File: liblinear-train.1

package info (click to toggle)
liblinear 2.43%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 548 kB
  • sloc: cpp: 3,425; ansic: 2,138; python: 758; makefile: 90; sh: 41
file content (271 lines) | stat: -rw-r--r-- 6,104 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
\"                                      Hey, EMACS: -*- nroff -*-
.TH LIBLINEAR-TRAIN 1 "October 21, 2019"
.SH NAME
liblinear-train \- train a linear classifier and produce a model
.SH SYNOPSIS
.B liblinear-train
.RI [ options ] " training_set_file " [ model_file ] 
.br
.SH DESCRIPTION
\fBliblinear-train\fP trains a linear classifier using liblinear and produces a
model suitable for use with \fBliblinear-predict\fP(1).

\fItraining_set_file\fP is the file containing the data used for training.
\fImodel_file\fP is the file to which the model will be saved. If
\fImodel_file\fP is not provided, it defaults to \fItraining_set_file.model\fP.

To obtain good performances, sometimes one needs to scale the data. This can be
done with \fBsvm-scale\fP(1).
.SH OPTIONS
A summary of options is included below.
.TP
.B \-s \fItype\fP
Set the type of the solver (default \fB1\fP):
.sp
.RS 8
.nf
for multi-class classification
.fi
.RE
.sp
.RS 10
.nf
0 ... L2-regularized logistic regression (primal)
.sp
1 ... L2-regularized L2-loss support vector classification (dual)
.sp
2 ... L2-regularized L2-loss support vector classification (primal)
.sp
3 ... L2-regularized L1-loss support vector classification (dual)
.sp
4 ... support vector classification by Crammer and Singer
.sp
5 ... L1-regularized L2-loss support vector classification
.sp
6 ... L1-regularized logistic regression
.sp
7 ... L2-regularized logistic regression (dual)
.sp
.fi
.RE
.RS 8
.nf
for regression
.fi
.RE
.sp
.RS 10
.nf
.sp
11 ... L2-regularized L2-loss support vector regression (primal)
.sp
12 ... L2-regularized L2-loss support vector regression (dual)
.sp
13 ... L2-regularized L1-loss support vector regression (dual)
.sp
.fi
.RE
.RS 8
.nf
for outlier detection
.fi
.RE
.sp
.RS 10
.nf
.sp
21 ... one\-class support vector machine (dual)
.fi
.RE
.TP
.B \-c \fIcost\fP
Set the parameter C (default: \fB1\fP)
.TP
.B \-p \fIepsilon\fP
Set the epsilon in loss function of epsilon-SVR (default: \fB0.1\fP)
.TP
.B \-e \fIepsilon\fP
Set the tolerance of the termination criterion
.TP
.B \-n \fInu\fP
Set the parameter nu of one-class SVM (default 0.5)
.sp
\-s 0 and 2:
.RS 10
.nf
.sp
|f'(w)|_2 <= \fIepsilon\fP*min(pos,neg)/l*|f'(w0)|_2, where f is
the primal function and pos/neg are the number of positive/negative data
(default: \fB0.01\fP)
.fi
.RE
.IP
\-s 11:
.sp
.nf
.RS 10
|f'(w)|_2 <= epsilon*|f'(w0)|_2 (default \fB0.0001\fP)
.fi
.RE
.IP
\-s 1, 3, 4, 7 and 21:
.sp
.nf
.RS 10
Dual maximal violation <= \fIepsilon\fP; similar to libsvm (default: \fB0.1\fP
except 0.01 for \-s 21)
.fi
.RE
.IP
\-s 5 and 6:
.sp
.nf
.RS 10
|f'(w)|_inf <= \fIepsilon\fP*min(pos,neg)/l*|f'(w0)|_inf, where f is the primal
function (default: \fB0.01\fP)
.RE
.IP
\-s 12 and 13:
.sp
.nf
.RS 10
|f'(alpha)|_1 <= epsilon |f'(alpha0)|, where f is the dual function (default \fB0.1\fP)
.RE
.TP
.B \-B \fIbias\fP
If \fIbias\fP >= 0, then instance x becomes [x; bias]; if \fIbias\fP < 0, then
no bias term is added (default: \fB-1\fP)
.TP
.B \-R
not regularize the bias; must with \-B 1 to have the bias; DON'T use this unless you
know what it is (for \-s 0, 2, 5, 6, 11)
.TP
.B \-w\fIi\fP \fIweight\fP
Weights adjust the parameter C of different classes (see README for details)
.TP
.B \-v \fIn\fP
\fIn\fP-fold cross validation mode
.TP
.B \-C
Find parameters (C for \-s 0, 2 and C, p for \-s 11)
.TP
.B \-q
Quiet mode (no outputs).
.fi
.RE
.sp
Option \-v randomly splits the data into n parts and calculates
cross validation accuracy on them.

Option \-C conducts cross validation under different parameters and finds
the best one. This option is supported only by \-s 0, \-s 2 (for finding C)
and \-s 11 (for finding C, p). If the solver is not specified, \-s 2 is used.
.SH EXAMPLES
.sp
Train a linear SVM using L2-loss function:
.sp
.RS 10
.nf
 liblinear-train data_file
.fi
.RE
.sp
Train a logistic regression model:
.sp
.RS 10
.nf
 liblinear-train \-s 0 data_file
.fi
.RE
.sp
Train a linear one\-class SVM which selects roughly 10% data as outliers.
.sp
.RS 10
.nf
 liblinear-train -s 21 -n 0.1 data_file
.fi
.RE
.sp
Do five-fold cross-validation using L2-loss SVM. Use a smaller stopping
tolerance 0.001 than the default 0.1 if you want more accurate solutions:
.sp
.RS 10
.nf
 liblinear-train \-v 5 \-e 0.001 data_file
.fi
.RE
.sp
Conduct cross validation many times by L2-loss SVM and find the parameter
C which achieves the best cross validation accuracy:
.sp
.RS 10
.nf
 train \-C datafile
.fi
.RE
.sp
For parameter selection by \-C, users can specify other
solvers (currently \-s 0, \-s 2 and \-s 11 are supported) and
different number of CV folds. Further, users can use
the \-c option to specify the smallest C value of the
search range. This option is useful when users want to
rerun the parameter selection procedure from a specified
C under a different setting, such as a stricter stopping
tolerance \-e 0.0001 in the above example. Similarly, for
\-s 11, users can use the \-p option to specify the
maximal p value of the search range.
.sp
.RS 10
.nf
 train \-C \-s 0 \-v 3 \-c 0.5 \-e 0.0001 datafile
.fi
.RE
.sp
Train four classifiers:
.RS 18
.sp
positive    negative        Cp  Cn
.br
class 1     class 2,3,4     20  10
.br
class 2     class 1,3,4     50  10
.br
class 3     class 1,2,4     20  10
.br
class 4     class 1,2,3     10  10
.RE
.sp
.RS 10
.nf
 liblinear-train \-c 10 \-w1 2 \-w2 5 \-w3 2 four_class_data_file
.fi
.RE
.sp
If there are only two classes, we train ONE model. The C values for the two
classes are 10 and 50:
.sp
.RS 10
.nf
 liblinear-train \-c 10 \-w3 1 \-w2 5 two_class_data_file
.fi
.RE
.sp
Output probability estimates (for logistic regression only) using
\fBliblinear-predict\fP(1):
.sp
.RS 10
.nf
 liblinear-predict \-b 1 test_file data_file.model output_file
.fi
.RE
.SH SEE ALSO
.BR liblinear-predict (1),
.BR svm-predict (1),
.BR svm-train (1),
.BR svm-scale (1)
.SH AUTHORS
liblinear-train was written by the LIBLINEAR authors at National Taiwan
university for the LIBLINEAR Project.
.PP
This manual page was written by Christian Kastner <ckk@debian.org>
for the Debian project (and may be used by others).