M_acc(_S_value(__N),i) );
}
#ifdef KDTREE_CHECK_PERFORMANCE
++num_dist_calcs;
#endif
dist = sqrt(dist);
best.first = __N;
best.second = dist;
}
// adjust our CENTER target
__CENTER.second = std::min(__CENTER.second,best.second);
if (_S_left(__N))
{
_Region __bounds(__BOUNDS);
__bounds.set_high_bound(_S_value(__N), __L);
if (__bounds.intersects_with(__CENTER))
{
std::pair<const_iterator,distance_type> left =
_M_find_nearest( _S_left(__N), __CENTER, __bounds, __L+1, predicate);
// check if better than what I found
if (left.second < best.second) best = left;
}
}
// adjust our center target (only useful if left found something closer)
__CENTER.second = std::min(__CENTER.second,best.second);
if (_S_right(__N))
{
_Region __bounds(__BOUNDS);
__bounds.set_low_bound(_S_value(__N), __L);
if (__bounds.intersects_with(__CENTER))
{
std::pair<const_iterator,distance_type> right =
_M_find_nearest( _S_right(__N), __CENTER, __bounds, __L+1, predicate);
// check if better than what I found
if (right.second < best.second) best = right;
}
}
return best;
}
template <typename _Iter>
void
_M_optimise(_Iter const& __A, _Iter const& __B,
size_t const __L) throw ()
{
if (__A == __B) return;
_Node_compare compare(__L % __K,_M_acc);
std::sort(__A, __B, compare);
_Iter __m = __A + (__B - __A) / 2;
this->insert(*__m);
if (__m != __A) _M_optimise(__A, __m, __L+1);
if (++__m != __B) _M_optimise(__m, __B, __L+1);
}
_Link_const_type
_M_get_root() const
{
return static_cast<_Link_const_type>( _M_header->_M_parent );
}
_Link_type
_M_get_root()
{
return static_cast<_Link_type>( _M_header->_M_parent );
}
void _M_set_root(_Node_base * n)
{
_M_header->_M_parent = n;
}
_Link_const_type
_M_get_leftmost() const
{
return static_cast<_Link_type>( _M_header->_M_left );
}
void
_M_set_leftmost( _Node_base * a )
{
_M_header->_M_left = a;
}
_Link_const_type
_M_get_rightmost() const
{
return static_cast<_Link_type>( _M_header->_M_right );
}
void
_M_set_rightmost( _Node_base * a )
{
_M_header->_M_right = a;
}
static _Link_type
_S_parent(_Base_ptr N)
{
return static_cast<_Link_type>( N->_M_parent );
}
static _Link_const_type
_S_parent(_Base_const_ptr N)
{
return static_cast<_Link_const_type>( N->_M_parent );
}
static void
_S_set_parent(_Base_ptr N, _Base_ptr p)
{
N->_M_parent = p;
}
static void
_S_set_left(_Base_ptr N, _Base_ptr l)
{
N->_M_left = l;
}
static _Link_type
_S_left(_Base_ptr N)
{
return static_cast<_Link_type>( N->_M_left );
}
static _Link_const_type
_S_left(_Base_const_ptr N)
{
return static_cast<_Link_const_type>( N->_M_left );
}
static void
_S_set_right(_Base_ptr N, _Base_ptr r)
{
N->_M_right = r;
}
static _Link_type
_S_right(_Base_ptr N)
{
return static_cast<_Link_type>( N->_M_right );
}
static _Link_const_type
_S_right(_Base_const_ptr N)
{
return static_cast<_Link_const_type>( N->_M_right );
}
static bool
_S_is_leaf(_Base_const_ptr N)
{
return !_S_left(N) && !_S_right(N);
}
static const_reference
_S_value(_Link_const_type N)
{
return N->_M_value;
}
static const_reference
_S_value(_Base_const_ptr N)
{
return static_cast<_Link_const_type>(N)->_M_value;
}
static _Link_const_type
_S_minimum(_Link_const_type __X)
{
return static_cast<_Link_const_type> ( _Node_base::_S_minimum(__X) );
}
static _Link_const_type
_S_maximum(_Link_const_type __X)
{
return static_cast<_Link_const_type>( _Node_base::_S_maximum(__X) );
}
_Link_type
_M_new_node(const_reference __V, // = value_type(),
_Base_ptr const __PARENT = NULL,
_Base_ptr const __LEFT = NULL,
_Base_ptr const __RIGHT = NULL)
{
_Link_type __ret = _Base::_M_allocate_node();
try
{
_M_construct_node(__ret, __V, __PARENT, __LEFT, __RIGHT);
}
catch(...)
{
_M_deallocate_node(__ret);
__throw_exception_again;
}
return __ret;
}
/* WHAT was this for?
_Link_type
_M_clone_node(_Link_const_type __X)
{
_Link_type __ret = _M_allocate_node(__X->_M_value);
// TODO
return __ret;
}
*/
void
_M_delete_node(_Link_type __p)
{
_M_destroy_node(__p);
_M_deallocate_node(__p);
}
_Link_type _M_header;
size_type _M_count;
_Acc _M_acc;
#ifdef KDTREE_DEFINE_OSTREAM_OPERATORS
friend std::ostream&
operator<<(std::ostream& o,
KDTree<__K, _Val, _Acc, _Cmp, _Alloc> const& tree) throw ()
{
o << "meta node: " << *tree._M_header << std::endl;
if (tree.empty())
return o << "[empty " << __K << "d-tree " << &tree << "]";
o << "nodes total: " << tree.size() << std::endl;
o << "dimensions: " << __K << std::endl;
typedef KDTree<__K, _Val, _Acc, _Cmp, _Alloc> _Tree;
typedef typename _Tree::_Link_type _Link_type;
std::stack<_Link_const_type> s;
s.push(tree._M_get_root());
while (!s.empty())
{
_Link_const_type n = s.top();
s.pop();
o << *n << std::endl;
if (_Tree::_S_left(n)) s.push(_Tree::_S_left(n));
if (_Tree::_S_right(n)) s.push(_Tree::_S_right(n));
}
return o;
}
#endif
};
} // namespace KDTree
#endif // include guard
/* COPYRIGHT --
*
* This file is part of libkdtree++, a C++ template KD-Tree sorting container.
* libkdtree++ is (c) 2004-2007 Martin F. Krafft <libkdtree@pobox.madduck.net>
* and Sylvain Bougerel <sylvain.bougerel.devel@gmail.com> distributed under the
* terms of the Artistic License 2.0. See the ./COPYING file in the source tree
* root for more information.
* Parts of this file are (c) 2004-2007 Paul Harris <paulharris@computer.org>.
*
* THIS PACKAGE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
* OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
|