1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
/**********
This library is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the
Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version. (See <http://www.gnu.org/copyleft/lesser.html>.)
This library is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details.
You should have received a copy of the GNU Lesser General Public License
along with this library; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
**********/
// Copyright (c) 1996-2012 Live Networks, Inc. All rights reserved.
// Basic Usage Environment: for a simple, non-scripted, console application
// Implementation
#include "BasicUsageEnvironment.hh"
#include "HandlerSet.hh"
#include <stdio.h>
#if defined(_QNX4)
#include <sys/select.h>
#include <unix.h>
#endif
////////// BasicTaskScheduler //////////
BasicTaskScheduler* BasicTaskScheduler::createNew() {
return new BasicTaskScheduler();
}
#define MAX_SCHEDULER_GRANULARITY 10000 // 10 microseconds: We will return to the event loop at least this often
static void schedulerTickTask(void* clientData) {
((BasicTaskScheduler*)clientData)->scheduleDelayedTask(MAX_SCHEDULER_GRANULARITY, schedulerTickTask, clientData);
}
BasicTaskScheduler::BasicTaskScheduler()
: fMaxNumSockets(0) {
FD_ZERO(&fReadSet);
FD_ZERO(&fWriteSet);
FD_ZERO(&fExceptionSet);
schedulerTickTask(this); // ensures that we handle events frequently
}
BasicTaskScheduler::~BasicTaskScheduler() {
}
#ifndef MILLION
#define MILLION 1000000
#endif
void BasicTaskScheduler::SingleStep(unsigned maxDelayTime) {
fd_set readSet = fReadSet; // make a copy for this select() call
fd_set writeSet = fWriteSet; // ditto
fd_set exceptionSet = fExceptionSet; // ditto
DelayInterval const& timeToDelay = fDelayQueue.timeToNextAlarm();
struct timeval tv_timeToDelay;
tv_timeToDelay.tv_sec = timeToDelay.seconds();
tv_timeToDelay.tv_usec = timeToDelay.useconds();
// Very large "tv_sec" values cause select() to fail.
// Don't make it any larger than 1 million seconds (11.5 days)
const long MAX_TV_SEC = MILLION;
if (tv_timeToDelay.tv_sec > MAX_TV_SEC) {
tv_timeToDelay.tv_sec = MAX_TV_SEC;
}
// Also check our "maxDelayTime" parameter (if it's > 0):
if (maxDelayTime > 0 &&
(tv_timeToDelay.tv_sec > (long)maxDelayTime/MILLION ||
(tv_timeToDelay.tv_sec == (long)maxDelayTime/MILLION &&
tv_timeToDelay.tv_usec > (long)maxDelayTime%MILLION))) {
tv_timeToDelay.tv_sec = maxDelayTime/MILLION;
tv_timeToDelay.tv_usec = maxDelayTime%MILLION;
}
int selectResult = select(fMaxNumSockets, &readSet, &writeSet, &exceptionSet, &tv_timeToDelay);
if (selectResult < 0) {
#if defined(__WIN32__) || defined(_WIN32)
int err = WSAGetLastError();
// For some unknown reason, select() in Windoze sometimes fails with WSAEINVAL if
// it was called with no entries set in "readSet". If this happens, ignore it:
if (err == WSAEINVAL && readSet.fd_count == 0) {
err = EINTR;
// To stop this from happening again, create a dummy socket:
int dummySocketNum = socket(AF_INET, SOCK_DGRAM, 0);
FD_SET((unsigned)dummySocketNum, &fReadSet);
}
if (err != EINTR) {
#else
if (errno != EINTR && errno != EAGAIN) {
#endif
// Unexpected error - treat this as fatal:
#if !defined(_WIN32_WCE)
perror("BasicTaskScheduler::SingleStep(): select() fails");
#endif
internalError();
}
}
// Call the handler function for one readable socket:
HandlerIterator iter(*fHandlers);
HandlerDescriptor* handler;
// To ensure forward progress through the handlers, begin past the last
// socket number that we handled:
if (fLastHandledSocketNum >= 0) {
while ((handler = iter.next()) != NULL) {
if (handler->socketNum == fLastHandledSocketNum) break;
}
if (handler == NULL) {
fLastHandledSocketNum = -1;
iter.reset(); // start from the beginning instead
}
}
while ((handler = iter.next()) != NULL) {
int sock = handler->socketNum; // alias
int resultConditionSet = 0;
if (FD_ISSET(sock, &readSet) && FD_ISSET(sock, &fReadSet)/*sanity check*/) resultConditionSet |= SOCKET_READABLE;
if (FD_ISSET(sock, &writeSet) && FD_ISSET(sock, &fWriteSet)/*sanity check*/) resultConditionSet |= SOCKET_WRITABLE;
if (FD_ISSET(sock, &exceptionSet) && FD_ISSET(sock, &fExceptionSet)/*sanity check*/) resultConditionSet |= SOCKET_EXCEPTION;
if ((resultConditionSet&handler->conditionSet) != 0 && handler->handlerProc != NULL) {
fLastHandledSocketNum = sock;
// Note: we set "fLastHandledSocketNum" before calling the handler,
// in case the handler calls "doEventLoop()" reentrantly.
(*handler->handlerProc)(handler->clientData, resultConditionSet);
break;
}
}
if (handler == NULL && fLastHandledSocketNum >= 0) {
// We didn't call a handler, but we didn't get to check all of them,
// so try again from the beginning:
iter.reset();
while ((handler = iter.next()) != NULL) {
int sock = handler->socketNum; // alias
int resultConditionSet = 0;
if (FD_ISSET(sock, &readSet) && FD_ISSET(sock, &fReadSet)/*sanity check*/) resultConditionSet |= SOCKET_READABLE;
if (FD_ISSET(sock, &writeSet) && FD_ISSET(sock, &fWriteSet)/*sanity check*/) resultConditionSet |= SOCKET_WRITABLE;
if (FD_ISSET(sock, &exceptionSet) && FD_ISSET(sock, &fExceptionSet)/*sanity check*/) resultConditionSet |= SOCKET_EXCEPTION;
if ((resultConditionSet&handler->conditionSet) != 0 && handler->handlerProc != NULL) {
fLastHandledSocketNum = sock;
// Note: we set "fLastHandledSocketNum" before calling the handler,
// in case the handler calls "doEventLoop()" reentrantly.
(*handler->handlerProc)(handler->clientData, resultConditionSet);
break;
}
}
if (handler == NULL) fLastHandledSocketNum = -1;//because we didn't call a handler
}
// Also handle any newly-triggered event (Note that we do this *after* calling a socket handler,
// in case the triggered event handler modifies The set of readable sockets.)
if (fTriggersAwaitingHandling != 0) {
if (fTriggersAwaitingHandling == fLastUsedTriggerMask) {
// Common-case optimization for a single event trigger:
fTriggersAwaitingHandling = 0;
if (fTriggeredEventHandlers[fLastUsedTriggerNum] != NULL) {
(*fTriggeredEventHandlers[fLastUsedTriggerNum])(fTriggeredEventClientDatas[fLastUsedTriggerNum]);
}
} else {
// Look for an event trigger that needs handling (making sure that we make forward progress through all possible triggers):
unsigned i = fLastUsedTriggerNum;
EventTriggerId mask = fLastUsedTriggerMask;
do {
i = (i+1)%MAX_NUM_EVENT_TRIGGERS;
mask >>= 1;
if (mask == 0) mask = 0x80000000;
if ((fTriggersAwaitingHandling&mask) != 0) {
fTriggersAwaitingHandling &=~ mask;
if (fTriggeredEventHandlers[i] != NULL) {
(*fTriggeredEventHandlers[i])(fTriggeredEventClientDatas[i]);
}
fLastUsedTriggerMask = mask;
fLastUsedTriggerNum = i;
break;
}
} while (i != fLastUsedTriggerNum);
}
}
// Also handle any delayed event that may have come due.
fDelayQueue.handleAlarm();
}
void BasicTaskScheduler
::setBackgroundHandling(int socketNum, int conditionSet, BackgroundHandlerProc* handlerProc, void* clientData) {
if (socketNum < 0) return;
FD_CLR((unsigned)socketNum, &fReadSet);
FD_CLR((unsigned)socketNum, &fWriteSet);
FD_CLR((unsigned)socketNum, &fExceptionSet);
if (conditionSet == 0) {
fHandlers->clearHandler(socketNum);
if (socketNum+1 == fMaxNumSockets) {
--fMaxNumSockets;
}
} else {
fHandlers->assignHandler(socketNum, conditionSet, handlerProc, clientData);
if (socketNum+1 > fMaxNumSockets) {
fMaxNumSockets = socketNum+1;
}
if (conditionSet&SOCKET_READABLE) FD_SET((unsigned)socketNum, &fReadSet);
if (conditionSet&SOCKET_WRITABLE) FD_SET((unsigned)socketNum, &fWriteSet);
if (conditionSet&SOCKET_EXCEPTION) FD_SET((unsigned)socketNum, &fExceptionSet);
}
}
void BasicTaskScheduler::moveSocketHandling(int oldSocketNum, int newSocketNum) {
if (oldSocketNum < 0 || newSocketNum < 0) return; // sanity check
if (FD_ISSET(oldSocketNum, &fReadSet)) {FD_CLR((unsigned)oldSocketNum, &fReadSet); FD_SET((unsigned)newSocketNum, &fReadSet);}
if (FD_ISSET(oldSocketNum, &fWriteSet)) {FD_CLR((unsigned)oldSocketNum, &fWriteSet); FD_SET((unsigned)newSocketNum, &fWriteSet);}
if (FD_ISSET(oldSocketNum, &fExceptionSet)) {FD_CLR((unsigned)oldSocketNum, &fExceptionSet); FD_SET((unsigned)newSocketNum, &fExceptionSet);}
fHandlers->moveHandler(oldSocketNum, newSocketNum);
if (oldSocketNum+1 == fMaxNumSockets) {
--fMaxNumSockets;
}
if (newSocketNum+1 > fMaxNumSockets) {
fMaxNumSockets = newSocketNum+1;
}
}
|