1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
package kj.dsp;
/**
* @author Kris
*
* TODO To change the template for this generated type comment go to
* Window - Preferences - Java - Code Generation - Code and Comments
*/
public class KJFFT {
private float[] xre;
private float[] xim;
private float[] mag;
private float[] fftSin;
private float[] fftCos;
private int[] fftBr;
private int ss, ss2, nu, nu1;
/**
* @param The amount of the sample provided to the "calculate" method to use during
* FFT calculations.
*/
public KJFFT( int pSampleSize ) {
ss = pSampleSize;
ss2 = ss >> 1;
xre = new float[ ss ];
xim = new float[ ss ];
mag = new float[ ss2 ];
nu = (int)( Math.log( ss ) / Math.log( 2 ) );
nu1 = nu - 1;
prepareFFTTables();
}
private int bitrev( int j, int nu ) {
int j1 = j;
int j2;
int k = 0;
for( int i = 1; i <= nu; i++ ) {
j2 = j1 >> 1;
k = ( k << 1 ) + j1 - ( j2 << 1 );
j1 = j2;
}
return k;
}
/**
* @param pSample The sample to compute FFT values on.
* @return The results of the calculation, normalized between 0.0 and 1.0.
*/
public float[] calculate( float[] pSample ) {
int n2 = ss2;
int nu1 = nu - 1;
int wAps = pSample.length / ss;
// -- FIXME: This affects the calculation accuracy, because
// is compresses the digital signal. Looks nice on
// the spectrum analyser, as it chops off most of
// sound we cannot hear anyway.
for ( int a = 0, b = 0; a < pSample.length; a += wAps, b++ ) {
xre[ b ] = pSample[ a ];
xim[ b ] = 0.0f;
}
float tr, ti, c, s;
int k, kn2, x = 0;
for ( int l = 1; l <= nu; l++ ) {
k = 0;
while ( k < ss ) {
for ( int i = 1; i <= n2; i++ ) {
// -- Tabled sin/cos
c = fftCos[ x ];
s = fftSin[ x ];
kn2 = k + n2;
tr = xre[ kn2 ] * c + xim[ kn2 ] * s;
ti = xim[ kn2 ] * c - xre[ kn2 ] * s;
xre[ kn2 ] = xre[ k ] - tr;
xim[ kn2 ] = xim[ k ] - ti;
xre[ k ] += tr;
xim[ k ] += ti;
k++; x++;
}
k += n2;
}
nu1--;
n2 >>= 1;
}
int r;
// -- Reorder output.
for( k = 0; k < ss; k++ ) {
// -- Use tabled BR values.
r = fftBr[ k ];
if ( r > k ) {
tr = xre[ k ];
ti = xim[ k ];
xre[ k ] = xre[ r ];
xim[ k ] = xim[ r ];
xre[ r ] = tr;
xim[ r ] = ti;
}
}
// -- Calculate magnitude.
mag[ 0 ] = (float)( Math.sqrt( xre[ 0 ] * xre[ 0 ] + xim[ 0 ] * xim[ 0 ] ) ) / ss;
for ( int i = 1; i < ss2; i++ ) {
mag[ i ]= 2 * (float)( Math.sqrt( xre[ i ] * xre[ i ] + xim[ i ] * xim[ i ] ) ) / ss;
}
return mag;
}
private void prepareFFTTables() {
int n2 = ss2;
int nu1 = nu - 1;
// -- Allocate FFT SIN/COS tables.
fftSin = new float[ nu * n2 ];
fftCos = new float[ nu * n2 ];
float tr, ti, p, arg;
int k = 0, x = 0;
// -- Prepare SIN/COS tables.
for ( int l = 1; l <= nu; l++ ) {
while ( k < ss ) {
for ( int i = 1; i <= n2; i++ ) {
p = bitrev( k >> nu1, nu );
arg = 2 * (float)Math.PI * p / ss;
fftSin[ x ] = (float)Math.sin( arg );
fftCos[ x ] = (float)Math.cos( arg );
k++;
x++;
}
k += n2;
}
k = 0;
nu1--;
n2 >>= 1;
}
// -- Prepare bitrev table.
fftBr = new int[ ss ];
for( k = 0; k < ss; k++ ) {
fftBr[ k ] = bitrev( k, nu );
}
}
}
|