File: predict.c

package info (click to toggle)
liblinear 1.8%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 484 kB
  • ctags: 331
  • sloc: cpp: 2,266; ansic: 1,432; python: 320; makefile: 127; sh: 9
file content (300 lines) | stat: -rw-r--r-- 6,978 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "linear.h"

#include "mex.h"
#include "linear_model_matlab.h"

#if MX_API_VER < 0x07030000
typedef int mwIndex;
#endif

#define CMD_LEN 2048

#define Malloc(type,n) (type *)malloc((n)*sizeof(type))

int col_format_flag;

void read_sparse_instance(const mxArray *prhs, int index, struct feature_node *x, int feature_number, double bias)
{
	int i, j, low, high;
	mwIndex *ir, *jc;
	double *samples;

	ir = mxGetIr(prhs);
	jc = mxGetJc(prhs);
	samples = mxGetPr(prhs);

	// each column is one instance
	j = 0;
	low = (int) jc[index], high = (int) jc[index+1];
	for(i=low; i<high && (int) (ir[i])<feature_number; i++)
	{
		x[j].index = (int) ir[i]+1;
		x[j].value = samples[i];
		j++;
	}
	if(bias>=0)
	{
		x[j].index = feature_number+1;
		x[j].value = bias;
		j++;
	}
	x[j].index = -1;
}

static void fake_answer(mxArray *plhs[])
{
	plhs[0] = mxCreateDoubleMatrix(0, 0, mxREAL);
	plhs[1] = mxCreateDoubleMatrix(0, 0, mxREAL);
	plhs[2] = mxCreateDoubleMatrix(0, 0, mxREAL);
}

void do_predict(mxArray *plhs[], const mxArray *prhs[], struct model *model_, const int predict_probability_flag)
{
	int label_vector_row_num, label_vector_col_num;
	int feature_number, testing_instance_number;
	int instance_index;
	double *ptr_instance, *ptr_label, *ptr_predict_label;
	double *ptr_prob_estimates, *ptr_dec_values, *ptr;
	struct feature_node *x;
	mxArray *pplhs[1]; // instance sparse matrix in row format

	int correct = 0;
	int total = 0;

	int nr_class=get_nr_class(model_);
	int nr_w;
	double *prob_estimates=NULL;

	if(nr_class==2 && model_->param.solver_type!=MCSVM_CS)
		nr_w=1;
	else
		nr_w=nr_class;

	// prhs[1] = testing instance matrix
	feature_number = get_nr_feature(model_);
	testing_instance_number = (int) mxGetM(prhs[1]);
	if(col_format_flag)
	{
		feature_number = (int) mxGetM(prhs[1]);
		testing_instance_number = (int) mxGetN(prhs[1]);
	}

	label_vector_row_num = (int) mxGetM(prhs[0]);
	label_vector_col_num = (int) mxGetN(prhs[0]);

	if(label_vector_row_num!=testing_instance_number)
	{
		mexPrintf("Length of label vector does not match # of instances.\n");
		fake_answer(plhs);
		return;
	}
	if(label_vector_col_num!=1)
	{
		mexPrintf("label (1st argument) should be a vector (# of column is 1).\n");
		fake_answer(plhs);
		return;
	}

	ptr_instance = mxGetPr(prhs[1]);
	ptr_label    = mxGetPr(prhs[0]);

	// transpose instance matrix
	if(mxIsSparse(prhs[1]))
	{
		if(col_format_flag)
		{
			pplhs[0] = (mxArray *)prhs[1];
		}
		else
		{
			mxArray *pprhs[1];
			pprhs[0] = mxDuplicateArray(prhs[1]);
			if(mexCallMATLAB(1, pplhs, 1, pprhs, "transpose"))
			{
				mexPrintf("Error: cannot transpose testing instance matrix\n");
				fake_answer(plhs);
				return;
			}
		}
	}
	else
		mexPrintf("Testing_instance_matrix must be sparse\n");


	prob_estimates = Malloc(double, nr_class);

	plhs[0] = mxCreateDoubleMatrix(testing_instance_number, 1, mxREAL);
	if(predict_probability_flag)
		plhs[2] = mxCreateDoubleMatrix(testing_instance_number, nr_class, mxREAL);
	else
		plhs[2] = mxCreateDoubleMatrix(testing_instance_number, nr_w, mxREAL);

	ptr_predict_label = mxGetPr(plhs[0]);
	ptr_prob_estimates = mxGetPr(plhs[2]);
	ptr_dec_values = mxGetPr(plhs[2]);
	x = Malloc(struct feature_node, feature_number+2);
	for(instance_index=0;instance_index<testing_instance_number;instance_index++)
	{
		int i;
		double target,v;

		target = ptr_label[instance_index];

		// prhs[1] and prhs[1]^T are sparse
		read_sparse_instance(pplhs[0], instance_index, x, feature_number, model_->bias);

		if(predict_probability_flag)
		{
			v = predict_probability(model_, x, prob_estimates);
			ptr_predict_label[instance_index] = v;
			for(i=0;i<nr_class;i++)
				ptr_prob_estimates[instance_index + i * testing_instance_number] = prob_estimates[i];
		}
		else
		{
			double *dec_values = Malloc(double, nr_class);
			v = predict(model_, x);
			ptr_predict_label[instance_index] = v;

			predict_values(model_, x, dec_values);
			for(i=0;i<nr_w;i++)
				ptr_dec_values[instance_index + i * testing_instance_number] = dec_values[i];
			free(dec_values);
		}

		if(v == target)
			++correct;
		++total;
	}
	mexPrintf("Accuracy = %g%% (%d/%d)\n", (double) correct/total*100,correct,total);

	// return accuracy, mean squared error, squared correlation coefficient
	plhs[1] = mxCreateDoubleMatrix(1, 1, mxREAL);
	ptr = mxGetPr(plhs[1]);
	ptr[0] = (double) correct/total*100;

	free(x);
	if(prob_estimates != NULL)
		free(prob_estimates);
}

void exit_with_help()
{
	mexPrintf(
			"Usage: [predicted_label, accuracy, decision_values/prob_estimates] = predict(testing_label_vector, testing_instance_matrix, model, 'liblinear_options','col')\n"
			"liblinear_options:\n"
			"-b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0)\n"
			"col:\n"
			"	if 'col' is setted testing_instance_matrix is parsed in column format, otherwise is in row format"
			);
}

void mexFunction( int nlhs, mxArray *plhs[],
		int nrhs, const mxArray *prhs[] )
{
	int prob_estimate_flag = 0;
	struct model *model_;
	char cmd[CMD_LEN];
	col_format_flag = 0;

	if(nrhs > 5 || nrhs < 3)
	{
		exit_with_help();
		fake_answer(plhs);
		return;
	}
	if(nrhs == 5)
	{
		mxGetString(prhs[4], cmd, mxGetN(prhs[4])+1);
		if(strcmp(cmd, "col") == 0)
		{			
			col_format_flag = 1;
		}
	}

	if(!mxIsDouble(prhs[0]) || !mxIsDouble(prhs[1])) {
		mexPrintf("Error: label vector and instance matrix must be double\n");
		fake_answer(plhs);
		return;
	}

	if(mxIsStruct(prhs[2]))
	{
		const char *error_msg;

		// parse options
		if(nrhs>=4)
		{
			int i, argc = 1;
			char *argv[CMD_LEN/2];

			// put options in argv[]
			mxGetString(prhs[3], cmd,  mxGetN(prhs[3]) + 1);
			if((argv[argc] = strtok(cmd, " ")) != NULL)
				while((argv[++argc] = strtok(NULL, " ")) != NULL)
					;

			for(i=1;i<argc;i++)
			{
				if(argv[i][0] != '-') break;
				if(++i>=argc)
				{
					exit_with_help();
					fake_answer(plhs);
					return;
				}
				switch(argv[i-1][1])
				{
					case 'b':
						prob_estimate_flag = atoi(argv[i]);
						break;
					default:
						mexPrintf("unknown option\n");
						exit_with_help();
						fake_answer(plhs);
						return;
				}
			}
		}

		model_ = Malloc(struct model, 1);
		error_msg = matlab_matrix_to_model(model_, prhs[2]);
		if(error_msg)
		{
			mexPrintf("Error: can't read model: %s\n", error_msg);
			free_and_destroy_model(&model_);
			fake_answer(plhs);
			return;
		}

		if(prob_estimate_flag)
		{
			if(!check_probability_model(model_))
			{
				mexPrintf("probability output is only supported for logistic regression\n");
				prob_estimate_flag=0;
			}
		}

		if(mxIsSparse(prhs[1]))
			do_predict(plhs, prhs, model_, prob_estimate_flag);
		else
		{
			mexPrintf("Testing_instance_matrix must be sparse\n");
			fake_answer(plhs);
		}

		// destroy model_
		free_and_destroy_model(&model_);
	}
	else
	{
		mexPrintf("model file should be a struct array\n");
		fake_answer(plhs);
	}

	return;
}