1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
|
/**********
This library is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the
Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version. (See <http://www.gnu.org/copyleft/lesser.html>.)
This library is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details.
You should have received a copy of the GNU Lesser General Public License
along with this library; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
**********/
// Copyright (c) 2001-2004 Live Networks, Inc. All rights reserved.
// Windows implementation of a generic audio input device
// Base class for both library versions:
// One that uses Windows' built-in software mixer; another that doesn't.
// Implementation
#include "WindowsAudioInputDevice_common.hh"
#include <GroupsockHelper.hh>
////////// WindowsAudioInputDevice_common implementation //////////
unsigned WindowsAudioInputDevice_common::_bitsPerSample = 16;
WindowsAudioInputDevice_common
::WindowsAudioInputDevice_common(UsageEnvironment& env, int inputPortNumber,
unsigned char bitsPerSample,
unsigned char numChannels,
unsigned samplingFrequency,
unsigned granularityInMS)
: AudioInputDevice(env, bitsPerSample, numChannels, samplingFrequency, granularityInMS),
fCurPortIndex(-1), fHaveStarted(False) {
_bitsPerSample = bitsPerSample;
}
WindowsAudioInputDevice_common::~WindowsAudioInputDevice_common() {
}
Boolean WindowsAudioInputDevice_common::initialSetInputPort(int portIndex) {
if (!setInputPort(portIndex)) {
char errMsgPrefix[100];
sprintf(errMsgPrefix, "Failed to set audio input port number to %d: ", portIndex);
char* errMsgSuffix = strDup(envir().getResultMsg());
envir().setResultMsg(errMsgPrefix, errMsgSuffix);
delete[] errMsgSuffix;
return False;
} else {
return True;
}
}
void WindowsAudioInputDevice_common::doGetNextFrame() {
if (!fHaveStarted) {
// Before reading the first audio data, flush any existing data:
while (readHead != NULL) releaseHeadBuffer();
fHaveStarted = True;
}
fTotalPollingDelay = 0;
audioReadyPoller1();
}
void WindowsAudioInputDevice_common::doStopGettingFrames() {
// Turn off the audio poller:
envir().taskScheduler().unscheduleDelayedTask(nextTask()); nextTask() = NULL;
}
double WindowsAudioInputDevice_common::getAverageLevel() const {
// If the input audio queue is empty, return the previous level,
// otherwise use the input queue to recompute "averageLevel":
if (readHead != NULL) {
double levelTotal = 0.0;
unsigned totNumSamples = 0;
WAVEHDR* curHdr = readHead;
while (1) {
short* samplePtr = (short*)(curHdr->lpData);
unsigned numSamples = blockSize/2;
totNumSamples += numSamples;
while (numSamples-- > 0) {
short sample = *samplePtr++;
if (sample < 0) sample = -sample;
levelTotal += (unsigned short)sample;
}
if (curHdr == readTail) break;
curHdr = curHdr->lpNext;
}
averageLevel = levelTotal/(totNumSamples*(double)0x8000);
}
return averageLevel;
}
void WindowsAudioInputDevice_common::audioReadyPoller(void* clientData) {
WindowsAudioInputDevice_common* inputDevice = (WindowsAudioInputDevice_common*)clientData;
inputDevice->audioReadyPoller1();
}
void WindowsAudioInputDevice_common::audioReadyPoller1() {
if (readHead != NULL) {
onceAudioIsReady();
} else {
unsigned const maxPollingDelay = (100 + fGranularityInMS)*1000;
if (fTotalPollingDelay > maxPollingDelay) {
// We've waited too long for the audio device - assume it's down:
handleClosure(this);
return;
}
// Try again after a short delay:
unsigned const uSecondsToDelay = fGranularityInMS*1000;
fTotalPollingDelay += uSecondsToDelay;
nextTask() = envir().taskScheduler().scheduleDelayedTask(uSecondsToDelay,
(TaskFunc*)audioReadyPoller, this);
}
}
void WindowsAudioInputDevice_common::onceAudioIsReady() {
fFrameSize = readFromBuffers(fTo, fMaxSize, fPresentationTime);
if (fFrameSize == 0) {
// The source is no longer readable
handleClosure(this);
return;
}
fDurationInMicroseconds = 1000000/fSamplingFrequency;
// Call our own 'after getting' function. Because we sometimes get here
// after returning from a delay, we can call this directly, without risking
// infinite recursion
afterGetting(this);
}
static void CALLBACK waveInCallback(HWAVEIN /*hwi*/, UINT uMsg,
DWORD /*dwInstance*/, DWORD dwParam1, DWORD /*dwParam2*/) {
switch (uMsg) {
case WIM_DATA:
WAVEHDR* hdr = (WAVEHDR*)dwParam1;
WindowsAudioInputDevice_common::waveInProc(hdr);
break;
}
}
Boolean WindowsAudioInputDevice_common::openWavInPort(int index, unsigned numChannels, unsigned samplingFrequency, unsigned granularityInMS) {
uSecsPerByte = (8*1e6)/(_bitsPerSample*numChannels*samplingFrequency);
// Configure the port, based on the specified parameters:
WAVEFORMATEX wfx;
wfx.wFormatTag = WAVE_FORMAT_PCM;
wfx.nChannels = numChannels;
wfx.nSamplesPerSec = samplingFrequency;
wfx.wBitsPerSample = _bitsPerSample;
wfx.nBlockAlign = (numChannels*_bitsPerSample)/8;
wfx.nAvgBytesPerSec = samplingFrequency*wfx.nBlockAlign;
wfx.cbSize = 0;
blockSize = (wfx.nAvgBytesPerSec*granularityInMS)/1000;
// Use a 10-second input buffer, to allow for CPU competition from video, etc.,
// and also for some audio cards that buffer as much as 5 seconds of audio.
unsigned const bufferSeconds = 10;
numBlocks = (bufferSeconds*1000)/granularityInMS;
if (!waveIn_open(index, wfx)) return False;
// Set this process's priority high. I'm not sure how much this is really needed,
// but the "rat" code does this:
SetPriorityClass(GetCurrentProcess(), HIGH_PRIORITY_CLASS);
return True;
}
Boolean WindowsAudioInputDevice_common::waveIn_open(unsigned uid, WAVEFORMATEX& wfx) {
if (shWaveIn != NULL) return True; // already open
do {
waveIn_reset();
if (waveInOpen(&shWaveIn, uid, &wfx,
(DWORD)waveInCallback, 0, CALLBACK_FUNCTION) != MMSYSERR_NOERROR) break;
// Allocate read buffers, and headers:
readData = new unsigned char[numBlocks*blockSize];
if (readData == NULL) break;
readHdrs = new WAVEHDR[numBlocks];
if (readHdrs == NULL) break;
readHead = readTail = NULL;
readTimes = new struct timeval[numBlocks];
if (readTimes == NULL) break;
// Initialize headers:
for (unsigned i = 0; i < numBlocks; ++i) {
readHdrs[i].lpData = (char*)&readData[i*blockSize];
readHdrs[i].dwBufferLength = blockSize;
readHdrs[i].dwFlags = 0;
if (waveInPrepareHeader(shWaveIn, &readHdrs[i], sizeof (WAVEHDR)) != MMSYSERR_NOERROR) break;
if (waveInAddBuffer(shWaveIn, &readHdrs[i], sizeof (WAVEHDR)) != MMSYSERR_NOERROR) break;
}
if (waveInStart(shWaveIn) != MMSYSERR_NOERROR) break;
#ifdef UNICODE
hAudioReady = CreateEvent(NULL, TRUE, FALSE, L"waveIn Audio Ready");
#else
hAudioReady = CreateEvent(NULL, TRUE, FALSE, "waveIn Audio Ready");
#endif
return True;
} while (0);
waveIn_reset();
return False;
}
void WindowsAudioInputDevice_common::waveIn_close() {
if (shWaveIn == NULL) return; // already closed
waveInStop(shWaveIn);
waveInReset(shWaveIn);
for (unsigned i = 0; i < numBlocks; ++i) {
if (readHdrs[i].dwFlags & WHDR_PREPARED) {
waveInUnprepareHeader(shWaveIn, &readHdrs[i], sizeof (WAVEHDR));
}
}
waveInClose(shWaveIn);
waveIn_reset();
}
void WindowsAudioInputDevice_common::waveIn_reset() {
shWaveIn = NULL;
delete[] readData; readData = NULL;
bytesUsedAtReadHead = 0;
delete[] readHdrs; readHdrs = NULL;
readHead = readTail = NULL;
delete[] readTimes; readTimes = NULL;
hAudioReady = NULL;
}
unsigned WindowsAudioInputDevice_common::readFromBuffers(unsigned char* to, unsigned numBytesWanted, struct timeval& creationTime) {
// Begin by computing the creation time of (the first bytes of) this returned audio data:
if (readHead != NULL) {
int hdrIndex = readHead - readHdrs;
creationTime = readTimes[hdrIndex];
// Adjust this time to allow for any data that's already been read from this buffer:
if (bytesUsedAtReadHead > 0) {
creationTime.tv_usec += (unsigned)(uSecsPerByte*bytesUsedAtReadHead);
creationTime.tv_sec += creationTime.tv_usec/1000000;
creationTime.tv_usec %= 1000000;
}
}
// Then, read from each available buffer, until we have the data that we want:
unsigned numBytesRead = 0;
while (readHead != NULL && numBytesRead < numBytesWanted) {
unsigned thisRead = min(readHead->dwBytesRecorded - bytesUsedAtReadHead, numBytesWanted - numBytesRead);
memmove(&to[numBytesRead], &readHead->lpData[bytesUsedAtReadHead], thisRead);
numBytesRead += thisRead;
bytesUsedAtReadHead += thisRead;
if (bytesUsedAtReadHead == readHead->dwBytesRecorded) {
// We're finished with the block; give it back to the device:
releaseHeadBuffer();
}
}
return numBytesRead;
}
void WindowsAudioInputDevice_common::releaseHeadBuffer() {
WAVEHDR* toRelease = readHead;
if (readHead == NULL) return;
readHead = readHead->lpNext;
if (readHead == NULL) readTail = NULL;
toRelease->lpNext = NULL;
toRelease->dwBytesRecorded = 0;
toRelease->dwFlags &= ~WHDR_DONE;
waveInAddBuffer(shWaveIn, toRelease, sizeof (WAVEHDR));
bytesUsedAtReadHead = 0;
}
void WindowsAudioInputDevice_common::waveInProc(WAVEHDR* hdr) {
unsigned hdrIndex = hdr - readHdrs;
// Record the time that the data arrived:
int dontCare;
gettimeofday(&readTimes[hdrIndex], &dontCare);
// Add the block to the tail of the queue:
hdr->lpNext = NULL;
if (readTail != NULL) {
readTail->lpNext = hdr;
readTail = hdr;
} else {
readHead = readTail = hdr;
}
SetEvent(hAudioReady);
}
HWAVEIN WindowsAudioInputDevice_common::shWaveIn = NULL;
unsigned WindowsAudioInputDevice_common::blockSize = 0;
unsigned WindowsAudioInputDevice_common::numBlocks = 0;
unsigned char* WindowsAudioInputDevice_common::readData = NULL;
DWORD WindowsAudioInputDevice_common::bytesUsedAtReadHead = 0;
double WindowsAudioInputDevice_common::uSecsPerByte = 0.0;
double WindowsAudioInputDevice_common::averageLevel = 0.0;
WAVEHDR* WindowsAudioInputDevice_common::readHdrs = NULL;
WAVEHDR* WindowsAudioInputDevice_common::readHead = NULL;
WAVEHDR* WindowsAudioInputDevice_common::readTail = NULL;
struct timeval* WindowsAudioInputDevice_common::readTimes = NULL;
HANDLE WindowsAudioInputDevice_common::hAudioReady = NULL;
|