File: liblinear-train.1

package info (click to toggle)
liblinear 1.8%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 484 kB
  • ctags: 331
  • sloc: cpp: 2,266; ansic: 1,432; python: 320; makefile: 127; sh: 9
file content (162 lines) | stat: -rw-r--r-- 3,746 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
.\"                                      Hey, EMACS: -*- nroff -*-
.TH LIBLINEAR-TRAIN 1 "March 08, 2011"
.SH NAME
liblinear-train \- train a linear classifier and produce a model
.SH SYNOPSIS
.B liblinear-train
.RI [ options ] " training_set_file " [ model_file ] 
.br
.SH DESCRIPTION
\fBliblinear-train\fP trains a linear classifier using liblinear and produces a
model suitable for use with \fBliblinear-predict\fP(1).

\fItraining_set_file\fP is the file containing the data used for training.
\fImodel_file\fP is the file to which the model will be saved. If
\fImodel_file\fP is not provided, it defaults to \fItraining_set_file.model\fP.

To obtain good performances, sometimes one needs to scale the data. This can be
done with \fBsvm-scale\fP(1).
.SH OPTIONS
A summary of options is included below.
.TP
.B \-s \fItype\fP
Set the type of the solver:
.sp
.RS 10
.nf
0 ... L2-regularized logistic regression
.sp
1 ... L2-regularized L2-loss support vector classification (dual) (default)
.sp
2 ... L2-regularized L2-loss support vector classification (primal)
.sp
3 ... L2-regularized L1-loss support vector classification (dual)
.sp
4 ... multi-class support vector classification
.sp
5 ... L1-regularized L2-loss support vector classification
.sp
6 ... L1-regularized logistic regression
.sp
7 ... L2-regularized logistic regression (dual)
.fi
.RE
.TP
.B \-c \fIcost\fP
Set the parameter C (default: \fB1\fP)
.TP
.B \-e \fIepsilon\fP
Set the tolerance of the termination criterion
.sp
For \-s 0 and 2:
.RS 10
.nf
.sp
|f'(w)|_2 <= \fIepsilon\fP*min(pos,neg)/l*|f'(w0)_2, where f is
the primal function and pos/neg are the number of positive/negative data
(default: \fB0.01\fP)
.fi
.RE
.IP
For \-s 1, 3, 4 and 7:
.sp
.nf
.RS 10
Dual maximal violation <= \fIepsilon\fP; similar to libsvm (default: \fB0.1\fP)
.fi
.RE
.IP
For \-s 5 and 6:
.sp
.nf
.RS 10
|f'(w)|_inf <= \fIepsilon\fP*min(pos,neg)/l*|f'(w0)|_inf, where f is the primal
function (default: \fB0.01\fP)
.RE
.TP
.B \-B \fIbias\fP
If \fIbias\fP >= 0, then instance x becomes [x; bias]; if \fIbias\fP < 0, then
no bias term is added (default: \fB-1\fP)
.TP
.B \-w\fIi\fP \fIweight\fP
Weight-adjusts the parameter C of class \fIi\fP by the value \fIweight\fP
.TP
.B \-v \fIn\fP
\fIn\fP-fold cross validation mode
.TP
.B \-q
Quiet mode (no outputs).
.SH EXAMPLES
.sp
Train a linear SVM using L2-loss function:
.sp
.RS 10
.nf
 liblinear-train data_file
.fi
.RE
.sp
Train a logistic regression model:
.sp
.RS 10
.nf
 liblinear-train \-s 0 data_file
.fi
.RE
.sp
Do five-fold cross-validation using L2-loss SVM, using a smaller stopping
tolerance 0.001 instead of the default 0.1 for more accurate solutions:
.sp
.RS 10
.nf
 liblinear-train \-v 5 \-e 0.001 data_file
.fi
.RE
.sp
Train four classifiers:
.RS 18
.sp
positive    negative        Cp  Cn
.br
class 1     class 2,3,4     20  10
.br
class 2     class 1,3,4     50  10
.br
class 3     class 1,2,4     20  10
.br
class 4     class 1,2,3     10  10
.RE
.sp
.RS 10
.nf
 liblinear-train \-c 10 \-w1 2 \-w2 5 \-w3 2 four_class_data_file
.fi
.RE
.sp
If there are only two classes, we train ONE model. The C values for the two
classes are 10 and 50:
.sp
.RS 10
.nf
 liblinear-train \-c 10 \-w3 1 \-w2 5 two_class_data_file
.fi
.RE
.sp
Output probability estimates (for logistic regression only) using
\fBliblinear-predict\fP(1):
.sp
.RS 10
.nf
 liblinear-predict \-b 1 test_file data_file.model output_file
.fi
.RE
.SH SEE ALSO
.BR liblinear-predict (1),
.BR svm-predict (1),
.BR svm-train (1)
.SH AUTHORS
liblinear-train was written by the LIBLINEAR authors at National Taiwan
university for the LIBLINEAR Project.
.PP
This manual page was written by Christian Kastner <debian@kvr.at>,
for the Debian project (and may be used by others).