File: spec.py

package info (click to toggle)
liblc3 1.1.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,760 kB
  • sloc: ansic: 12,075; python: 10,948; cpp: 282; makefile: 119
file content (885 lines) | stat: -rw-r--r-- 25,432 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
#
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import numpy as np

import lc3
import tables as T, appendix_c as C

import bwdet as m_bwdet
import ltpf as m_ltpf
import sns as m_sns
import tns as m_tns

### ------------------------------------------------------------------------ ###

class SpectrumQuantization:

    def __init__(self, dt, sr):

        self.dt = dt
        self.sr = sr

    def get_gain_offset(self, nbytes):

        sr_ind = self.sr if self.sr < T.SRATE_48K_HR \
            else 4 + (self.sr - T.SRATE_48K_HR)

        g_off = (nbytes * 8) // (10 * (1 + sr_ind))
        g_off = -min(115, g_off) - (105 + 5*(1 + sr_ind))
        if self.sr >= T.SRATE_48K_HR:
            g_off = max(g_off, -181)

        return g_off

    def get_noise_indices(self, bw, xq, lastnz):

        nf_start = [  6, 12, 18, 24 ][self.dt]
        nf_width = [  1,  1,  2,  3 ][self.dt]

        bw_stop = T.I[self.dt][min(bw, T.SRATE_48K)][-1]

        xq = np.append(xq[:lastnz], np.zeros(len(xq) - lastnz))
        xq[:nf_start-nf_width] = 1

        return [ np.all(xq[max(k-nf_width, 0):min(k+nf_width+1, bw_stop)] == 0)
                    for k in range(bw_stop) ]

class SpectrumAnalysis(SpectrumQuantization):

    def __init__(self, dt, sr):

        super().__init__(dt, sr)

        self.reset_off  = 0
        self.nbits_off  = 0
        self.nbits_spec = 0
        self.nbits_est  = 0

        (self.g_idx, self.noise_factor, self.xq, self.lastnz,
                self.nbits_residual_max, self.xg) = \
            (None, None, None, None, None, None)

    def estimate_gain(self, x, nbytes, nbits_spec, nbits_off, g_off):

        nbits = int(nbits_spec + nbits_off + 0.5)

        ### Energy (dB) by 4 MDCT coefficients

        hr = (self.sr >= T.SRATE_48K_HR)
        nf = 0

        if hr:
            dt = self.dt
            sr = self.sr

            dt_ms = T.DT_MS[dt]
            bitrate = (8 * nbytes / (dt_ms * 1e-3)).astype(int)

            C = [ [ -6, 0, None, 2 ], [ -6, 0, None, 5 ] ]

            reg_bits = np.clip(
                bitrate // 12500 + C[sr - T.SRATE_48K_HR][dt], 6, 23)

            M0 = np.sum(np.abs(x)) + 1e-5
            M1 = np.sum(np.arange(len(x)) * np.abs(x)) + 1e-5

            low_bits = (4 / dt_ms) * (2*dt_ms - min(M0/M1, 2*dt_ms))

            nf = np.max(np.abs(x)) * np.exp2(-reg_bits - low_bits)

        e = [ np.sum(x[4*k:4*(k+1)] ** 2) for k in range(len(x) // 4) ]
        e = 10 * np.log10(2**-31 + np.array(e) + nf)

        ### Compute gain index

        g_idx = 255

        for i in range(8):
            factor = 1 << (7 - i)
            g_idx -= factor
            tmp = 0
            iszero = 1

            for ei in e[-1::-1]:

                if ei * 28/20 < g_idx + g_off:
                    if iszero == 0:
                        tmp += 2.7*28/20
                else:
                    if g_idx + g_off < (ei - 43) * 28/20:
                        tmp += 2*ei*28/20 - 2*(g_idx + g_off) - 36*28/20
                    else:
                        tmp += ei*28/20 - (g_idx + g_off) + 7*28/20
                    iszero = 0

            if tmp > nbits * 1.4 * 28/20 and iszero == 0:
                g_idx += factor

        ### Limit gain index

        x_max = np.amax(np.abs(x))
        if x_max > 0:
            x_lim = [ 2**15 - 0.375,  2**23 ][hr]
            g_min = 28 * np.log10(x_max / x_lim)
            g_min = np.ceil(g_min).astype(int) - g_off
            reset_off = g_idx < g_min
        else:
            g_min = 0
            reset_off = True

        if reset_off:
            g_idx = g_min

        return (g_min, g_idx + g_off, reset_off)

    def quantize(self, g_int, x):

        xg = x / 10 ** (g_int / 28)

        hr = (self.sr >= T.SRATE_48K_HR)
        offset = [ 0.375, 0.5 ][hr]
        xq_min = [ -(2**15)  , -(2**23)   ][hr]
        xq_max = [  (2**15)-1,  (2**23)-1 ][hr]

        xq = np.where(xg < 0, np.ceil(xg - offset), np.floor(xg + offset))
        xq = xq.astype(np.int32)
        xq = np.fmin(np.fmax(xq, xq_min), xq_max)

        nz_pairs = np.any([ xq[::2] != 0, xq[1::2] != 0 ], axis=0)
        lastnz = len(xq) - 2 * np.argmax(nz_pairs[-1::-1])
        if not np.any(nz_pairs):
            lastnz = 0

        return (xg, xq, lastnz)

    def compute_nbits(self, nbytes, x, lastnz, nbits_spec):

        mode = [ 0,   1 ][int(self.sr < T.SRATE_96K_HR and \
                              nbytes >= 20 * (3 + min(self.sr, T.SRATE_48K)))]
        rate = [ 0, 512 ][int(self.sr < T.SRATE_96K_HR and \
                              nbytes >  20 * (1 + min(self.sr, T.SRATE_48K)))]

        nbits_est = 0
        nbits_trunc = 0
        nbits_lsb = 0
        lastnz_trunc = 2
        c = 0

        for n in range(0, lastnz, 2):
            t = c + rate
            if n > len(x) // 2:
                t += 256

            a = abs(x[n  ])
            b = abs(x[n+1])
            lev = 0
            while max(a, b) >= 4:
                nbits_est += \
                    T.AC_SPEC_BITS[T.AC_SPEC_LOOKUP[t + lev*1024]][16]
                if lev == 0 and mode == 1:
                    nbits_lsb += 2
                else:
                    nbits_est += 2 * 2048

                a >>= 1
                b >>= 1
                lev = min(lev + 1, 3)

            nbits_est += \
                T.AC_SPEC_BITS[T.AC_SPEC_LOOKUP[t + lev*1024]][a + 4*b]

            a_lsb = abs(x[n  ])
            b_lsb = abs(x[n+1])
            nbits_est += (min(a_lsb, 1) + min(b_lsb, 1)) * 2048
            if lev > 0 and mode == 1:
                a_lsb >>= 1
                b_lsb >>= 1
                nbits_lsb += int(a_lsb == 0 and x[n  ] != 0)
                nbits_lsb += int(b_lsb == 0 and x[n+1] != 0)

            if (x[n] != 0 or x[n+1] != 0) and \
                    (nbits_est <= nbits_spec * 2048):
                lastnz_trunc = n + 2
                nbits_trunc = nbits_est

            t = 1 + (a + b) * (lev + 1) if lev <= 1 else 12 + lev
            c = (c & 15) * 16 + t

        nbits_est = (nbits_est + 2047) // 2048 + nbits_lsb
        nbits_trunc = (nbits_trunc + 2047) // 2048

        self.rate = rate
        self.lsb_mode = mode == 1 and nbits_est > nbits_spec

        return (nbits_est, nbits_trunc, lastnz_trunc, self.lsb_mode)

    def adjust_gain(self, g_idx, nbits, nbits_spec):

        T1 = [  80,  230,  380,  530,  680,  680,  830 ]
        T2 = [ 500, 1025, 1550, 2075, 2600, 2600, 3125 ]
        T3 = [ 850, 1700, 2550, 3400, 4250, 4250, 5100 ]

        dt = self.dt
        sr = self.sr

        if nbits < T1[sr]:
            delta = (nbits + 48) / 16

        elif nbits < T2[sr]:
            a = T1[sr] / 16 + 3
            b = T2[sr] / 48
            delta = a + (nbits - T1[sr]) * (b - a) / (T2[sr] - T1[sr])

        elif nbits < T3[sr]:
            delta = nbits / 48

        else:
            delta = T3[sr] / 48

        delta = np.fix(delta + 0.5).astype(int)

        if self.sr >= T.SRATE_48K_HR and \
            (g_idx < 255 and nbits > nbits_spec):

            factor = [ 3 + (nbits >= 520), 2, 0, 1 ][dt]
            g_incr = int(factor * (1 + (nbits - nbits_spec) / delta))
            return min(g_idx + g_incr, 255) - g_idx

        elif self.sr < T.SRATE_48K_HR and \
            ( (g_idx < 255 and nbits > nbits_spec) or \
              (g_idx >   0 and nbits < nbits_spec - (delta + 2)) ):

            if nbits < nbits_spec - (delta + 2):
                return -1

            if g_idx == 254 or nbits < nbits_spec + delta:
                return 1

            else:
                return 2

        return 0

    def estimate_noise(self, bw, xq, lastnz, x):

        i_nf = self.get_noise_indices(bw, xq, lastnz)
        l_nf = sum(abs(x[:len(i_nf)] * i_nf)) / sum(i_nf) \
            if sum(i_nf) > 0 else 0

        return min(max(np.rint(8 - 16 * l_nf).astype(int), 0), 7)

    def run(self, bw, nbytes, nbits_bw, nbits_ltpf, nbits_sns, nbits_tns, x):

        sr = self.sr

        ### Bit budget

        hr = self.sr >= T.SRATE_48K_HR

        nbits_gain = 8
        nbits_nf   = 3

        nbits_ari  = np.ceil(np.log2(len(x) / 2)).astype(int)
        nbits_ari += 3 + int(hr) + min((8*nbytes - 1) // 1280, 2)

        nbits_spec = 8*nbytes - \
            nbits_bw - nbits_ltpf - nbits_sns - nbits_tns - \
            nbits_gain - nbits_nf - nbits_ari

        ### Global gain estimation

        nbits_off = self.nbits_off + self.nbits_spec - self.nbits_est
        nbits_off = min(40, max(-40, nbits_off))

        nbits_off = 0 if self.reset_off else \
                    0.8 * self.nbits_off + 0.2 * nbits_off

        g_off = self.get_gain_offset(nbytes)

        (g_min, g_int, self.reset_off) = \
            self.estimate_gain(x, nbytes, nbits_spec, nbits_off, g_off)
        self.nbits_off = nbits_off
        self.nbits_spec = nbits_spec

        ### Quantization

        (xg, xq, lastnz) = self.quantize(g_int, x)

        (nbits_est, nbits_trunc, lastnz_trunc, _) = \
            self.compute_nbits(nbytes, xq, lastnz, nbits_spec)

        self.nbits_est = nbits_est

        ### Adjust gain and requantize

        g_adj = self.adjust_gain(g_int - g_off, nbits_est, nbits_spec)
        g_adj = max(g_int + g_adj, g_min + g_off) - g_int

        (xg, xq, lastnz) = self.quantize(g_adj, xg)

        (nbits_est, nbits_trunc, lastnz_trunc, lsb_mode) = \
            self.compute_nbits(nbytes, xq, lastnz, nbits_spec)

        self.g_idx = g_int + g_adj - g_off
        self.xq = xq
        self.lastnz = lastnz_trunc

        self.nbits_residual_max = nbits_spec - nbits_trunc + 4
        self.xg = xg

        ### Noise factor

        self.noise_factor = self.estimate_noise(bw, xq, lastnz, x)

        return (self.xq, self.lastnz, self.xg)

    def store(self, b):

        ne = T.I[self.dt][self.sr][-1]
        nbits_lastnz = np.ceil(np.log2(ne/2)).astype(int)

        b.write_uint((self.lastnz >> 1) - 1, nbits_lastnz)
        b.write_uint(self.lsb_mode, 1)
        b.write_uint(self.g_idx, 8)

    def encode(self, bits):

        ### Noise factor

        bits.write_uint(self.noise_factor, 3)

        ### Quantized data

        lsbs = []

        x = self.xq
        c = 0

        for n in range(0, self.lastnz, 2):
            t = c + self.rate
            if n > len(x) // 2:
                t += 256

            a = abs(x[n  ])
            b = abs(x[n+1])
            lev = 0
            while max(a, b) >= 4:

                bits.ac_encode(
                    T.AC_SPEC_CUMFREQ[T.AC_SPEC_LOOKUP[t + lev*1024]][16],
                    T.AC_SPEC_FREQ[T.AC_SPEC_LOOKUP[t + lev*1024]][16])

                if lev == 0 and self.lsb_mode:
                    lsb_0 = a & 1
                    lsb_1 = b & 1
                else:
                    bits.write_bit(a & 1)
                    bits.write_bit(b & 1)

                a >>= 1
                b >>= 1
                lev = min(lev + 1, 3)

            bits.ac_encode(
                T.AC_SPEC_CUMFREQ[T.AC_SPEC_LOOKUP[t + lev*1024]][a + 4*b],
                T.AC_SPEC_FREQ[T.AC_SPEC_LOOKUP[t + lev*1024]][a + 4*b])

            a_lsb = abs(x[n  ])
            b_lsb = abs(x[n+1])
            if lev > 0 and self.lsb_mode:
                a_lsb >>= 1
                b_lsb >>= 1

                lsbs.append(lsb_0)
                if a_lsb == 0 and x[n+0] != 0:
                    lsbs.append(int(x[n+0] < 0))

                lsbs.append(lsb_1)
                if b_lsb == 0 and x[n+1] != 0:
                    lsbs.append(int(x[n+1] < 0))

            if a_lsb > 0:
                bits.write_bit(int(x[n+0] < 0))

            if b_lsb > 0:
                bits.write_bit(int(x[n+1] < 0))

            t = 1 + (a + b) * (lev + 1) if lev <= 1 else 12 + lev
            c = (c & 15) * 16 + t

        ### Residual data

        if self.lsb_mode == 0:
            nbits_residual = min(bits.get_bits_left(), self.nbits_residual_max)

            for i in range(len(self.xg)):

                if self.xq[i] == 0:
                    continue

                bits.write_bit(self.xg[i] >= self.xq[i])
                nbits_residual -= 1
                if nbits_residual <= 0:
                    break

        else:
            nbits_residual = min(bits.get_bits_left(), len(lsbs))
            for lsb in lsbs[:nbits_residual]:
                bits.write_bit(lsb)


class SpectrumSynthesis(SpectrumQuantization):

    def __init__(self, dt, sr):

        super().__init__(dt, sr)

        (self.lastnz, self.lsb_mode, self.g_idx) = \
            (None, None, None)

    def fill_noise(self, bw, x, lastnz, f_nf, nf_seed):

        i_nf = self.get_noise_indices(bw, x, lastnz)

        k_nf = np.argwhere(i_nf)
        l_nf = (8 - f_nf)/16

        for k in k_nf:
            nf_seed = (13849 + nf_seed * 31821) & 0xffff
            x[k] = [ -l_nf, l_nf ][nf_seed < 0x8000]

        return x

    def load(self, b):

        ne = T.I[self.dt][self.sr][-1]
        nbits_lastnz = np.ceil(np.log2(ne/2)).astype(int)

        self.lastnz = (b.read_uint(nbits_lastnz) + 1) << 1
        self.lsb_mode = b.read_uint(1)
        self.g_idx = b.read_uint(8)

        if self.lastnz > ne:
            raise ValueError('Invalid count of coded samples')

    def decode(self, bits, bw, nbytes):

        ### Noise factor

        f_nf = bits.read_uint(3)

        ### Quantized data

        ne = T.I[self.dt][self.sr][-1]
        x  = np.zeros(ne)
        rate = [ 0, 512 ][int(self.sr < T.SRATE_96K_HR and \
                              nbytes >  20 * (1 + min(self.sr, T.SRATE_48K)))]

        levs = np.zeros(len(x), dtype=np.intc)
        c = 0

        for n in range(0, self.lastnz, 2):
            t = c + rate
            if n > len(x) // 2:
                t += 256

            for lev in range(14):

                s = t + min(lev, 3) * 1024

                sym = bits.ac_decode(
                    T.AC_SPEC_CUMFREQ[T.AC_SPEC_LOOKUP[s]],
                    T.AC_SPEC_FREQ[T.AC_SPEC_LOOKUP[s]])

                if sym < 16:
                    break

                if self.lsb_mode == 0 or lev > 0:
                    x[n  ] += bits.read_bit() << lev
                    x[n+1] += bits.read_bit() << lev

            if lev >= 14:
                raise ValueError('Out of range value')

            a = sym %  4
            b = sym // 4

            levs[n  ] = lev
            levs[n+1] = lev

            x[n  ] += a << lev
            x[n+1] += b << lev

            if x[n] and bits.read_bit():
                x[n] = -x[n]

            if x[n+1] and bits.read_bit():
                x[n+1] = -x[n+1]

            lev = min(lev, 3)
            t = 1 + (a + b) * (lev + 1) if lev <= 1 else 12 + lev
            c = (c & 15) * 16 + t

        ### Residual data

        nbits_residual = bits.get_bits_left()
        if nbits_residual < 0:
            raise ValueError('Out of bitstream')

        if self.lsb_mode == 0:

            xr = np.zeros(len(x), dtype=np.bool)

            for i in range(len(x)):

                if nbits_residual <= 0:
                    xr.resize(i)
                    break

                if x[i] == 0:
                    continue

                xr[i] = bits.read_bit()
                nbits_residual -= 1

        else:

            for i in range(len(levs)):

                if nbits_residual <= 0:
                    break

                if levs[i] <= 0:
                    continue

                lsb = bits.read_bit()
                nbits_residual -= 1
                if not lsb:
                    continue

                sign = int(x[i] < 0)

                if x[i] == 0:

                    if nbits_residual <= 0:
                        break

                    sign = bits.read_bit()
                    nbits_residual -= 1

                x[i] += [ 1, -1 ][sign]

        ### Set residual and noise

        nf_seed = sum(abs(x.astype(np.intc)) * range(len(x)))

        zero_frame = (self.lastnz <= 2 and x[0] == 0 and x[1] == 0
                      and self.g_idx <= 0 and f_nf >= 7)

        if self.lsb_mode == 0:

            for i in range(len(xr)):

                if x[i] and xr[i] == 0:
                    x[i] += [ -0.1875, -0.3125 ][x[i] < 0]
                elif x[i]:
                    x[i] += [  0.1875,  0.3125 ][x[i] > 0]

        if not zero_frame:
            x = self.fill_noise(bw, x, self.lastnz, f_nf, nf_seed)

        ### Rescale coefficients

        g_int = self.get_gain_offset(nbytes) + self.g_idx
        x *= 10 ** (g_int / 28)

        return x


def initial_state():
    return { 'nbits_off' : 0.0, 'nbits_spare' : 0 }


### ------------------------------------------------------------------------ ###

def check_estimate_gain(rng, dt, sr):

    ok = True

    analysis = SpectrumAnalysis(dt, sr)

    mismatch_count = 0
    for i in range(10):
        ne = T.I[dt][sr][-1]
        x  = rng.random(ne) * i * 1e2

        nbytes = 20 + int(rng.random() * 100)
        nbits_budget = 8 * nbytes - int(rng.random() * 100)
        nbits_off = rng.random() * 10
        g_off = 10 - int(rng.random() * 20)

        (_, g_int, reset_off) = \
            analysis.estimate_gain(x, nbytes, nbits_budget, nbits_off, g_off)

        (g_int_c, reset_off_c, _) = lc3.spec_estimate_gain(
            dt, sr, x, nbytes, nbits_budget, nbits_off, -g_off)

        if g_int_c != g_int:
            mismatch_count += 1

        ok = ok and (g_int_c == g_int or mismatch_count <= 1)
        ok = ok and (reset_off_c == reset_off or mismatch_count <= 1)

    return ok

def check_quantization(rng, dt, sr):

    ok = True

    analysis = SpectrumAnalysis(dt, sr)

    for g_int in range(-128, 128):

        ne = T.I[dt][sr][-1]
        x  = rng.random(ne) * 1e2
        nbytes = 20 + int(rng.random() * 30)

        (xg, xq, nq) = analysis.quantize(g_int, x)
        (xg_c, nq_c) = lc3.spec_quantize(dt, sr, g_int, x)

        ok = ok and np.amax(np.abs(1 - xg_c/xg)) < 1e-6
        ok = ok and nq_c == nq

    return ok

def check_compute_nbits(rng, dt, sr):

    ok = True

    analysis = SpectrumAnalysis(dt, sr)

    for nbytes in range(20, 150):

        nbits_budget = nbytes * 8 - int(rng.random() * 100)
        ne = T.I[dt][sr][-1]
        xq = (rng.random(ne) * 8).astype(int)
        nq = ne // 2 + int(rng.random() * ne // 2)

        nq = nq - nq % 2
        if xq[nq-2] == 0 and xq[nq-1] == 0:
            xq[nq-2] = 1

        (nbits, nbits_trunc, nq_trunc, lsb_mode) = \
            analysis.compute_nbits(nbytes, xq, nq, nbits_budget)

        (nbits_c, nq_c, _) = \
            lc3.spec_compute_nbits(dt, sr, nbytes, xq, nq, 0)

        (nbits_trunc_c, nq_trunc_c, lsb_mode_c) = \
            lc3.spec_compute_nbits(dt, sr, nbytes, xq, nq, nbits_budget)

        ok = ok and nbits_c == nbits
        ok = ok and nbits_trunc_c == nbits_trunc
        ok = ok and nq_trunc_c == nq_trunc
        ok = ok and lsb_mode_c == lsb_mode

    return ok

def check_adjust_gain(rng, dt, sr):

    ok = True

    analysis = SpectrumAnalysis(dt, sr)

    for g_idx in (0, 128, 254, 255):
        for nbits in range(50, 5000, 5):
            nbits_budget = int(nbits * (0.95 + (rng.random() * 0.1)))

            g_adj = analysis.adjust_gain(g_idx, nbits, nbits_budget)

            g_adj_c = lc3.spec_adjust_gain(
                dt, sr, g_idx, nbits, nbits_budget, 0)

            ok = ok and g_adj_c == g_adj

    return ok

def check_unit(rng, dt, sr):

    ok = True

    state_c = initial_state()

    bwdet = m_bwdet.BandwidthDetector(dt, sr)
    ltpf = m_ltpf.LtpfAnalysis(dt, sr)
    tns = m_tns.TnsAnalysis(dt)
    sns = m_sns.SnsAnalysis(dt, sr)
    analysis = SpectrumAnalysis(dt, sr)

    nbytes = 100

    for i in range(10):
        ns = T.NS[dt][sr]
        ne = T.I[dt][sr][-1]

        x = rng.random(ns) * 1e4
        e = rng.random(min(len(x), 64)) * 1e10

        if sr < T.SRATE_48K_HR:
            bwdet.run(e)
        pitch_present = ltpf.run(x)
        tns.run(x[:ne], sr, False, nbytes)
        sns.run(e, False, 0, x)

        (xq, nq, xg) = analysis.run(sr, nbytes,
            0 if sr >= T.SRATE_48K_HR else bwdet.get_nbits(),
            ltpf.get_nbits(), sns.get_nbits(), tns.get_nbits(), x[:ne])

        (xg_c, side_c) = lc3.spec_analyze(dt, sr,
            nbytes, pitch_present, tns.get_data(), state_c, x[:ne])

        ok = ok and side_c['g_idx'] == analysis.g_idx
        ok = ok and side_c['nq'] == nq
        ok = ok and np.amax(np.abs(1 - xg_c/xg)) < 1e-6

    return ok

def check_noise(rng, dt, bw, hrmode = False):

    ok = True

    analysis = SpectrumAnalysis(dt, bw)

    xq_off = [ 0.375, 0.5 ][hrmode]

    for i in range(10):
        ne = T.I[dt][bw][-1]
        xq = ((rng.random(ne) - 0.5) * 10 ** (0.5)).astype(int)
        nq = ne - int(rng.random() * 5)
        x  = xq - np.select([xq < 0, xq > 0], np.array([ xq_off, -xq_off ]))

        nf = analysis.estimate_noise(bw, xq, nq, x)
        nf_c = lc3.spec_estimate_noise(dt, bw, hrmode, x, nq)

        ok = ok and nf_c == nf

    return ok

def check_appendix_c(dt):

    i0 = dt - T.DT_7M5
    sr = T.SRATE_16K

    ok = True

    state_c = initial_state()

    for i in range(len(C.X_F[i0])):

        ne = T.I[dt][sr][-1]

        g_int = lc3.spec_estimate_gain(dt, sr, C.X_F[i0][i],
            0, C.NBITS_SPEC[i0][i], C.NBITS_OFFSET[i0][i], -C.GG_OFF[i0][i])[0]
        ok = ok and g_int == C.GG_IND[i0][i] + C.GG_OFF[i0][i]

        (x, nq) = lc3.spec_quantize(dt, sr,
            C.GG_IND[i0][i] + C.GG_OFF[i0][i], C.X_F[i0][i])
        x += np.select([x < 0, x > 0], np.array([ 0.375, -0.375 ]))
        ok = ok and np.any((np.trunc(x) - C.X_Q[i0][i]) == 0)
        ok = ok and nq == C.LASTNZ[i0][i]
        nbits = lc3.spec_compute_nbits(dt, sr,
            C.NBYTES[i0], C.X_Q[i0][i], C.LASTNZ[i0][i], 0)[0]
        ok = ok and nbits == C.NBITS_EST[i0][i]

        g_adj = lc3.spec_adjust_gain(dt, sr,
            C.GG_IND[i0][i], C.NBITS_EST[i0][i], C.NBITS_SPEC[i0][i], 0)
        ok = ok and g_adj == C.GG_IND_ADJ[i0][i] - C.GG_IND[i0][i]

        if C.GG_IND_ADJ[i0][i] != C.GG_IND[i0][i]:

            (x, nq) = lc3.spec_quantize(dt, sr,
                C.GG_IND_ADJ[i0][i] + C.GG_OFF[i0][i], C.X_F[i0][i])
            lastnz = C.LASTNZ_REQ[i0][i]
            x += np.select([x < 0, x > 0], np.array([ 0.375, -0.375 ]))
            ok = ok and np.any(((np.trunc(x) - C.X_Q_REQ[i0][i])[:lastnz]) == 0)

        tns_data = {
            'nfilters' : C.NUM_TNS_FILTERS[i0][i],
            'lpc_weighting' : [ True, True ],
            'rc_order' : [ C.RC_ORDER[i0][i][0], 0 ],
            'rc' : [ C.RC_I_1[i0][i] - 8, np.zeros(8, dtype = np.intc) ]
        }

        (x, side) = lc3.spec_analyze(dt, sr, C.NBYTES[i0],
            C.PITCH_PRESENT[i0][i], tns_data, state_c, C.X_F[i0][i])

        xq = x + np.select([x < 0, x > 0], np.array([ 0.375, -0.375 ]))
        xq = np.trunc(xq)

        ok = ok and np.abs(state_c['nbits_off'] - C.NBITS_OFFSET[i0][i]) < 1e-5
        if C.GG_IND_ADJ[i0][i] != C.GG_IND[i0][i]:
            xq = C.X_Q_REQ[i0][i]
            nq = C.LASTNZ_REQ[i0][i]
            ok = ok and side['g_idx'] == C.GG_IND_ADJ[i0][i]
            ok = ok and side['nq'] == nq
            ok = ok and np.any(((xq[:nq] - xq[:nq])) == 0)
        else:
            xq = C.X_Q[i0][i]
            nq = C.LASTNZ[i0][i]
            ok = ok and side['g_idx'] == C.GG_IND[i0][i]
            ok = ok and side['nq'] == nq
            ok = ok and np.any((xq[:nq] - C.X_Q[i0][i][:nq]) == 0)
        ok = ok and side['lsb_mode'] == C.LSB_MODE[i0][i]

        gg = C.GG[i0][i] if C.GG_IND_ADJ[i0][i] == C.GG_IND[i0][i] \
                else C.GG_ADJ[i0][i]

        nf = lc3.spec_estimate_noise(
                dt, C.P_BW[i0][i], False, C.X_F[i0][i] / gg, nq)
        ok = ok and nf == C.F_NF[i0][i]

    return ok

def check():

    rng = np.random.default_rng(1234)
    ok = True

    for dt in range(T.NUM_DT):
        for sr in range(T.SRATE_8K, T.SRATE_48K + 1):
            ok = ok and check_estimate_gain(rng, dt, sr)
            ok = ok and check_quantization(rng, dt, sr)
            ok = ok and check_compute_nbits(rng, dt, sr)
            ok = ok and check_adjust_gain(rng, dt, sr)
            ok = ok and check_unit(rng, dt, sr)
            ok = ok and check_noise(rng, dt, sr)

    for dt in ( T.DT_2M5, T.DT_5M, T.DT_10M ):
        for sr in ( T.SRATE_48K_HR, T.SRATE_96K_HR ):
            ok = ok and check_estimate_gain(rng, dt, sr)
            ok = ok and check_quantization(rng, dt, sr)
            ok = ok and check_compute_nbits(rng, dt, sr)
            ok = ok and check_adjust_gain(rng, dt, sr)
            ok = ok and check_unit(rng, dt, sr)
            ok = ok and check_noise(rng, dt, sr, True)

    for dt in ( T.DT_7M5, T.DT_10M ):
        ok = ok and check_appendix_c(dt)

    return ok

### ------------------------------------------------------------------------ ###