1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
|
#define _POSIX_C_SOURCE 200112L
#include <assert.h>
#include <errno.h>
#include <inttypes.h>
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include "log.h"
#include "private.h"
/* Plane allocation algorithm
*
* Goal: KMS exposes a set of hardware planes, user submitted a set of layers.
* We want to map as many layers as possible to planes.
*
* However, all layers can't be mapped to any plane. There are constraints,
* sometimes depending on driver-specific limitations or the configuration of
* other planes.
*
* The only way to discover driver-specific limitations is via an atomic test
* commit: we submit a plane configuration, and KMS replies whether it's
* supported or not. Thus we need to incrementally build a valid configuration.
*
* Let's take an example with 2 planes and 3 layers. Plane 1 is only compatible
* with layer 2 and plane 2 is only compatible with layer 3. Our algorithm will
* discover the solution by building the mapping one plane at a time. It first
* starts with plane 1: an atomic commit assigning layer 1 to plane 1 is
* submitted. It fails, because this isn't supported by the driver. Then layer
* 2 is assigned to plane 1 and the atomic test succeeds. We can go on and
* repeat the operation with plane 2. After exploring the whole tree, we end up
* with a valid allocation.
*
*
* layer 1 layer 1
* +---------> failure +---------> failure
* | |
* | |
* | |
* +---------+ | +---------+ |
* | | | layer 2 | | | layer 3 final allocation:
* | plane 1 +------------>+ plane 2 +--+---------> plane 1 → layer 2
* | | | | | plane 2 → layer 3
* +---------+ | +---------+
* |
* |
* | layer 3
* +---------> failure
*
*
* Note how layer 2 isn't considered for plane 2: it's already mapped to plane
* 1. Also note that branches are pruned as soon as an atomic test fails.
*
* In practice, the primary plane is treated separately. This is where layers
* that can't be mapped to any plane (e.g. layer 1 in our example) will be
* composited. The primary plane is the first that will be allocated, because
* some drivers require it to be enabled in order to light up any other plane.
* Then all other planes will be allocated, from the topmost one to the
* bottommost one.
*
* The "zpos" property (which defines ordering between layers/planes) is handled
* as a special case. If it's set on layers, it adds additional constraints on
* their relative ordering. If two layers intersect, their relative zpos needs
* to be preserved during plane allocation.
*
* Implementation-wise, the output_choose_layers function is called at each node
* of the tree. It iterates over layers, check constraints, performs an atomic
* test commit and calls itself recursively on the next plane.
*/
/* Global data for the allocation algorithm */
struct alloc_result {
drmModeAtomicReq *req;
uint32_t flags;
size_t planes_len;
struct liftoff_layer **best;
int best_score;
struct timespec started_at;
int64_t timeout_ns;
/* per-output */
bool has_composition_layer;
size_t non_composition_layers_len;
};
/* Transient data, arguments for each step */
struct alloc_step {
struct liftoff_list *plane_link; /* liftoff_plane.link */
size_t plane_idx;
struct liftoff_layer **alloc; /* only items up to plane_idx are valid */
int score; /* number of allocated layers */
int last_layer_zpos;
int primary_layer_zpos, primary_plane_zpos;
bool composited; /* per-output */
char log_prefix[64];
};
static const int64_t NSEC_PER_SEC = 1000 * 1000 * 1000;
static int64_t
timespec_to_nsec(struct timespec ts)
{
return (int64_t)ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
}
static const int64_t DEFAULT_ALLOC_TIMEOUT_NSEC = 1000 * 1000; // 1ms
static bool
check_deadline(struct timespec start, int64_t timeout_ns)
{
struct timespec now;
if (clock_gettime(CLOCK_MONOTONIC, &now) != 0) {
liftoff_log_errno(LIFTOFF_ERROR, "clock_gettime");
return false;
}
return timespec_to_nsec(now) - timeout_ns < timespec_to_nsec(start);
}
static void
plane_step_init_next(struct alloc_step *step, struct alloc_step *prev,
struct liftoff_layer *layer)
{
struct liftoff_plane *plane;
struct liftoff_layer_property *zpos_prop;
size_t len;
plane = liftoff_container_of(prev->plane_link, plane, link);
step->plane_link = prev->plane_link->next;
step->plane_idx = prev->plane_idx + 1;
step->alloc = prev->alloc;
step->alloc[prev->plane_idx] = layer;
if (layer != NULL && layer == layer->output->composition_layer) {
assert(!prev->composited);
step->composited = true;
} else {
step->composited = prev->composited;
}
if (layer != NULL && layer != layer->output->composition_layer) {
step->score = prev->score + 1;
} else {
step->score = prev->score;
}
zpos_prop = NULL;
if (layer != NULL) {
zpos_prop = layer_get_core_property(layer, LIFTOFF_PROP_ZPOS);
}
if (zpos_prop != NULL && plane->type != DRM_PLANE_TYPE_PRIMARY) {
step->last_layer_zpos = zpos_prop->value;
} else {
step->last_layer_zpos = prev->last_layer_zpos;
}
if (zpos_prop != NULL && plane->type == DRM_PLANE_TYPE_PRIMARY) {
step->primary_layer_zpos = zpos_prop->value;
step->primary_plane_zpos = plane->zpos;
} else {
step->primary_layer_zpos = prev->primary_layer_zpos;
step->primary_plane_zpos = prev->primary_plane_zpos;
}
if (layer != NULL) {
len = strlen(prev->log_prefix) + 2;
if (len > sizeof(step->log_prefix) - 1) {
len = sizeof(step->log_prefix) - 1;
}
memset(step->log_prefix, ' ', len);
step->log_prefix[len] = '\0';
} else {
memcpy(step->log_prefix, prev->log_prefix,
sizeof(step->log_prefix));
}
}
static bool
is_layer_allocated(struct alloc_step *step, struct liftoff_layer *layer)
{
size_t i;
/* TODO: speed this up with an array of bools indicating whether a layer
* has been allocated */
for (i = 0; i < step->plane_idx; i++) {
if (step->alloc[i] == layer) {
return true;
}
}
return false;
}
static bool
has_composited_layer_over(struct liftoff_output *output,
struct alloc_step *step, struct liftoff_layer *layer)
{
struct liftoff_layer *other_layer;
struct liftoff_layer_property *zpos_prop, *other_zpos_prop;
zpos_prop = layer_get_core_property(layer, LIFTOFF_PROP_ZPOS);
if (zpos_prop == NULL) {
return false;
}
liftoff_list_for_each(other_layer, &output->layers, link) {
if (is_layer_allocated(step, other_layer)) {
continue;
}
other_zpos_prop = layer_get_core_property(other_layer,
LIFTOFF_PROP_ZPOS);
if (other_zpos_prop == NULL) {
continue;
}
if (layer_intersects(layer, other_layer) &&
other_zpos_prop->value > zpos_prop->value) {
return true;
}
}
return false;
}
static bool
has_allocated_layer_over(struct liftoff_output *output, struct alloc_step *step,
struct liftoff_layer *layer)
{
ssize_t i;
struct liftoff_plane *other_plane;
struct liftoff_layer *other_layer;
struct liftoff_layer_property *zpos_prop, *other_zpos_prop;
zpos_prop = layer_get_core_property(layer, LIFTOFF_PROP_ZPOS);
if (zpos_prop == NULL) {
return false;
}
i = -1;
liftoff_list_for_each(other_plane, &output->device->planes, link) {
i++;
if (i >= (ssize_t)step->plane_idx) {
break;
}
if (other_plane->type == DRM_PLANE_TYPE_PRIMARY) {
continue;
}
other_layer = step->alloc[i];
if (other_layer == NULL) {
continue;
}
other_zpos_prop = layer_get_core_property(other_layer,
LIFTOFF_PROP_ZPOS);
if (other_zpos_prop == NULL) {
continue;
}
/* Since plane zpos is descending, this means the other layer is
* supposed to be under but is mapped to a plane over the
* current one. */
if (zpos_prop->value > other_zpos_prop->value &&
layer_intersects(layer, other_layer)) {
return true;
}
}
return false;
}
static bool
has_allocated_plane_under(struct liftoff_output *output,
struct alloc_step *step, struct liftoff_layer *layer)
{
struct liftoff_plane *plane, *other_plane;
ssize_t i;
plane = liftoff_container_of(step->plane_link, plane, link);
i = -1;
liftoff_list_for_each(other_plane, &output->device->planes, link) {
i++;
if (i >= (ssize_t)step->plane_idx) {
break;
}
if (other_plane->type == DRM_PLANE_TYPE_PRIMARY) {
continue;
}
if (step->alloc[i] == NULL) {
continue;
}
if (plane->zpos >= other_plane->zpos &&
layer_intersects(layer, step->alloc[i])) {
return true;
}
}
return false;
}
static bool
check_layer_plane_compatible(struct alloc_step *step,
struct liftoff_layer *layer,
struct liftoff_plane *plane)
{
struct liftoff_output *output;
struct liftoff_layer_property *zpos_prop;
output = layer->output;
/* Skip this layer if already allocated */
if (is_layer_allocated(step, layer)) {
return false;
}
zpos_prop = layer_get_core_property(layer, LIFTOFF_PROP_ZPOS);
if (zpos_prop != NULL) {
if ((int)zpos_prop->value > step->last_layer_zpos &&
has_allocated_layer_over(output, step, layer)) {
/* This layer needs to be on top of the last
* allocated one */
liftoff_log(LIFTOFF_DEBUG,
"%s Layer %p -> plane %"PRIu32": "
"layer zpos invalid",
step->log_prefix, (void *)layer, plane->id);
return false;
}
if ((int)zpos_prop->value < step->last_layer_zpos &&
has_allocated_plane_under(output, step, layer)) {
/* This layer needs to be under the last
* allocated one, but this plane isn't under the
* last one (in practice, since planes are
* sorted by zpos it means it has the same zpos,
* ie. undefined ordering). */
liftoff_log(LIFTOFF_DEBUG,
"%s Layer %p -> plane %"PRIu32": "
"plane zpos invalid",
step->log_prefix, (void *)layer, plane->id);
return false;
}
if (plane->type != DRM_PLANE_TYPE_PRIMARY &&
(int)zpos_prop->value < step->primary_layer_zpos &&
plane->zpos > step->primary_plane_zpos) {
/* Primary planes are handled up front, because some
* drivers fail all atomic commits when it's missing.
* However that messes up with our zpos checks. In
* particular, we need to make sure we don't put a layer
* configured to be over the primary plane under it.
* TODO: revisit this once we add underlay support. */
liftoff_log(LIFTOFF_DEBUG,
"%s Layer %p -> plane %"PRIu32": "
"layer zpos under primary",
step->log_prefix, (void *)layer, plane->id);
return false;
}
}
if (plane->type != DRM_PLANE_TYPE_PRIMARY &&
has_composited_layer_over(output, step, layer)) {
liftoff_log(LIFTOFF_DEBUG,
"%s Layer %p -> plane %"PRIu32": "
"has composited layer on top",
step->log_prefix, (void *)layer, plane->id);
return false;
}
if (plane->type != DRM_PLANE_TYPE_PRIMARY &&
layer == layer->output->composition_layer) {
liftoff_log(LIFTOFF_DEBUG,
"%s Layer %p -> plane %"PRIu32": "
"cannot put composition layer on "
"non-primary plane",
step->log_prefix, (void *)layer, plane->id);
return false;
}
return true;
}
static bool
check_alloc_valid(struct liftoff_output *output, struct alloc_result *result,
struct alloc_step *step)
{
/* If composition isn't used, we need to have allocated all
* layers. */
/* TODO: find a way to fail earlier, e.g. when the number of
* layers exceeds the number of planes. */
if (result->has_composition_layer && !step->composited &&
step->score != (int)result->non_composition_layers_len) {
liftoff_log(LIFTOFF_DEBUG,
"%sCannot skip composition: some layers "
"are missing a plane", step->log_prefix);
return false;
}
/* On the other hand, if we manage to allocate all layers, we
* don't want to use composition. We don't want to use the
* composition layer at all. */
if (step->composited &&
step->score == (int)result->non_composition_layers_len) {
liftoff_log(LIFTOFF_DEBUG,
"%sRefusing to use composition: all layers "
"have been put in a plane", step->log_prefix);
return false;
}
/* TODO: check allocation isn't empty */
return true;
}
static bool
check_plane_output_compatible(struct liftoff_plane *plane, struct liftoff_output *output)
{
return (plane->possible_crtcs & (1 << output->crtc_index)) != 0;
}
static int
count_remaining_compatible_planes(struct liftoff_output *output,
struct alloc_step *step)
{
struct liftoff_list *link;
struct liftoff_plane *plane;
int remaining = 0;
for (link = step->plane_link; link != &output->device->planes; link = link->next) {
plane = liftoff_container_of(link, plane, link);
if (plane->layer == NULL &&
check_plane_output_compatible(plane, output)) {
remaining++;
}
}
return remaining;
}
static int
output_choose_layers(struct liftoff_output *output, struct alloc_result *result,
struct alloc_step *step)
{
struct liftoff_device *device;
struct liftoff_plane *plane;
struct liftoff_layer *layer;
int cursor, ret;
int remaining_planes;
struct alloc_step next_step = {0};
device = output->device;
if (step->plane_link == &device->planes) { /* Allocation finished */
if (step->score > result->best_score &&
check_alloc_valid(output, result, step)) {
/* We found a better allocation */
liftoff_log(LIFTOFF_DEBUG,
"%sFound a better allocation with score=%d",
step->log_prefix, step->score);
result->best_score = step->score;
memcpy(result->best, step->alloc,
result->planes_len * sizeof(struct liftoff_layer *));
}
return 0;
}
plane = liftoff_container_of(step->plane_link, plane, link);
remaining_planes = count_remaining_compatible_planes(output, step);
if (result->best_score >= step->score + remaining_planes) {
/* Even if we find a layer for all remaining planes, we won't
* find a better allocation. Give up. */
return 0;
}
cursor = drmModeAtomicGetCursor(result->req);
if (plane->layer != NULL || !check_plane_output_compatible(plane, output)) {
goto skip;
}
liftoff_log(LIFTOFF_DEBUG,
"%sPerforming allocation for plane %"PRIu32" (%zu/%zu)",
step->log_prefix, plane->id, step->plane_idx + 1, result->planes_len);
liftoff_list_for_each(layer, &output->layers, link) {
if (layer->plane != NULL) {
continue;
}
if (!layer_is_visible(layer)) {
continue;
}
if (!check_layer_plane_compatible(step, layer, plane)) {
continue;
}
if (!check_deadline(result->started_at, result->timeout_ns)) {
liftoff_log(LIFTOFF_DEBUG, "%s Deadline exceeded",
step->log_prefix);
break;
}
/* Try to use this layer for the current plane */
ret = plane_apply(plane, layer, result->req);
if (ret == -EINVAL) {
liftoff_log(LIFTOFF_DEBUG,
"%s Layer %p -> plane %"PRIu32": "
"incompatible properties",
step->log_prefix, (void *)layer, plane->id);
continue;
} else if (ret != 0) {
return ret;
}
layer_add_candidate_plane(layer, plane);
/* If composition is forced, wait until after the
* layer_add_candidate_plane() call to reject the plane: we want
* to return a meaningful list of candidate planes so that the
* API user has the opportunity to re-allocate its buffers with
* scanout-capable ones. Same deal for the FB check. */
if (layer->force_composition || !plane_check_layer_fb(plane, layer)) {
drmModeAtomicSetCursor(result->req, cursor);
continue;
}
ret = device_test_commit(device, result->req, result->flags);
if (ret == 0) {
liftoff_log(LIFTOFF_DEBUG,
"%s Layer %p -> plane %"PRIu32": success",
step->log_prefix, (void *)layer, plane->id);
/* Continue with the next plane */
plane_step_init_next(&next_step, step, layer);
ret = output_choose_layers(output, result, &next_step);
if (ret != 0) {
return ret;
}
} else if (ret != -EINVAL && ret != -ERANGE && ret != -ENOSPC) {
return ret;
} else {
liftoff_log(LIFTOFF_DEBUG,
"%s Layer %p -> plane %"PRIu32": "
"test-only commit failed (%s)",
step->log_prefix, (void *)layer, plane->id,
strerror(-ret));
}
drmModeAtomicSetCursor(result->req, cursor);
}
skip:
/* Try not to use the current plane */
plane_step_init_next(&next_step, step, NULL);
ret = output_choose_layers(output, result, &next_step);
if (ret != 0) {
return ret;
}
drmModeAtomicSetCursor(result->req, cursor);
return 0;
}
static int
apply_current(struct liftoff_device *device, drmModeAtomicReq *req)
{
struct liftoff_plane *plane;
int cursor, ret;
cursor = drmModeAtomicGetCursor(req);
liftoff_list_for_each(plane, &device->planes, link) {
ret = plane_apply(plane, plane->layer, req);
if (ret != 0) {
drmModeAtomicSetCursor(req, cursor);
return ret;
}
}
return 0;
}
static bool
fb_info_needs_realloc(const drmModeFB2 *a, const drmModeFB2 *b)
{
if (a->width != b->width || a->height != b->height ||
a->pixel_format != b->pixel_format || a->modifier != b->modifier) {
return true;
}
/* TODO: consider checking pitch and offset? */
return false;
}
static bool
layer_intersection_changed(struct liftoff_layer *this,
struct liftoff_output *output)
{
struct liftoff_layer *other;
struct liftoff_rect this_cur, this_prev, other_cur, other_prev;
layer_get_rect(this, &this_cur);
layer_get_prev_rect(this, &this_prev);
liftoff_list_for_each(other, &output->layers, link) {
if (this == other) {
continue;
}
layer_get_rect(other, &other_cur);
layer_get_prev_rect(other, &other_prev);
if (rect_intersects(&this_cur, &other_cur) !=
rect_intersects(&this_prev, &other_prev)) {
return true;
}
}
return false;
}
static bool
layer_needs_realloc(struct liftoff_layer *layer, struct liftoff_output *output)
{
struct liftoff_layer_property *prop;
bool check_crtc_intersect = false;
size_t i;
if (layer->changed) {
liftoff_log(LIFTOFF_DEBUG, "Cannot re-use previous allocation: "
"layer property added or force composition changed");
return true;
}
for (i = 0; i < layer->props_len; i++) {
prop = &layer->props[i];
/* If FB_ID changes from non-zero to zero, we don't need to
* display this layer anymore, so we may be able to re-use its
* plane for another layer. If FB_ID changes from zero to
* non-zero, we might be able to find a plane for this layer.
* If FB_ID changes from non-zero to non-zero and the FB
* attributes didn't change, we can try to re-use the previous
* allocation. */
if (prop->core_index == LIFTOFF_PROP_FB_ID) {
if (prop->value == 0 && prop->prev_value == 0) {
continue;
}
if (prop->value == 0 || prop->prev_value == 0) {
liftoff_log(LIFTOFF_DEBUG, "Cannot re-use previous allocation: "
"layer enabled or disabled");
return true;
}
if (fb_info_needs_realloc(&layer->fb_info,
&layer->prev_fb_info)) {
liftoff_log(LIFTOFF_DEBUG, "Cannot re-use previous allocation: "
"FB info changed");
return true;
}
continue;
}
/* For all properties except FB_ID, we can skip realloc if the
* value didn't change. */
if (prop->value == prop->prev_value) {
continue;
}
/* If the layer was or becomes completely transparent or
* completely opaque, we might be able to find a better
* allocation. Otherwise, we can keep the current one. */
if (prop->core_index == LIFTOFF_PROP_ALPHA) {
if (prop->value == 0 || prop->prev_value == 0 ||
prop->value == 0xFFFF || prop->prev_value == 0xFFFF) {
liftoff_log(LIFTOFF_DEBUG, "Cannot re-use previous allocation: "
"alpha changed");
return true;
}
continue;
}
/* We should never need a re-alloc when IN_FENCE_FD or
* FB_DAMAGE_CLIPS changes. */
if (strcmp(prop->name, "IN_FENCE_FD") == 0 ||
strcmp(prop->name, "FB_DAMAGE_CLIPS") == 0) {
continue;
}
/* If CRTC_* changed, check for intersection later */
if (strcmp(prop->name, "CRTC_X") == 0 ||
strcmp(prop->name, "CRTC_Y") == 0 ||
strcmp(prop->name, "CRTC_W") == 0 ||
strcmp(prop->name, "CRTC_H") == 0) {
check_crtc_intersect = true;
continue;
}
liftoff_log(LIFTOFF_DEBUG, "Cannot re-use previous allocation: "
"property \"%s\" changed", prop->name);
return true;
}
if (check_crtc_intersect &&
layer_intersection_changed(layer, output)) {
liftoff_log(LIFTOFF_DEBUG, "Cannot re-use previous allocation: "
"intersection with other layer(s) changed");
return true;
}
return false;
}
static bool
layer_is_higher_priority(struct liftoff_layer *this, struct liftoff_layer *other)
{
struct liftoff_layer_property *this_zpos, *other_zpos;
bool this_visible, other_visible, intersects;
// The composition layer should be highest priority.
if (this->output->composition_layer == this) {
return true;
} else if (this->output->composition_layer == other) {
return false;
}
// Invisible layers are given lowest priority. Pass-thru if both have
// same visibility
this_visible = layer_is_visible(this);
other_visible = layer_is_visible(other);
if (this_visible != other_visible) {
return this_visible;
}
// A layer's overall priority is determined by a combination of it's
// current_priority, it's zpos, and whether it intersects with others.
//
// Consider two layers. If they do not intersect, the layer with higher
// priority is given overall priority. However if both layers have
// identical priority, then the layer with higher zpos is given overall
// priority.
//
// If the layers intersect, their zpos determines the overall priority.
// If their zpos are identical, then simply fallback to looking at
// current_priority. Otherwise, the layer with higher zpos is given
// overall priority, since the top layer needs to be offloaded in order
// to offload the bottom layer.
this_zpos = layer_get_core_property(this, LIFTOFF_PROP_ZPOS);
other_zpos = layer_get_core_property(other, LIFTOFF_PROP_ZPOS);
intersects = layer_intersects(this, other);
if (this_zpos != NULL && other_zpos != NULL) {
if (intersects) {
return this_zpos->value == other_zpos->value ?
this->current_priority > other->current_priority :
this_zpos->value > other_zpos->value;
} else {
return this->current_priority == other->current_priority ?
this_zpos->value > other_zpos->value :
this->current_priority > other->current_priority;
}
} else if (this_zpos == NULL && other_zpos == NULL) {
return this->current_priority > other->current_priority;
} else {
// Either this or other zpos is null
return this_zpos != NULL;
}
}
static bool
update_layers_order(struct liftoff_output *output)
{
struct liftoff_list *search, *max, *cur, *head;
struct liftoff_layer *this_layer, *other_layer;
bool order_changed = false;
head = &output->layers;
cur = head;
// Run a insertion sort to order layers by priority.
while (cur->next != head) {
cur = cur->next;
max = cur;
search = cur;
while (search->next != head) {
search = search->next;
this_layer = liftoff_container_of(search, this_layer, link);
other_layer = liftoff_container_of(max, other_layer, link);
if (layer_is_higher_priority(this_layer, other_layer)) {
max = search;
}
}
if (cur != max) {
liftoff_list_swap(cur, max);
// max is now where iterator cur was, relocate to continue
cur = max;
order_changed = true;
}
}
return order_changed;
}
static int
reuse_previous_alloc(struct liftoff_output *output, drmModeAtomicReq *req,
uint32_t flags)
{
struct liftoff_device *device;
struct liftoff_layer *layer;
int cursor, ret;
bool layer_order_changed;
device = output->device;
layer_order_changed = update_layers_order(output);
if (output->layers_changed) {
liftoff_log(LIFTOFF_DEBUG, "Cannot re-use previous allocation: "
"a layer has been added or removed");
return -EINVAL;
}
liftoff_list_for_each(layer, &output->layers, link) {
if (layer_needs_realloc(layer, output)) {
return -EINVAL;
}
}
if (layer_order_changed) {
liftoff_log(LIFTOFF_DEBUG, "Cannot re-use previous allocation: "
"layer priority order changed.");
return -EINVAL;
}
cursor = drmModeAtomicGetCursor(req);
ret = apply_current(device, req);
if (ret != 0) {
return ret;
}
ret = device_test_commit(device, req, flags);
if (ret != 0) {
drmModeAtomicSetCursor(req, cursor);
}
return ret;
}
static void
mark_layers_clean(struct liftoff_output *output)
{
struct liftoff_layer *layer;
output->layers_changed = false;
liftoff_list_for_each(layer, &output->layers, link) {
layer_mark_clean(layer);
}
}
static void
update_layers_priority(struct liftoff_device *device)
{
struct liftoff_output *output;
struct liftoff_layer *layer;
bool period_elapsed;
device->page_flip_counter++;
period_elapsed = device->page_flip_counter >= LIFTOFF_PRIORITY_PERIOD;
if (period_elapsed) {
device->page_flip_counter = 0;
}
liftoff_list_for_each(output, &device->outputs, link) {
liftoff_list_for_each(layer, &output->layers, link) {
layer_update_priority(layer, period_elapsed);
}
}
}
static void
update_layers_fb_info(struct liftoff_output *output)
{
struct liftoff_layer *layer;
/* We don't know what the library user did in-between
* liftoff_output_apply() calls. They might've removed the FB and
* re-created a completely different one which happens to have the same
* FB ID. */
liftoff_list_for_each(layer, &output->layers, link) {
layer->fb_info = (drmModeFB2){0};
layer_cache_fb_info(layer);
/* TODO: propagate error? */
}
}
static void
log_reuse(struct liftoff_output *output)
{
if (output->alloc_reused_counter == 0) {
liftoff_log(LIFTOFF_DEBUG,
"Reusing previous plane allocation on output %"PRIu32,
output->crtc_id);
}
output->alloc_reused_counter++;
}
static void
log_no_reuse(struct liftoff_output *output)
{
liftoff_log(LIFTOFF_DEBUG, "Computing plane allocation on output %"PRIu32,
output->crtc_id);
if (output->alloc_reused_counter != 0) {
liftoff_log(LIFTOFF_DEBUG,
"Stopped reusing previous plane allocation on "
"output %"PRIu32" (had reused it %d times)",
output->crtc_id, output->alloc_reused_counter);
output->alloc_reused_counter = 0;
}
}
static size_t
non_composition_layers_length(struct liftoff_output *output)
{
struct liftoff_layer *layer;
size_t n;
n = 0;
liftoff_list_for_each(layer, &output->layers, link) {
if (layer_is_visible(layer) &&
output->composition_layer != layer) {
n++;
}
}
return n;
}
int
liftoff_output_apply(struct liftoff_output *output, drmModeAtomicReq *req,
uint32_t flags,
const struct liftoff_output_apply_options *options)
{
struct liftoff_device *device;
struct liftoff_plane *plane;
struct liftoff_layer *layer;
struct alloc_result result = {0};
struct alloc_step step = {0};
const struct liftoff_output_apply_options default_options = {0};
size_t i, candidate_planes;
int ret;
bool found_layer;
if (options == NULL) {
options = &default_options;
}
device = output->device;
update_layers_priority(device);
update_layers_fb_info(output);
ret = reuse_previous_alloc(output, req, flags);
if (ret == 0) {
log_reuse(output);
mark_layers_clean(output);
return 0;
}
log_no_reuse(output);
/* Reset layers' candidate planes */
liftoff_list_for_each(layer, &output->layers, link) {
layer_reset_candidate_planes(layer);
}
device->test_commit_counter = 0;
output_log_layers(output);
/* Unset all existing plane and layer mappings. */
liftoff_list_for_each(plane, &device->planes, link) {
if (plane->layer != NULL && plane->layer->output == output) {
plane->layer->plane = NULL;
plane->layer = NULL;
}
}
/* Disable all planes we might use. Do it before building mappings to
* make sure not to hit bandwidth limits because too many planes are
* enabled. */
candidate_planes = 0;
liftoff_list_for_each(plane, &device->planes, link) {
if (plane->layer == NULL) {
candidate_planes++;
liftoff_log(LIFTOFF_DEBUG,
"Disabling plane %"PRIu32, plane->id);
ret = plane_apply(plane, NULL, req);
assert(ret != -EINVAL);
if (ret != 0) {
return ret;
}
}
}
result.req = req;
result.flags = flags;
result.planes_len = liftoff_list_length(&device->planes);
step.alloc = malloc(result.planes_len * sizeof(step.alloc[0]));
result.best = malloc(result.planes_len * sizeof(result.best[0]));
if (step.alloc == NULL || result.best == NULL) {
liftoff_log_errno(LIFTOFF_ERROR, "malloc");
return -ENOMEM;
}
if (clock_gettime(CLOCK_MONOTONIC, &result.started_at) != 0) {
liftoff_log_errno(LIFTOFF_ERROR, "clock_gettime");
return -errno;
}
result.timeout_ns = options->timeout_ns;
if (result.timeout_ns == 0) {
result.timeout_ns = DEFAULT_ALLOC_TIMEOUT_NSEC;
}
/* For each plane, try to find a layer. Don't do it the other
* way around (ie. for each layer, try to find a plane) because
* some drivers want user-space to enable the primary plane
* before any other plane. */
result.best_score = -1;
memset(result.best, 0, result.planes_len * sizeof(result.best[0]));
result.has_composition_layer = output->composition_layer != NULL;
result.non_composition_layers_len =
non_composition_layers_length(output);
step.plane_link = device->planes.next;
step.plane_idx = 0;
step.score = 0;
step.last_layer_zpos = INT_MAX;
step.primary_layer_zpos = INT_MIN;
step.primary_plane_zpos = INT_MAX;
step.composited = false;
ret = output_choose_layers(output, &result, &step);
if (ret != 0) {
return ret;
}
liftoff_log(LIFTOFF_DEBUG,
"Found plane allocation for output %"PRIu32" "
"(score: %d, candidate planes: %zu, tests: %d):",
output->crtc_id, result.best_score, candidate_planes,
device->test_commit_counter);
/* Apply the best allocation */
i = 0;
found_layer = false;
liftoff_list_for_each(plane, &device->planes, link) {
layer = result.best[i];
i++;
if (layer == NULL) {
continue;
}
liftoff_log(LIFTOFF_DEBUG, " Layer %p -> plane %"PRIu32,
(void *)layer, plane->id);
assert(plane->layer == NULL);
assert(layer->plane == NULL);
plane->layer = layer;
layer->plane = plane;
found_layer = true;
}
if (!found_layer) {
liftoff_log(LIFTOFF_DEBUG, " (No layer has a plane)");
}
ret = apply_current(device, req);
if (ret != 0) {
return ret;
}
free(step.alloc);
free(result.best);
mark_layers_clean(output);
return 0;
}
|