1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
|
/**********
This library is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the
Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version. (See <http://www.gnu.org/copyleft/lesser.html>.)
This library is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details.
You should have received a copy of the GNU Lesser General Public License
along with this library; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
**********/
// "liveMedia"
// Copyright (c) 1996-2005 Live Networks, Inc. All rights reserved.
// MP3 internal implementation details (Huffman encoding)
// Implementation
#include "MP3InternalsHuffman.hh"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
MP3HuffmanEncodingInfo
::MP3HuffmanEncodingInfo(Boolean includeDecodedValues) {
if (includeDecodedValues) {
decodedValues = new unsigned[(SBLIMIT*SSLIMIT + 1)*4];
} else {
decodedValues = NULL;
}
}
MP3HuffmanEncodingInfo::~MP3HuffmanEncodingInfo() {
delete[] decodedValues;
}
// This is crufty old code that needs to be cleaned up #####
static unsigned debugCount = 0; /* for debugging */
#define TRUNC_FAVORa
void updateSideInfoForHuffman(MP3SideInfo& sideInfo, Boolean isMPEG2,
unsigned char const* mainDataPtr,
unsigned p23L0, unsigned p23L1,
unsigned& part23Length0a,
unsigned& part23Length0aTruncation,
unsigned& part23Length0b,
unsigned& part23Length0bTruncation,
unsigned& part23Length1a,
unsigned& part23Length1aTruncation,
unsigned& part23Length1b,
unsigned& part23Length1bTruncation) {
int i, j;
unsigned sfLength, origTotABsize, adjustment;
MP3SideInfo::gr_info_s_t* gr;
/* First, Huffman-decode each part of the segment's main data,
to see at which bit-boundaries the samples appear:
*/
MP3HuffmanEncodingInfo hei;
++debugCount;
#ifdef DEBUG
fprintf(stderr, "usifh-start: p23L0: %d, p23L1: %d\n", p23L0, p23L1);
#endif
/* Process granule 0 */
{
gr = &(sideInfo.ch[0].gr[0]);
origTotABsize = gr->part2_3_length;
MP3HuffmanDecode(gr, isMPEG2, mainDataPtr, 0, origTotABsize, sfLength, hei);
/* Begin by computing new sizes for parts a & b (& their truncations) */
#ifdef DEBUG
fprintf(stderr, "usifh-0: %d, %d:%d, %d:%d, %d:%d, %d:%d, %d:%d\n",
hei.numSamples,
sfLength/8, sfLength%8,
hei.reg1Start/8, hei.reg1Start%8,
hei.reg2Start/8, hei.reg2Start%8,
hei.bigvalStart/8, hei.bigvalStart%8,
origTotABsize/8, origTotABsize%8);
#ifdef undef
{
unsigned k;
for (k = 0; k < hei.numSamples; ++k) {
fprintf(stderr, " %d:%d",
hei.allBitOffsets[k]/8, hei.allBitOffsets[k]%8);
}
fprintf(stderr, "\n");
}
#endif
#endif
if (p23L0 < sfLength) {
/* We can't use this, so give it all to the next granule: */
p23L1 += p23L0;
p23L0 = 0;
}
part23Length0a = hei.bigvalStart;
part23Length0b = origTotABsize - hei.bigvalStart;
part23Length0aTruncation = part23Length0bTruncation = 0;
if (origTotABsize > p23L0) {
/* We need to shorten one or both of fields a & b */
unsigned truncation = origTotABsize - p23L0;
#ifdef TRUNC_FAIRLY
part23Length0aTruncation = (truncation*(part23Length0a-sfLength))
/(origTotABsize-sfLength);
part23Length0bTruncation = truncation - part23Length0aTruncation;
#endif
#ifdef TRUNC_FAVORa
part23Length0bTruncation
= (truncation > part23Length0b) ? part23Length0b : truncation;
part23Length0aTruncation = truncation - part23Length0bTruncation;
#endif
#ifdef TRUNC_FAVORb
part23Length0aTruncation = (truncation > part23Length0a-sfLength)
? (part23Length0a-sfLength) : truncation;
part23Length0bTruncation = truncation - part23Length0aTruncation;
#endif
}
/* ASSERT: part23Length0xTruncation <= part23Length0x */
part23Length0a -= part23Length0aTruncation;
part23Length0b -= part23Length0bTruncation;
#ifdef DEBUG
fprintf(stderr, "usifh-0: interim sizes: %d (%d), %d (%d)\n",
part23Length0a, part23Length0aTruncation,
part23Length0b, part23Length0bTruncation);
#endif
/* Adjust these new lengths so they end on sample bit boundaries: */
for (i = 0; i < (int)hei.numSamples; ++i) {
if (hei.allBitOffsets[i] == part23Length0a) break;
else if (hei.allBitOffsets[i] > part23Length0a) {--i; break;}
}
if (i < 0) { /* should happen only if we couldn't fit sfLength */
i = 0; adjustment = 0;
} else {
adjustment = part23Length0a - hei.allBitOffsets[i];
}
#ifdef DEBUG
fprintf(stderr, "%d usifh-0: adjustment 1: %d\n", debugCount, adjustment);
#endif
part23Length0a -= adjustment;
part23Length0aTruncation += adjustment;
/* Assign the bits we just shaved to field b and granule 1: */
if (part23Length0bTruncation < adjustment) {
p23L1 += (adjustment - part23Length0bTruncation);
adjustment = part23Length0bTruncation;
}
part23Length0b += adjustment;
part23Length0bTruncation -= adjustment;
for (j = i; j < (int)hei.numSamples; ++j) {
if (hei.allBitOffsets[j]
== part23Length0a + part23Length0aTruncation + part23Length0b)
break;
else if (hei.allBitOffsets[j]
> part23Length0a + part23Length0aTruncation + part23Length0b)
{--j; break;}
}
if (j < 0) { /* should happen only if we couldn't fit sfLength */
j = 0; adjustment = 0;
} else {
adjustment = part23Length0a+part23Length0aTruncation+part23Length0b
- hei.allBitOffsets[j];
}
#ifdef DEBUG
fprintf(stderr, "%d usifh-0: adjustment 2: %d\n", debugCount, adjustment);
#endif
if (adjustment > part23Length0b) adjustment = part23Length0b; /*sanity*/
part23Length0b -= adjustment;
part23Length0bTruncation += adjustment;
/* Assign the bits we just shaved to granule 1 */
p23L1 += adjustment;
if (part23Length0aTruncation > 0) {
/* Change the granule's 'big_values' field to reflect the truncation */
gr->big_values = i;
}
}
/* Process granule 1 (MPEG-1 only) */
if (isMPEG2) {
part23Length1a = part23Length1b = 0;
part23Length1aTruncation = part23Length1bTruncation = 0;
} else {
unsigned granule1Offset
= origTotABsize + sideInfo.ch[1].gr[0].part2_3_length;
gr = &(sideInfo.ch[0].gr[1]);
origTotABsize = gr->part2_3_length;
MP3HuffmanDecode(gr, isMPEG2, mainDataPtr, granule1Offset,
origTotABsize, sfLength, hei);
/* Begin by computing new sizes for parts a & b (& their truncations) */
#ifdef DEBUG
fprintf(stderr, "usifh-1: %d, %d:%d, %d:%d, %d:%d, %d:%d, %d:%d\n",
hei.numSamples,
sfLength/8, sfLength%8,
hei.reg1Start/8, hei.reg1Start%8,
hei.reg2Start/8, hei.reg2Start%8,
hei.bigvalStart/8, hei.bigvalStart%8,
origTotABsize/8, origTotABsize%8);
#ifdef undef
{
unsigned k;
for (k = 0; k < hei.numSamples; ++k) {
fprintf(stderr, " %d:%d",
hei.allBitOffsets[k]/8, hei.allBitOffsets[k]%8);
}
fprintf(stderr, "\n");
}
#endif
#endif
if (p23L1 < sfLength) {
/* We can't use this, so give up on this granule: */
p23L1 = 0;
}
part23Length1a = hei.bigvalStart;
part23Length1b = origTotABsize - hei.bigvalStart;
part23Length1aTruncation = part23Length1bTruncation = 0;
if (origTotABsize > p23L1) {
/* We need to shorten one or both of fields a & b */
unsigned truncation = origTotABsize - p23L1;
#ifdef TRUNC_FAIRLY
part23Length1aTruncation = (truncation*(part23Length1a-sfLength))
/(origTotABsize-sfLength);
part23Length1bTruncation = truncation - part23Length1aTruncation;
#endif
#ifdef TRUNC_FAVORa
part23Length1bTruncation
= (truncation > part23Length1b) ? part23Length1b : truncation;
part23Length1aTruncation = truncation - part23Length1bTruncation;
#endif
#ifdef TRUNC_FAVORb
part23Length1aTruncation = (truncation > part23Length1a-sfLength)
? (part23Length1a-sfLength) : truncation;
part23Length1bTruncation = truncation - part23Length1aTruncation;
#endif
}
/* ASSERT: part23Length1xTruncation <= part23Length1x */
part23Length1a -= part23Length1aTruncation;
part23Length1b -= part23Length1bTruncation;
#ifdef DEBUG
fprintf(stderr, "usifh-1: interim sizes: %d (%d), %d (%d)\n",
part23Length1a, part23Length1aTruncation,
part23Length1b, part23Length1bTruncation);
#endif
/* Adjust these new lengths so they end on sample bit boundaries: */
for (i = 0; i < (int)hei.numSamples; ++i) {
if (hei.allBitOffsets[i] == part23Length1a) break;
else if (hei.allBitOffsets[i] > part23Length1a) {--i; break;}
}
if (i < 0) { /* should happen only if we couldn't fit sfLength */
i = 0; adjustment = 0;
} else {
adjustment = part23Length1a - hei.allBitOffsets[i];
}
#ifdef DEBUG
fprintf(stderr, "%d usifh-1: adjustment 0: %d\n", debugCount, adjustment);
#endif
part23Length1a -= adjustment;
part23Length1aTruncation += adjustment;
/* Assign the bits we just shaved to field b: */
if (part23Length1bTruncation < adjustment) {
adjustment = part23Length1bTruncation;
}
part23Length1b += adjustment;
part23Length1bTruncation -= adjustment;
for (j = i; j < (int)hei.numSamples; ++j) {
if (hei.allBitOffsets[j]
== part23Length1a + part23Length1aTruncation + part23Length1b)
break;
else if (hei.allBitOffsets[j]
> part23Length1a + part23Length1aTruncation + part23Length1b)
{--j; break;}
}
if (j < 0) { /* should happen only if we couldn't fit sfLength */
j = 0; adjustment = 0;
} else {
adjustment = part23Length1a+part23Length1aTruncation+part23Length1b
- hei.allBitOffsets[j];
}
#ifdef DEBUG
fprintf(stderr, "%d usifh-1: adjustment 1: %d\n", debugCount, adjustment);
#endif
if (adjustment > part23Length1b) adjustment = part23Length1b; /*sanity*/
part23Length1b -= adjustment;
part23Length1bTruncation += adjustment;
if (part23Length1aTruncation > 0) {
/* Change the granule's 'big_values' field to reflect the truncation */
gr->big_values = i;
}
}
#ifdef DEBUG
fprintf(stderr, "usifh-end, new vals: %d (%d), %d (%d), %d (%d), %d (%d)\n",
part23Length0a, part23Length0aTruncation,
part23Length0b, part23Length0bTruncation,
part23Length1a, part23Length1aTruncation,
part23Length1b, part23Length1bTruncation);
#endif
}
static void rsf_getline(char* line, unsigned max, unsigned char**fi) {
unsigned i;
for (i = 0; i < max; ++i) {
line[i] = *(*fi)++;
if (line[i] == '\n') {
line[i++] = '\0';
return;
}
}
line[i] = '\0';
}
static void rsfscanf(unsigned char **fi, unsigned int* v) {
while (sscanf((char*)*fi, "%x", v) == 0) {
/* skip past the next '\0' */
while (*(*fi)++ != '\0') {}
}
/* skip past any white-space before the value: */
while (*(*fi) <= ' ') ++(*fi);
/* skip past the value: */
while (*(*fi) > ' ') ++(*fi);
}
#define HUFFBITS unsigned long int
#define SIZEOF_HUFFBITS 4
#define HTN 34
#define MXOFF 250
struct huffcodetab {
char tablename[3]; /*string, containing table_description */
unsigned int xlen; /*max. x-index+ */
unsigned int ylen; /*max. y-index+ */
unsigned int linbits; /*number of linbits */
unsigned int linmax; /*max number to be stored in linbits */
int ref; /*a positive value indicates a reference*/
HUFFBITS *table; /*pointer to array[xlen][ylen] */
unsigned char *hlen; /*pointer to array[xlen][ylen] */
unsigned char(*val)[2];/*decoder tree */
unsigned int treelen; /*length of decoder tree */
};
static struct huffcodetab rsf_ht[HTN]; // array of all huffcodetable headers
/* 0..31 Huffman code table 0..31 */
/* 32,33 count1-tables */
/* read the huffman decoder table */
static int read_decoder_table(unsigned char* fi) {
int n,i,nn,t;
unsigned int v0,v1;
char command[100],line[100];
for (n=0;n<HTN;n++) {
rsf_ht[n].table = NULL;
rsf_ht[n].hlen = NULL;
/* .table number treelen xlen ylen linbits */
do {
rsf_getline(line,99,&fi);
} while ((line[0] == '#') || (line[0] < ' '));
sscanf(line,"%s %s %u %u %u %u",command,rsf_ht[n].tablename,
&rsf_ht[n].treelen, &rsf_ht[n].xlen, &rsf_ht[n].ylen, &rsf_ht[n].linbits);
if (strcmp(command,".end")==0)
return n;
else if (strcmp(command,".table")!=0) {
#ifdef DEBUG
fprintf(stderr,"huffman table %u data corrupted\n",n);
#endif
return -1;
}
rsf_ht[n].linmax = (1<<rsf_ht[n].linbits)-1;
sscanf(rsf_ht[n].tablename,"%u",&nn);
if (nn != n) {
#ifdef DEBUG
fprintf(stderr,"wrong table number %u\n",n);
#endif
return(-2);
}
do {
rsf_getline(line,99,&fi);
} while ((line[0] == '#') || (line[0] < ' '));
sscanf(line,"%s %u",command,&t);
if (strcmp(command,".reference")==0) {
rsf_ht[n].ref = t;
rsf_ht[n].val = rsf_ht[t].val;
rsf_ht[n].treelen = rsf_ht[t].treelen;
if ( (rsf_ht[n].xlen != rsf_ht[t].xlen) ||
(rsf_ht[n].ylen != rsf_ht[t].ylen) ) {
#ifdef DEBUG
fprintf(stderr,"wrong table %u reference\n",n);
#endif
return (-3);
};
while ((line[0] == '#') || (line[0] < ' ') ) {
rsf_getline(line,99,&fi);
}
}
else if (strcmp(command,".treedata")==0) {
rsf_ht[n].ref = -1;
rsf_ht[n].val = (unsigned char (*)[2])
new unsigned char[2*(rsf_ht[n].treelen)];
if ((rsf_ht[n].val == NULL) && ( rsf_ht[n].treelen != 0 )){
#ifdef DEBUG
fprintf(stderr, "heaperror at table %d\n",n);
#endif
exit (-10);
}
for (i=0;(unsigned)i<rsf_ht[n].treelen; i++) {
rsfscanf(&fi, &v0);
rsfscanf(&fi, &v1);
/*replaces fscanf(fi,"%x %x",&v0, &v1);*/
rsf_ht[n].val[i][0]=(unsigned char)v0;
rsf_ht[n].val[i][1]=(unsigned char)v1;
}
rsf_getline(line,99,&fi); /* read the rest of the line */
}
else {
#ifdef DEBUG
fprintf(stderr,"huffman decodertable error at table %d\n",n);
#endif
}
}
return n;
}
static void initialize_huffman() {
static Boolean huffman_initialized = False;
if (huffman_initialized) return;
if (read_decoder_table(huffdec) != HTN) {
#ifdef DEBUG
fprintf(stderr,"decoder table read error\n");
#endif
exit(4);
}
huffman_initialized = True;
}
static unsigned char const slen[2][16] = {
{0, 0, 0, 0, 3, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4},
{0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 1, 2, 3, 2, 3}
};
static unsigned char const stab[3][6][4] = {
{ { 6, 5, 5,5 } , { 6, 5, 7,3 } , { 11,10,0,0} ,
{ 7, 7, 7,0 } , { 6, 6, 6,3 } , { 8, 8,5,0} } ,
{ { 9, 9, 9,9 } , { 9, 9,12,6 } , { 18,18,0,0} ,
{12,12,12,0 } , {12, 9, 9,6 } , { 15,12,9,0} } ,
{ { 6, 9, 9,9 } , { 6, 9,12,6 } , { 15,18,0,0} ,
{ 6,15,12,0 } , { 6,12, 9,6 } , { 6,18,9,0} }
};
static unsigned rsf_get_scale_factors_1(MP3SideInfo::gr_info_s_t *gr_info) {
int numbits;
int num0 = slen[0][gr_info->scalefac_compress];
int num1 = slen[1][gr_info->scalefac_compress];
if (gr_info->block_type == 2)
{
numbits = (num0 + num1) * 18;
if (gr_info->mixed_block_flag) {
numbits -= num0; /* num0 * 17 + num1 * 18 */
}
}
else
{
int scfsi = gr_info->scfsi;
if(scfsi < 0) { /* scfsi < 0 => granule == 0 */
numbits = (num0 + num1) * 10 + num0;
}
else {
numbits = 0;
if(!(scfsi & 0x8)) {
numbits += num0 * 6;
}
else {
}
if(!(scfsi & 0x4)) {
numbits += num0 * 5;
}
else {
}
if(!(scfsi & 0x2)) {
numbits += num1 * 5;
}
else {
}
if(!(scfsi & 0x1)) {
numbits += num1 * 5;
}
else {
}
}
}
return numbits;
}
extern unsigned n_slen2[];
extern unsigned i_slen2[];
static unsigned rsf_get_scale_factors_2(MP3SideInfo::gr_info_s_t *gr_info) {
unsigned char const* pnt;
int i;
unsigned int slen;
int n = 0;
int numbits = 0;
#ifdef undef
if(i_stereo) /* i_stereo AND second channel -> do_layer3() checks this */
slen = i_slen2[gr_info->scalefac_compress>>1];
else
#endif
slen = n_slen2[gr_info->scalefac_compress];
gr_info->preflag = (slen>>15) & 0x1;
n = 0;
if( gr_info->block_type == 2 ) {
n++;
if(gr_info->mixed_block_flag)
n++;
}
pnt = stab[n][(slen>>12)&0x7];
for(i=0;i<4;i++) {
int num = slen & 0x7;
slen >>= 3;
numbits += pnt[i] * num;
}
return numbits;
}
static unsigned getScaleFactorsLength(MP3SideInfo::gr_info_s_t* gr,
Boolean isMPEG2) {
return isMPEG2 ? rsf_get_scale_factors_2(gr)
: rsf_get_scale_factors_1(gr);
}
static int rsf_huffman_decoder(BitVector& bv,
struct huffcodetab const* h,
int* x, int* y, int* v, int* w); // forward
void MP3HuffmanDecode(MP3SideInfo::gr_info_s_t* gr, int isMPEG2,
unsigned char const* fromBasePtr,
unsigned fromBitOffset, unsigned fromLength,
unsigned& scaleFactorsLength,
MP3HuffmanEncodingInfo& hei) {
unsigned i;
int x, y, v, w;
struct huffcodetab *h;
BitVector bv((unsigned char*)fromBasePtr, fromBitOffset, fromLength);
/* Compute the size of the scale factors (& also advance bv): */
scaleFactorsLength = getScaleFactorsLength(gr, isMPEG2);
bv.skipBits(scaleFactorsLength);
initialize_huffman();
hei.reg1Start = hei.reg2Start = hei.numSamples = 0;
/* Read bigvalues area. */
if (gr->big_values < gr->region1start + gr->region2start) {
gr->big_values = gr->region1start + gr->region2start; /* sanity check */
}
for (i = 0; i < gr->big_values; ++i) {
if (i < gr->region1start) {
/* in region 0 */
h = &rsf_ht[gr->table_select[0]];
} else if (i < gr->region2start) {
/* in region 1 */
h = &rsf_ht[gr->table_select[1]];
if (hei.reg1Start == 0) {
hei.reg1Start = bv.curBitIndex();
}
} else {
/* in region 2 */
h = &rsf_ht[gr->table_select[2]];
if (hei.reg2Start == 0) {
hei.reg2Start = bv.curBitIndex();
}
}
hei.allBitOffsets[i] = bv.curBitIndex();
rsf_huffman_decoder(bv, h, &x, &y, &v, &w);
if (hei.decodedValues != NULL) {
// Record the decoded values:
unsigned* ptr = &hei.decodedValues[4*i];
ptr[0] = x; ptr[1] = y; ptr[2] = v; ptr[3] = w;
}
}
hei.bigvalStart = bv.curBitIndex();
/* Read count1 area. */
h = &rsf_ht[gr->count1table_select+32];
while (bv.curBitIndex() < bv.totNumBits() && i < SSLIMIT*SBLIMIT) {
hei.allBitOffsets[i] = bv.curBitIndex();
rsf_huffman_decoder(bv, h, &x, &y, &v, &w);
if (hei.decodedValues != NULL) {
// Record the decoded values:
unsigned* ptr = &hei.decodedValues[4*i];
ptr[0] = x; ptr[1] = y; ptr[2] = v; ptr[3] = w;
}
++i;
}
hei.allBitOffsets[i] = bv.curBitIndex();
hei.numSamples = i;
}
HUFFBITS dmask = 1 << (SIZEOF_HUFFBITS*8-1);
unsigned int hs = SIZEOF_HUFFBITS*8;
/* do the huffman-decoding */
static int rsf_huffman_decoder(BitVector& bv,
struct huffcodetab const* h, // ptr to huffman code record
/* unsigned */ int *x, // returns decoded x value
/* unsigned */ int *y, // returns decoded y value
int* v, int* w) {
HUFFBITS level;
unsigned point = 0;
int error = 1;
level = dmask;
*x = *y = *v = *w = 0;
if (h->val == NULL) return 2;
/* table 0 needs no bits */
if (h->treelen == 0) return 0;
/* Lookup in Huffman table. */
do {
if (h->val[point][0]==0) { /*end of tree*/
*x = h->val[point][1] >> 4;
*y = h->val[point][1] & 0xf;
error = 0;
break;
}
if (bv.get1Bit()) {
while (h->val[point][1] >= MXOFF) point += h->val[point][1];
point += h->val[point][1];
}
else {
while (h->val[point][0] >= MXOFF) point += h->val[point][0];
point += h->val[point][0];
}
level >>= 1;
} while (level || (point < h->treelen) );
///// } while (level || (point < rsf_ht->treelen) );
/* Check for error. */
if (error) { /* set x and y to a medium value as a simple concealment */
printf("Illegal Huffman code in data.\n");
*x = ((h->xlen-1) << 1);
*y = ((h->ylen-1) << 1);
}
/* Process sign encodings for quadruples tables. */
if (h->tablename[0] == '3'
&& (h->tablename[1] == '2' || h->tablename[1] == '3')) {
*v = (*y>>3) & 1;
*w = (*y>>2) & 1;
*x = (*y>>1) & 1;
*y = *y & 1;
if (*v)
if (bv.get1Bit() == 1) *v = -*v;
if (*w)
if (bv.get1Bit() == 1) *w = -*w;
if (*x)
if (bv.get1Bit() == 1) *x = -*x;
if (*y)
if (bv.get1Bit() == 1) *y = -*y;
}
/* Process sign and escape encodings for dual tables. */
else {
if (h->linbits)
if ((h->xlen-1) == (unsigned)*x)
*x += bv.getBits(h->linbits);
if (*x)
if (bv.get1Bit() == 1) *x = -*x;
if (h->linbits)
if ((h->ylen-1) == (unsigned)*y)
*y += bv.getBits(h->linbits);
if (*y)
if (bv.get1Bit() == 1) *y = -*y;
}
return error;
}
#ifdef DO_HUFFMAN_ENCODING
inline int getNextSample(unsigned char const*& fromPtr) {
int sample
#ifdef FOUR_BYTE_SAMPLES
= (fromPtr[0]<<24) | (fromPtr[1]<<16) | (fromPtr[2]<<8) | fromPtr[3];
#else
#ifdef TWO_BYTE_SAMPLES
= (fromPtr[0]<<8) | fromPtr[1];
#else
// ONE_BYTE_SAMPLES
= fromPtr[0];
#endif
#endif
fromPtr += BYTES_PER_SAMPLE_VALUE;
return sample;
}
static void rsf_huffman_encoder(BitVector& bv,
struct huffcodetab* h,
int x, int y, int v, int w); // forward
unsigned MP3HuffmanEncode(MP3SideInfo::gr_info_s_t const* gr,
unsigned char const* fromPtr,
unsigned char* toPtr, unsigned toBitOffset,
unsigned numHuffBits) {
unsigned i;
struct huffcodetab *h;
int x, y, v, w;
BitVector bv(toPtr, toBitOffset, numHuffBits);
initialize_huffman();
// Encode big_values area:
unsigned big_values = gr->big_values;
if (big_values < gr->region1start + gr->region2start) {
big_values = gr->region1start + gr->region2start; /* sanity check */
}
for (i = 0; i < big_values; ++i) {
if (i < gr->region1start) {
/* in region 0 */
h = &rsf_ht[gr->table_select[0]];
} else if (i < gr->region2start) {
/* in region 1 */
h = &rsf_ht[gr->table_select[1]];
} else {
/* in region 2 */
h = &rsf_ht[gr->table_select[2]];
}
x = getNextSample(fromPtr);
y = getNextSample(fromPtr);
v = getNextSample(fromPtr);
w = getNextSample(fromPtr);
rsf_huffman_encoder(bv, h, x, y, v, w);
}
// Encode count1 area:
h = &rsf_ht[gr->count1table_select+32];
while (bv.curBitIndex() < bv.totNumBits() && i < SSLIMIT*SBLIMIT) {
x = getNextSample(fromPtr);
y = getNextSample(fromPtr);
v = getNextSample(fromPtr);
w = getNextSample(fromPtr);
rsf_huffman_encoder(bv, h, x, y, v, w);
++i;
}
return i;
}
static Boolean lookupHuffmanTableEntry(struct huffcodetab const* h,
HUFFBITS bits, unsigned bitsLength,
unsigned char& xy) {
unsigned point = 0;
unsigned mask = 1;
unsigned numBitsTestedSoFar = 0;
do {
if (h->val[point][0]==0) { // end of tree
xy = h->val[point][1];
if (h->hlen[xy] == 0) { // this entry hasn't already been used
h->table[xy] = bits;
h->hlen[xy] = bitsLength;
return True;
} else { // this entry has already been seen
return False;
}
}
if (numBitsTestedSoFar++ == bitsLength) {
// We don't yet have enough bits for this prefix
return False;
}
if (bits&mask) {
while (h->val[point][1] >= MXOFF) point += h->val[point][1];
point += h->val[point][1];
} else {
while (h->val[point][0] >= MXOFF) point += h->val[point][0];
point += h->val[point][0];
}
mask <<= 1;
} while (mask || (point < h->treelen));
return False;
}
static void buildHuffmanEncodingTable(struct huffcodetab* h) {
h->table = new unsigned long[256];
h->hlen = new unsigned char[256];
if (h->table == NULL || h->hlen == NULL) { h->table = NULL; return; }
for (unsigned i = 0; i < 256; ++i) {
h->table[i] = 0; h->hlen[i] = 0;
}
// Look up entries for each possible bit sequence length:
unsigned maxNumEntries = h->xlen * h->ylen;
unsigned numEntries = 0;
unsigned powerOf2 = 1;
for (unsigned bitsLength = 1;
bitsLength <= 8*SIZEOF_HUFFBITS; ++bitsLength) {
powerOf2 *= 2;
for (HUFFBITS bits = 0; bits < powerOf2; ++bits) {
// Find the table value - if any - for 'bits' (length 'bitsLength'):
unsigned char xy;
if (lookupHuffmanTableEntry(h, bits, bitsLength, xy)) {
++numEntries;
if (numEntries == maxNumEntries) return; // we're done
}
}
}
#ifdef DEBUG
fprintf(stderr, "Didn't find enough entries!\n"); // shouldn't happen
#endif
}
static void lookupXYandPutBits(BitVector& bv, struct huffcodetab const* h,
unsigned char xy) {
HUFFBITS bits = h->table[xy];
unsigned bitsLength = h->hlen[xy];
// Note that "bits" is in reverse order, so read them from right-to-left:
while (bitsLength-- > 0) {
bv.put1Bit(bits&0x00000001);
bits >>= 1;
}
}
static void putLinbits(BitVector& bv, struct huffcodetab const* h,
HUFFBITS bits) {
bv.putBits(bits, h->linbits);
}
static void rsf_huffman_encoder(BitVector& bv,
struct huffcodetab* h,
int x, int y, int v, int w) {
if (h->val == NULL) return;
/* table 0 produces no bits */
if (h->treelen == 0) return;
if (h->table == NULL) {
// We haven't yet built the encoding array for this table; do it now:
buildHuffmanEncodingTable(h);
if (h->table == NULL) return;
}
Boolean xIsNeg = False, yIsNeg = False, vIsNeg = False, wIsNeg = False;
unsigned char xy;
#ifdef FOUR_BYTE_SAMPLES
#else
#ifdef TWO_BYTE_SAMPLES
// Convert 2-byte negative numbers to their 4-byte equivalents:
if (x&0x8000) x |= 0xFFFF0000;
if (y&0x8000) y |= 0xFFFF0000;
if (v&0x8000) v |= 0xFFFF0000;
if (w&0x8000) w |= 0xFFFF0000;
#else
// ONE_BYTE_SAMPLES
// Convert 1-byte negative numbers to their 4-byte equivalents:
if (x&0x80) x |= 0xFFFFFF00;
if (y&0x80) y |= 0xFFFFFF00;
if (v&0x80) v |= 0xFFFFFF00;
if (w&0x80) w |= 0xFFFFFF00;
#endif
#endif
if (h->tablename[0] == '3'
&& (h->tablename[1] == '2' || h->tablename[1] == '3')) {// quad tables
if (x < 0) { xIsNeg = True; x = -x; }
if (y < 0) { yIsNeg = True; y = -y; }
if (v < 0) { vIsNeg = True; v = -v; }
if (w < 0) { wIsNeg = True; w = -w; }
// Sanity check: x,y,v,w must all be 0 or 1:
if (x>1 || y>1 || v>1 || w>1) {
#ifdef DEBUG
fprintf(stderr, "rsf_huffman_encoder quad sanity check fails: %x,%x,%x,%x\n", x, y, v, w);
#endif
}
xy = (v<<3)|(w<<2)|(x<<1)|y;
lookupXYandPutBits(bv, h, xy);
if (v) bv.put1Bit(vIsNeg);
if (w) bv.put1Bit(wIsNeg);
if (x) bv.put1Bit(xIsNeg);
if (y) bv.put1Bit(yIsNeg);
} else { // dual tables
// Sanity check: v and w must be 0:
if (v != 0 || w != 0) {
#ifdef DEBUG
fprintf(stderr, "rsf_huffman_encoder dual sanity check 1 fails: %x,%x,%x,%x\n", x, y, v, w);
#endif
}
if (x < 0) { xIsNeg = True; x = -x; }
if (y < 0) { yIsNeg = True; y = -y; }
// Sanity check: x and y must be <= 255:
if (x > 255 || y > 255) {
#ifdef DEBUG
fprintf(stderr, "rsf_huffman_encoder dual sanity check 2 fails: %x,%x,%x,%x\n", x, y, v, w);
#endif
}
int xl1 = h->xlen-1;
int yl1 = h->ylen-1;
unsigned linbitsX = 0; unsigned linbitsY = 0;
if (((x < xl1) || (xl1 == 0)) && (y < yl1)) {
// normal case
xy = (x<<4)|y;
lookupXYandPutBits(bv, h, xy);
if (x) bv.put1Bit(xIsNeg);
if (y) bv.put1Bit(yIsNeg);
} else if (x >= xl1) {
linbitsX = (unsigned)(x - xl1);
if (linbitsX > h->linmax) {
#ifdef DEBUG
fprintf(stderr,"warning: Huffman X table overflow\n");
#endif
linbitsX = h->linmax;
};
if (y >= yl1) {
xy = (xl1<<4)|yl1;
lookupXYandPutBits(bv, h, xy);
linbitsY = (unsigned)(y - yl1);
if (linbitsY > h->linmax) {
#ifdef DEBUG
fprintf(stderr,"warning: Huffman Y table overflow\n");
#endif
linbitsY = h->linmax;
};
if (h->linbits) putLinbits(bv, h, linbitsX);
if (x) bv.put1Bit(xIsNeg);
if (h->linbits) putLinbits(bv, h, linbitsY);
if (y) bv.put1Bit(yIsNeg);
} else { /* x >= h->xlen, y < h->ylen */
xy = (xl1<<4)|y;
lookupXYandPutBits(bv, h, xy);
if (h->linbits) putLinbits(bv, h, linbitsX);
if (x) bv.put1Bit(xIsNeg);
if (y) bv.put1Bit(yIsNeg);
}
} else { /* ((x < h->xlen) && (y >= h->ylen)) */
xy = (x<<4)|yl1;
lookupXYandPutBits(bv, h, xy);
linbitsY = y-yl1;
if (linbitsY > h->linmax) {
#ifdef DEBUG
fprintf(stderr,"warning: Huffman Y table overflow\n");
#endif
linbitsY = h->linmax;
};
if (x) bv.put1Bit(xIsNeg);
if (h->linbits) putLinbits(bv, h, linbitsY);
if (y) bv.put1Bit(yIsNeg);
}
}
}
#endif
#ifdef undef
/* The system uses a variety of data files. By opening them via this
function, we can accommodate various locations. */
FILE *OpenTableFile(name)
char *name;
{
char fulname[80];
FILE *f;
fulname[0] = '\0';
strcat(fulname, name);
if( (f=fopen(fulname,"r"))==NULL ) {
fprintf(stderr,"OpenTable: could not find %s\n", fulname);
}
/* The following was used to generate an internal version of the file #####*/
{
FILE *testfd = fopen("rsf_hufftab.c", "w");
unsigned char buf[100];
unsigned i;
for (i = 0; i < 100; ++i) buf[i] = '\0';
while (fgets(buf, 100, f) != NULL) {
unsigned j;
for (j = 0; buf[j] != '\0'; ++j) {
fprintf(testfd, "0x%02x, ", buf[j]);
}
for (i = 0; i < 100; ++i) buf[i] = '\0';
}
fclose(testfd);
exit(0);
}
/*#####*/
return f;
}
#endif
|