1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "linear.h"
#include "mex.h"
#include "linear_model_matlab.h"
#if MX_API_VER < 0x07030000
typedef int mwIndex;
#endif
#define CMD_LEN 2048
#define Malloc(type,n) (type *)malloc((n)*sizeof(type))
int col_format_flag;
void read_sparse_instance(const mxArray *prhs, int index, struct feature_node *x, int feature_number, double bias)
{
int i, j, low, high;
mwIndex *ir, *jc;
double *samples;
ir = mxGetIr(prhs);
jc = mxGetJc(prhs);
samples = mxGetPr(prhs);
// each column is one instance
j = 0;
low = (int) jc[index], high = (int) jc[index+1];
for(i=low; i<high && (int) (ir[i])<feature_number; i++)
{
x[j].index = (int) ir[i]+1;
x[j].value = samples[i];
j++;
}
if(bias>=0)
{
x[j].index = feature_number+1;
x[j].value = bias;
j++;
}
x[j].index = -1;
}
static void fake_answer(mxArray *plhs[])
{
plhs[0] = mxCreateDoubleMatrix(0, 0, mxREAL);
plhs[1] = mxCreateDoubleMatrix(0, 0, mxREAL);
plhs[2] = mxCreateDoubleMatrix(0, 0, mxREAL);
}
void do_predict(mxArray *plhs[], const mxArray *prhs[], struct model *model_, const int predict_probability_flag)
{
int label_vector_row_num, label_vector_col_num;
int feature_number, testing_instance_number;
int instance_index;
double *ptr_instance, *ptr_label, *ptr_predict_label;
double *ptr_prob_estimates, *ptr_dec_values, *ptr;
struct feature_node *x;
mxArray *pplhs[1]; // instance sparse matrix in row format
int correct = 0;
int total = 0;
int nr_class=get_nr_class(model_);
int nr_w;
double *prob_estimates=NULL;
if(nr_class==2 && model_->param.solver_type!=MCSVM_CS)
nr_w=1;
else
nr_w=nr_class;
// prhs[1] = testing instance matrix
feature_number = get_nr_feature(model_);
testing_instance_number = (int) mxGetM(prhs[1]);
if(col_format_flag)
{
feature_number = (int) mxGetM(prhs[1]);
testing_instance_number = (int) mxGetN(prhs[1]);
}
label_vector_row_num = (int) mxGetM(prhs[0]);
label_vector_col_num = (int) mxGetN(prhs[0]);
if(label_vector_row_num!=testing_instance_number)
{
mexPrintf("Length of label vector does not match # of instances.\n");
fake_answer(plhs);
return;
}
if(label_vector_col_num!=1)
{
mexPrintf("label (1st argument) should be a vector (# of column is 1).\n");
fake_answer(plhs);
return;
}
ptr_instance = mxGetPr(prhs[1]);
ptr_label = mxGetPr(prhs[0]);
// transpose instance matrix
if(mxIsSparse(prhs[1]))
{
if(col_format_flag)
{
pplhs[0] = (mxArray *)prhs[1];
}
else
{
mxArray *pprhs[1];
pprhs[0] = mxDuplicateArray(prhs[1]);
if(mexCallMATLAB(1, pplhs, 1, pprhs, "transpose"))
{
mexPrintf("Error: cannot transpose testing instance matrix\n");
fake_answer(plhs);
return;
}
}
}
else
mexPrintf("Testing_instance_matrix must be sparse\n");
prob_estimates = Malloc(double, nr_class);
plhs[0] = mxCreateDoubleMatrix(testing_instance_number, 1, mxREAL);
if(predict_probability_flag)
plhs[2] = mxCreateDoubleMatrix(testing_instance_number, nr_class, mxREAL);
else
plhs[2] = mxCreateDoubleMatrix(testing_instance_number, nr_w, mxREAL);
ptr_predict_label = mxGetPr(plhs[0]);
ptr_prob_estimates = mxGetPr(plhs[2]);
ptr_dec_values = mxGetPr(plhs[2]);
x = Malloc(struct feature_node, feature_number+2);
for(instance_index=0;instance_index<testing_instance_number;instance_index++)
{
int i;
double target,v;
target = ptr_label[instance_index];
// prhs[1] and prhs[1]^T are sparse
read_sparse_instance(pplhs[0], instance_index, x, feature_number, model_->bias);
if(predict_probability_flag)
{
v = predict_probability(model_, x, prob_estimates);
ptr_predict_label[instance_index] = v;
for(i=0;i<nr_class;i++)
ptr_prob_estimates[instance_index + i * testing_instance_number] = prob_estimates[i];
}
else
{
double *dec_values = Malloc(double, nr_class);
v = predict(model_, x);
ptr_predict_label[instance_index] = v;
predict_values(model_, x, dec_values);
for(i=0;i<nr_w;i++)
ptr_dec_values[instance_index + i * testing_instance_number] = dec_values[i];
free(dec_values);
}
if(v == target)
++correct;
++total;
}
mexPrintf("Accuracy = %g%% (%d/%d)\n", (double) correct/total*100,correct,total);
// return accuracy, mean squared error, squared correlation coefficient
plhs[1] = mxCreateDoubleMatrix(1, 1, mxREAL);
ptr = mxGetPr(plhs[1]);
ptr[0] = (double) correct/total*100;
free(x);
if(prob_estimates != NULL)
free(prob_estimates);
}
void exit_with_help()
{
mexPrintf(
"Usage: [predicted_label, accuracy, decision_values/prob_estimates] = predict(testing_label_vector, testing_instance_matrix, model, 'liblinear_options','col')\n"
"liblinear_options:\n"
"-b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0)\n"
"col:\n"
" if 'col' is setted testing_instance_matrix is parsed in column format, otherwise is in row format"
);
}
void mexFunction( int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[] )
{
int prob_estimate_flag = 0;
struct model *model_;
char cmd[CMD_LEN];
col_format_flag = 0;
if(nrhs > 5 || nrhs < 3)
{
exit_with_help();
fake_answer(plhs);
return;
}
if(nrhs == 5)
{
mxGetString(prhs[4], cmd, mxGetN(prhs[4])+1);
if(strcmp(cmd, "col") == 0)
{
col_format_flag = 1;
}
}
if(!mxIsDouble(prhs[0]) || !mxIsDouble(prhs[1])) {
mexPrintf("Error: label vector and instance matrix must be double\n");
fake_answer(plhs);
return;
}
if(mxIsStruct(prhs[2]))
{
const char *error_msg;
// parse options
if(nrhs>=4)
{
int i, argc = 1;
char *argv[CMD_LEN/2];
// put options in argv[]
mxGetString(prhs[3], cmd, mxGetN(prhs[3]) + 1);
if((argv[argc] = strtok(cmd, " ")) != NULL)
while((argv[++argc] = strtok(NULL, " ")) != NULL)
;
for(i=1;i<argc;i++)
{
if(argv[i][0] != '-') break;
if(++i>=argc)
{
exit_with_help();
fake_answer(plhs);
return;
}
switch(argv[i-1][1])
{
case 'b':
prob_estimate_flag = atoi(argv[i]);
break;
default:
mexPrintf("unknown option\n");
exit_with_help();
fake_answer(plhs);
return;
}
}
}
model_ = Malloc(struct model, 1);
error_msg = matlab_matrix_to_model(model_, prhs[2]);
if(error_msg)
{
mexPrintf("Error: can't read model: %s\n", error_msg);
free_and_destroy_model(&model_);
fake_answer(plhs);
return;
}
if(prob_estimate_flag)
{
if(!check_probability_model(model_))
{
mexPrintf("probability output is only supported for logistic regression\n");
prob_estimate_flag=0;
}
}
if(mxIsSparse(prhs[1]))
do_predict(plhs, prhs, model_, prob_estimate_flag);
else
{
mexPrintf("Testing_instance_matrix must be sparse\n");
fake_answer(plhs);
}
// destroy model_
free_and_destroy_model(&model_);
}
else
{
mexPrintf("model file should be a struct array\n");
fake_answer(plhs);
}
return;
}
|