File: lsl_cpp.h

package info (click to toggle)
liblsl 1.16.2b1-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 1,724 kB
  • sloc: cpp: 12,515; ansic: 666; python: 28; sh: 25; makefile: 18
file content (1736 lines) | stat: -rw-r--r-- 77,131 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
#ifndef LSL_CPP_H
#define LSL_CPP_H

/**
 * @file lsl_cpp.h
 *
 * C++ API for the lab streaming layer.
 *
 * The lab streaming layer provides a set of functions to make instrument data accessible
 * in real time within a lab network. From there, streams can be picked up by recording programs,
 * viewing programs or custom experiment applications that access data streams in real time.
 *
 * The API covers two areas:
 * - The "push API" allows to create stream outlets and to push data (regular or irregular
 * measurement time series, event data, coded audio/video frames, etc.) into them.
 * - The "pull API" allows to create stream inlets and read time-synched experiment data from them
 *   (for recording, viewing or experiment control).
 *
 * To use this library you need to link to the shared library (lsl) that comes with
 * this header. Under Visual Studio the library is linked in automatically.
 */

#include <memory>
#include <stdexcept>
#include <string>
#include <vector>

extern "C" {
#include "lsl_c.h"
}

namespace lsl {
/// Assert that no error happened; throw appropriate exception otherwise
int32_t check_error(int32_t ec);

/// Constant to indicate that a stream has variable sampling rate.
const double IRREGULAR_RATE = 0.0;

/**
 * Constant to indicate that a sample has the next successive time stamp.
 *
 * This is an optional optimization to transmit less data per sample.
 * The stamp is then deduced from the preceding one according to the stream's sampling rate
 * (in the case of an irregular rate, the same time stamp as before will is assumed).
 */
const double DEDUCED_TIMESTAMP = -1.0;

/**
 * A very large time duration (> 1 year) for timeout values.
 *
 * Note that significantly larger numbers can cause the timeout to be invalid on some operating
 * systems (e.g., 32-bit UNIX).
 */
const double FOREVER = 32000000.0;

/// Data format of a channel (each transmitted sample holds an array of channels).
enum channel_format_t {
	/** For up to 24-bit precision measurements in the appropriate physical unit (e.g., microvolts).
	Integers from -16777216 to 16777216 are represented accurately.*/
	cf_float32 = 1,
	/// For universal numeric data as long as permitted by network & disk budget.
	/// The largest representable integer is 53-bit.
	cf_double64 = 2,
	/// For variable-length ASCII strings or data blobs, such as video frames, complex event
	/// descriptions, etc.
	cf_string = 3,
	/// For high-rate digitized formats that require 32-bit precision.
	/// Depends critically on meta-data to represent meaningful units.
	/// Useful for application event codes or other coded data.
	cf_int32 = 4,
	/// For very high rate signals (40Khz+) or consumer-grade audio (for professional audio float is
	/// recommended).
	cf_int16 = 5,
	/// For binary signals or other coded data. Not recommended for encoding string data.
	cf_int8 = 6,
	/// For now only for future compatibility. Support for this type is not yet exposed in all
	/// languages. Also, some builds of liblsl will not be able to send or receive data of this
	/// type.
	cf_int64 = 7,
	/// Can not be transmitted.
	cf_undefined = 0
};

/// Post-processing options for stream inlets.
enum processing_options_t {
	/// No automatic post-processing; return the ground-truth time stamps for manual post-processing
	/// (this is the default behavior of the inlet).
	post_none = 0,
	/// Perform automatic clock synchronization; equivalent to manually adding the time_correction()
	/// value to the received time stamps.
	post_clocksync = 1,
	/// Remove jitter from time stamps. This will apply a smoothing algorithm to the received time
	/// stamps; the smoothing needs to see a minimum number of samples (30-120 seconds worst-case)
	/// until the remaining jitter is consistently below 1ms.
	post_dejitter = 2,
	/// Force the time-stamps to be monotonically ascending (only makes sense if timestamps are
	/// dejittered).
	post_monotonize = 4,
	/// Post-processing is thread-safe (same inlet can be read from by multiple threads); uses
	/// somewhat more CPU.
	post_threadsafe = 8,
	/// The combination of all possible post-processing options.
	post_ALL = 1 | 2 | 4 | 8
};

/**
 * Protocol version.
 *
 * The major version is `protocol_version() / 100`;
 * The minor version is `protocol_version() % 100`;
 * Clients with different minor versions are protocol-compatible with each other
 * while clients with different major versions will refuse to work together.
 */
inline int32_t protocol_version() { return lsl_protocol_version(); }

/// @copydoc ::lsl_library_version()
inline int32_t library_version() { return lsl_library_version(); }

/**
 * Get a string containing library information.
 *
 * The format of the string shouldn't be used for anything important except giving a a debugging
 * person a good idea which exact library version is used. */
inline const char *library_info() { return lsl_library_info(); }

/**
 * Obtain a local system time stamp in seconds.
 *
 * The resolution is better than a millisecond.
 * This reading can be used to assign time stamps to samples as they are being acquired.
 * If the "age" of a sample is known at a particular time (e.g., from USB transmission
 * delays), it can be used as an offset to local_clock() to obtain a better estimate of
 * when a sample was actually captured. See stream_outlet::push_sample() for a use case.
 */
inline double local_clock() { return lsl_local_clock(); }


/// @section Stream Declaration

class xml_element;

/**
 * The stream_info object stores the declaration of a data stream.
 *
 * Represents the following information:
 *  a) stream data format (number of channels, channel format)
 *  b) core information (stream name, content type, sampling rate)
 *  c) optional meta-data about the stream content (channel labels, measurement units, etc.)
 *
 * Whenever a program wants to provide a new stream on the lab network it will typically first
 * create a stream_info to describe its properties and then construct a stream_outlet with it to
 * create the stream on the network. Recipients who discover the outlet can query the stream_info;
 * it is also written to disk when recording the stream (playing a similar role as a file header).
 */
class stream_info {
public:
	/**
	 * Construct a new stream_info object.
	 *
	 * Core stream information is specified here. Any remaining meta-data can be added later.
	 * @param name Name of the stream. Describes the device (or product series) that this stream
	 * makes available (for use by programs, experimenters or data analysts). Cannot be empty.
	 * @param type Content type of the stream. Please see https://github.com/sccn/xdf/wiki/Meta-Data
	 * (or web search for: XDF meta-data) for pre-defined content-type names, but you can also make
	 * up your own. The content type is the preferred way to find streams (as opposed to searching
	 * by name).
	 * @param channel_count Number of channels per sample. This stays constant for the lifetime of
	 * the stream.
	 * @param nominal_srate The sampling rate (in Hz) as advertised by the data source, if regular
	 * (otherwise set to IRREGULAR_RATE).
	 * @param channel_format Format/type of each channel. If your channels have different formats,
	 * consider supplying multiple streams or use the largest type that can hold them all (such as
	 * cf_double64).
	 * @param source_id Unique identifier of the device or source of the data, if available (such as
	 * the serial number). This is critical for system robustness since it allows recipients to
	 * recover from failure even after the serving app, device or computer crashes (just by finding
	 * a stream with the same source id on the network again). Therefore, it is highly recommended
	 * to always try to provide whatever information can uniquely identify the data source itself.
	 */
	stream_info(const std::string &name, const std::string &type, int32_t channel_count = 1,
		double nominal_srate = IRREGULAR_RATE, channel_format_t channel_format = cf_float32,
		const std::string &source_id = std::string())
		: obj(lsl_create_streaminfo((name.c_str()), (type.c_str()), channel_count, nominal_srate,
			  (lsl_channel_format_t)channel_format, (source_id.c_str())), &lsl_destroy_streaminfo) {
		if (obj == nullptr) throw std::invalid_argument(lsl_last_error());
	}

	/// Default contructor.
	stream_info(): stream_info("untitled", "", 0, 0, cf_undefined, ""){}

	/// Copy constructor. Only increments the reference count! @see clone()
	stream_info(const stream_info &) noexcept = default;
	stream_info(lsl_streaminfo handle) : obj(handle, &lsl_destroy_streaminfo) {}

	/// Clones a streaminfo object.
	stream_info clone() { return stream_info(lsl_copy_streaminfo(obj.get())); }


	// ========================
	// === Core Information ===
	// ========================
	// (these fields are assigned at construction)

	/**
	 * Name of the stream.
	 *
	 * This is a human-readable name. For streams offered by device modules, it refers to the type
	 * of device or product series that is generating the data of the stream. If the source is an
	 * application, the name may be a more generic or specific identifier. Multiple streams with the
	 * same name can coexist, though potentially at the cost of ambiguity (for the recording app or
	 * experimenter).
	 */
	std::string name() const { return lsl_get_name(obj.get()); }

	/**
	 * Content type of the stream.
	 *
	 * The content type is a short string such as "EEG", "Gaze" which describes the content carried
	 * by the channel (if known). If a stream contains mixed content this value need not be assigned
	 * but may instead be stored in the description of channel types. To be useful to applications
	 * and automated processing systems using the recommended content types is preferred. Content
	 * types usually follow those pre-defined in https://github.com/sccn/xdf/wiki/Meta-Data (or web
	 * search for: XDF meta-data).
	 */
	std::string type() const { return lsl_get_type(obj.get()); }

	/**
	 * Number of channels of the stream.
	 *
	 * A stream has at least one channel; the channel count stays constant for all samples.
	 */
	int32_t channel_count() const { return lsl_get_channel_count(obj.get()); }

	/**
	 * Sampling rate of the stream, according to the source (in Hz).
	 *
	 * If a stream is irregularly sampled, this should be set to IRREGULAR_RATE.
	 *
	 * Note that no data will be lost even if this sampling rate is incorrect or if a device has
	 * temporary hiccups, since all samples will be recorded anyway (except for those dropped by the
	 * device itself). However, when the recording is imported into an application, a good importer
	 * may correct such errors more accurately if the advertised sampling rate was close to the
	 * specs of the device.
	 */
	double nominal_srate() const { return lsl_get_nominal_srate(obj.get()); }

	/**
	 * Channel format of the stream.
	 *
	 * All channels in a stream have the same format. However, a device might offer multiple
	 * time-synched streams each with its own format.
	 */
	channel_format_t channel_format() const {
		return static_cast<channel_format_t>(lsl_get_channel_format(obj.get()));
	}

	/**
	 * Unique identifier of the stream's source, if available.
	 *
	 * The unique source (or device) identifier is an optional piece of information that, if
	 * available, allows that endpoints (such as the recording program) can re-acquire a stream
	 * automatically once it is back online.
	 */
	std::string source_id() const { return lsl_get_source_id(obj.get()); }


	// ======================================
	// === Additional Hosting Information ===
	// ======================================
	// (these fields are implicitly assigned once bound to an outlet/inlet)

	/// Protocol version used to deliver the stream.
	int32_t version() const { return lsl_get_version(obj.get()); }

	/**
	 * Creation time stamp of the stream.
	 *
	 * This is the time stamp when the stream was first created
	 * (as determined via #lsl::local_clock() on the providing machine).
	 */
	double created_at() const { return lsl_get_created_at(obj.get()); }

	/**
	 * Unique ID of the stream outlet instance (once assigned).
	 *
	 * This is a unique identifier of the stream outlet, and is guaranteed to be different
	 * across multiple instantiations of the same outlet (e.g., after a re-start).
	 */
	std::string uid() const { return lsl_get_uid(obj.get()); }

	/**
	 * Session ID for the given stream.
	 *
	 * The session id is an optional human-assigned identifier of the recording session.
	 * While it is rarely used, it can be used to prevent concurrent recording activitites
	 * on the same sub-network (e.g., in multiple experiment areas) from seeing each other's streams
	 * (assigned via a configuration file by the experimenter, see Network Connectivity in the LSL
	 * wiki).
	 */
	std::string session_id() const { return lsl_get_session_id(obj.get()); }

	/// Hostname of the providing machine.
	std::string hostname() const { return lsl_get_hostname(obj.get()); }


	// ========================
	// === Data Description ===
	// ========================

	/**
	 * Extended description of the stream.
	 *
	 * It is highly recommended that at least the channel labels are described here.
	 * See code examples on the LSL wiki. Other information, such as amplifier settings,
	 * measurement units if deviating from defaults, setup information, subject information, etc.,
	 * can be specified here, as well. Meta-data recommendations follow the XDF file format project
	 * (github.com/sccn/xdf/wiki/Meta-Data or web search for: XDF meta-data).
	 *
	 * Important: if you use a stream content type for which meta-data recommendations exist, please
	 * try to lay out your meta-data in agreement with these recommendations for compatibility with
	 * other applications.
	 */
	xml_element desc();

	/// lsl_stream_info_matches_query
	bool matches_query(const char *query) const {
		return lsl_stream_info_matches_query(obj.get(), query);
	}


	// ===============================
	// === Miscellaneous Functions ===
	// ===============================

	/** Retrieve the entire streaminfo in XML format.
	 * This yields an XML document (in string form) whose top-level element is `<info>`. The info
	 * element contains one element for each field of the streaminfo class, including:
	 *
	 *   - the core elements `<name>`, `<type>`, `<channel_count`, `<nominal_srate>`,
	 *   `<channel_format>`, `<source_id>`
	 *   - the misc elements `<version>`, `<created_at>`, `<uid>`, `<session_id>`,
	 *   `<v4address>`, `<v4data_port>`, `<v4service_port>`, `<v6address>`, `<v6data_port>`,
	 *   `<v6service_port>`
	 *   - the extended description element `<desc>` with user-defined sub-elements.
	 */
	std::string as_xml() const {
		char *tmp = lsl_get_xml(obj.get());
		std::string result(tmp);
		lsl_destroy_string(tmp);
		return result;
	}

	/// Number of bytes occupied by a channel (0 for string-typed channels).
	int32_t channel_bytes() const { return lsl_get_channel_bytes(obj.get()); }

	/// Number of bytes occupied by a sample (0 for string-typed channels).
	int32_t sample_bytes() const { return lsl_get_sample_bytes(obj.get()); }

	/// Get the implementation handle.
	std::shared_ptr<lsl_streaminfo_struct_> handle() const { return obj; }

	/// Assignment operator.
	stream_info &operator=(const stream_info &rhs) {
		if (this != &rhs) obj = stream_info(rhs).handle();
		return *this;
	}

	stream_info(stream_info &&rhs) noexcept = default;

	stream_info &operator=(stream_info &&rhs) noexcept = default;

	/// Utility function to create a stream_info from an XML representation
	static stream_info from_xml(const std::string &xml) {
		return stream_info(lsl_streaminfo_from_xml(xml.c_str()));
	}

private:
	std::shared_ptr<lsl_streaminfo_struct_> obj;
};


// =======================
// ==== Stream Outlet ====
// =======================

/** A stream outlet.
 * Outlets are used to make streaming data (and the meta-data) available on the lab network.
 */
class stream_outlet {
public:
	/** Establish a new stream outlet. This makes the stream discoverable.
	 * @param info The stream information to use for creating this stream. Stays constant over the
	 * lifetime of the outlet.
	 * @param chunk_size Optionally the desired chunk granularity (in samples) for transmission. If
	 * unspecified, each push operation yields one chunk. Inlets can override this setting.
	 * @param max_buffered Optionally the maximum amount of data to buffer (in seconds if there is a
	 * nominal sampling rate, otherwise x100 in samples). The default is 6 minutes of data.
	 */
	stream_outlet(const stream_info &info, int32_t chunk_size = 0, int32_t max_buffered = 360,
		lsl_transport_options_t flags = transp_default)
		: channel_count(info.channel_count()), sample_rate(info.nominal_srate()),
		  obj(lsl_create_outlet_ex(info.handle().get(), chunk_size, max_buffered, flags),
			  &lsl_destroy_outlet) {}

	// ========================================
	// === Pushing a sample into the outlet ===
	// ========================================

	/** Push a C array of values as a sample into the outlet.
	 * Each entry in the array corresponds to one channel.
	 * The function handles type checking & conversion.
	 * @param data An array of values to push (one per channel).
	 * @param timestamp Optionally the capture time of the sample, in agreement with
	 * lsl::local_clock(); if omitted, the current time is used.
	 * @param pushthrough Whether to push the sample through to the receivers instead of
	 * buffering it with subsequent samples.
	 * Note that the chunk_size, if specified at outlet construction, takes precedence over the
	 * pushthrough flag.
	 */
	template <class T, int32_t N>
	void push_sample(const T data[N], double timestamp = 0.0, bool pushthrough = true) {
		check_numchan(N);
		push_sample(&data[0], timestamp, pushthrough);
	}

	/** Push a std vector of values as a sample into the outlet.
	 * Each entry in the vector corresponds to one channel. The function handles type checking &
	 * conversion.
	 * @param data A vector of values to push (one for each channel).
	 * @param timestamp Optionally the capture time of the sample, in agreement with local_clock();
	 * if omitted, the current time is used.
	 * @param pushthrough Whether to push the sample through to the receivers instead of buffering
	 * it with subsequent samples. Note that the chunk_size, if specified at outlet construction,
	 * takes precedence over the pushthrough flag.
	 */
	template<typename T>
	void push_sample(
		const std::vector<T> &data, double timestamp = 0.0, bool pushthrough = true) {
		check_numchan(data.size());
		push_sample(data.data(), timestamp, pushthrough);
	}

	/** Push a pointer to some values as a sample into the outlet.
	 * This is a lower-level function for cases where data is available in some buffer.
	 * Handles type checking & conversion.
	 * @param data A pointer to values to push. The number of values pointed to must not be less
	 * than the number of channels in the sample.
	 * @param timestamp Optionally the capture time of the sample, in agreement with local_clock();
	 * if omitted, the current time is used.
	 * @param pushthrough Whether to push the sample through to the receivers instead of buffering
	 * it with subsequent samples. Note that the chunk_size, if specified at outlet construction,
	 * takes precedence over the pushthrough flag.
	 */
	void push_sample(const float *data, double timestamp = 0.0, bool pushthrough = true) {
		lsl_push_sample_ftp(obj.get(), (data), timestamp, pushthrough);
	}
	void push_sample(const double *data, double timestamp = 0.0, bool pushthrough = true) {
		lsl_push_sample_dtp(obj.get(), (data), timestamp, pushthrough);
	}
	void push_sample(const int64_t *data, double timestamp = 0.0, bool pushthrough = true) {
		lsl_push_sample_ltp(obj.get(), (data), timestamp, pushthrough);
	}
	void push_sample(const int32_t *data, double timestamp = 0.0, bool pushthrough = true) {
		lsl_push_sample_itp(obj.get(), (data), timestamp, pushthrough);
	}
	void push_sample(const int16_t *data, double timestamp = 0.0, bool pushthrough = true) {
		lsl_push_sample_stp(obj.get(), (data), timestamp, pushthrough);
	}
	void push_sample(const char *data, double timestamp = 0.0, bool pushthrough = true) {
		lsl_push_sample_ctp(obj.get(), (data), timestamp, pushthrough);
	}
	void push_sample(const std::string *data, double timestamp = 0.0, bool pushthrough = true) {
		std::vector<uint32_t> lengths(channel_count);
		std::vector<const char *> pointers(channel_count);
		for (int32_t k = 0; k < channel_count; k++) {
			pointers[k] = data[k].c_str();
			lengths[k] = (uint32_t)data[k].size();
		}
		lsl_push_sample_buftp(obj.get(), pointers.data(), lengths.data(), timestamp, pushthrough);
	}

	/** Push a packed C struct (of numeric data) as one sample into the outlet (search for
	 * [`#``pragma pack`](https://stackoverflow.com/a/3318475/73299) for information on packing
	 * structs appropriately).<br>
	 * Overall size checking but no type checking or conversion are done.<br>
	 * Can not be used forvariable-size / string-formatted data.
	 * @param sample The sample struct to push.
	 * @param timestamp Optionally the capture time of the sample, in agreement with
	 * local_clock(); if omitted, the current time is used.
	 * @param pushthrough Whether to push the sample through to the receivers instead of
	 * buffering it with subsequent samples. Note that the chunk_size, if specified at outlet
	 * construction, takes precedence over the pushthrough flag.
	 */
	template <class T>
	void push_numeric_struct(const T &sample, double timestamp = 0.0, bool pushthrough = true) {
		if (info().sample_bytes() != sizeof(T))
			throw std::runtime_error(
				"Provided object size does not match the stream's sample size.");
		push_numeric_raw((void *)&sample, timestamp, pushthrough);
	}

	/** Push a pointer to raw numeric data as one sample into the outlet.
	 * This is the lowest-level function; performs no checking whatsoever. Cannot be used for
	 * variable-size / string-formatted channels.
	 * @param sample A pointer to the raw sample data to push.
	 * @param timestamp Optionally the capture time of the sample, in agreement with local_clock();
	 * if omitted, the current time is used.
	 * @param pushthrough Whether to push the sample through to the receivers instead of buffering
	 * it with subsequent samples. Note that the chunk_size, if specified at outlet construction,
	 * takes precedence over the pushthrough flag.
	 */
	void push_numeric_raw(const void *sample, double timestamp = 0.0, bool pushthrough = true) {
		lsl_push_sample_vtp(obj.get(), (sample), timestamp, pushthrough);
	}

	/**
	 * Push a pointer to an array of buffers of variable size as one sample into the outlet.
	 *
	 * @param bufs A pointer to an array of data buffers.
	 * @param bytes An array of sizes (number of bytes) of buffers in bufs.
	 * @param nbufs Total number of buffers.
	 * @param timestamp Optionally the capture time of the sample, in agreement with local_clock();
	 * @param pushthrough Whether to push the sample through to the receivers immediately instead of
	 * concatenating with subsequent samples.
	 */
	void push_numeric_bufs(void **bufs, uint32_t *bytes, uint32_t nbufs, double timestamp = 0.0,
		bool pushthrough = true) {
		lsl_push_sample_rawtpn(obj.get(), bufs, bytes, timestamp, pushthrough, nbufs);
	}


	// ===================================================
	// === Pushing an chunk of samples into the outlet ===
	// ===================================================

	/** Push a chunk of samples (batched into an STL vector) into the outlet.
	 * @param samples A vector of samples in some supported format (each sample can be a data
	 * pointer, data array, or std vector of data).
	 * @param timestamp Optionally the capture time of the most recent sample, in agreement with
	 * local_clock(); if omitted, the current time is used. The time stamps of other samples are
	 * automatically derived according to the sampling rate of the stream.
	 * @param pushthrough Whether to push the chunk through to the receivers instead of buffering it
	 * with subsequent samples. Note that the chunk_size, if specified at outlet construction, takes
	 * precedence over the pushthrough flag.
	 */
	template <class T>
	void push_chunk(
		const std::vector<T> &samples, double timestamp = 0.0, bool pushthrough = true) {
		if (!samples.empty()) {
			if (timestamp == 0.0) timestamp = local_clock();
			if (sample_rate != IRREGULAR_RATE)
				timestamp = timestamp - (samples.size() - 1) / sample_rate;
			push_sample(samples[0], timestamp, pushthrough && samples.size() == 1);
			for (std::size_t k = 1; k < samples.size(); k++)
				push_sample(samples[k], DEDUCED_TIMESTAMP, pushthrough && k == samples.size() - 1);
		}
	}

	/** Push a chunk of samples (batched into an STL vector) into the outlet.
	 * Allows to specify a separate time stamp for each sample (for irregular-rate streams).
	 * @param samples A vector of samples in some supported format (each sample can be a data
	 * pointer, data array, or std vector of data).
	 * @param timestamps A vector of capture times for each sample, in agreement with local_clock().
	 * @param pushthrough Whether to push the chunk through to the receivers instead of buffering it
	 * with subsequent samples. Note that the chunk_size, if specified at outlet construction, takes
	 * precedence over the pushthrough flag.
	 */
	template <class T>
	void push_chunk(const std::vector<T> &samples, const std::vector<double> &timestamps,
		bool pushthrough = true) {
		for (unsigned k = 0; k < samples.size() - 1; k++)
			push_sample(samples[k], timestamps[k], false);
		if (!samples.empty()) push_sample(samples.back(), timestamps.back(), pushthrough);
	}

	/** Push a chunk of numeric data as C-style structs (batched into an STL vector) into the
	 * outlet. This performs some size checking but no type checking. Can not be used for
	 * variable-size / string-formatted data.
	 * @param samples A vector of samples, as C structs.
	 * @param timestamp Optionally the capture time of the sample, in agreement with local_clock();
	 * if omitted, the current time is used.
	 * @param pushthrough Whether to push the chunk through to the receivers instead of buffering it
	 * with subsequent samples. Note that the chunk_size, if specified at outlet construction, takes
	 * precedence over the pushthrough flag.
	 */
	template <class T>
	void push_chunk_numeric_structs(
		const std::vector<T> &samples, double timestamp = 0.0, bool pushthrough = true) {
		if (!samples.empty()) {
			if (timestamp == 0.0) timestamp = local_clock();
			if (sample_rate != IRREGULAR_RATE)
				timestamp = timestamp - (samples.size() - 1) / sample_rate;
			push_numeric_struct(samples[0], timestamp, pushthrough && samples.size() == 1);
			for (std::size_t k = 1; k < samples.size(); k++)
				push_numeric_struct(
					samples[k], DEDUCED_TIMESTAMP, pushthrough && k == samples.size() - 1);
		}
	}

	/** Push a chunk of numeric data from C-style structs (batched into an STL vector), into the
	 * outlet. This performs some size checking but no type checking. Can not be used for
	 * variable-size / string-formatted data.
	 * @param samples A vector of samples, as C structs.
	 * @param timestamps A vector of capture times for each sample, in agreement with local_clock().
	 * @param pushthrough Whether to push the chunk through to the receivers instead of buffering it
	 * with subsequent samples. Note that the chunk_size, if specified at outlet construction, takes
	 * precedence over the pushthrough flag.
	 */
	template <class T>
	void push_chunk_numeric_structs(const std::vector<T> &samples,
		const std::vector<double> &timestamps, bool pushthrough = true) {
		for (unsigned k = 0; k < samples.size() - 1; k++)
			push_numeric_struct(samples[k], timestamps[k], false);
		if (!samples.empty()) push_numeric_struct(samples.back(), timestamps.back(), pushthrough);
	}

	/** Push a chunk of multiplexed data into the outlet.
	 * @name Push functions
	 * @param buffer A buffer of channel values holding the data for zero or more successive samples
	 * to send.
	 * @param timestamp Optionally the capture time of the most recent sample, in agreement with
	 * local_clock(); if omitted, the current time is used. The time stamps of other samples are
	 * automatically derived according to the sampling rate of the stream.
	 * @param pushthrough Whether to push the chunk through to the receivers instead of buffering it
	 * with subsequent samples. Note that the chunk_size, if specified at outlet construction, takes
	 * precedence over the pushthrough flag.
	 */
	template<typename T>
	void push_chunk_multiplexed(
		const std::vector<T> &buffer, double timestamp = 0.0, bool pushthrough = true) {
		if (!buffer.empty())
			push_chunk_multiplexed(
				buffer.data(), static_cast<unsigned long>(buffer.size()), timestamp, pushthrough);
	}

	/** Push a chunk of multiplexed data into the outlet. One timestamp per sample is provided.
	 * Allows to specify a separate time stamp for each sample (for irregular-rate streams).
	 * @param buffer A buffer of channel values holding the data for zero or more successive samples
	 * to send.
	 * @param timestamps A buffer of timestamp values holding time stamps for each sample in the
	 * data buffer.
	 * @param pushthrough Whether to push the chunk through to the receivers instead of buffering it
	 * with subsequent samples. Note that the chunk_size, if specified at outlet construction, takes
	 * precedence over the pushthrough flag.
	 */
	template<typename T>
	void push_chunk_multiplexed(const std::vector<T> &buffer,
		const std::vector<double> &timestamps, bool pushthrough = true) {
		if (!buffer.empty() && !timestamps.empty())
			push_chunk_multiplexed(
				buffer.data(), static_cast<unsigned long>(buffer.size()), timestamps.data(), pushthrough);
	}

	/** Push a chunk of multiplexed samples into the outlet. Single timestamp provided.
	 * @warning The provided buffer size is measured in channel values (e.g., floats), not samples.
	 * @param buffer A buffer of channel values holding the data for zero or more successive samples
	 * to send.
	 * @param buffer_elements The number of channel values (of type T) in the buffer. Must be a
	 * multiple of the channel count.
	 * @param timestamp Optionally the capture time of the most recent sample, in agreement with
	 * local_clock(); if omitted, the current time is used. The time stamps of other samples are
	 * automatically derived based on the sampling rate of the stream.
	 * @param pushthrough Whether to push the chunk through to the receivers instead of buffering it
	 * with subsequent samples. Note that the stream_outlet() constructur parameter @p chunk_size,
	 * if specified at outlet construction, takes precedence over the pushthrough flag.
	 */
	void push_chunk_multiplexed(const float *buffer, std::size_t buffer_elements,
		double timestamp = 0.0, bool pushthrough = true) {
		lsl_push_chunk_ftp(obj.get(), buffer, static_cast<unsigned long>(buffer_elements), timestamp, pushthrough);
	}
	void push_chunk_multiplexed(const double *buffer, std::size_t buffer_elements,
		double timestamp = 0.0, bool pushthrough = true) {
		lsl_push_chunk_dtp(obj.get(), buffer, static_cast<unsigned long>(buffer_elements), timestamp, pushthrough);
	}
	void push_chunk_multiplexed(const int64_t *buffer, std::size_t buffer_elements,
		double timestamp = 0.0, bool pushthrough = true) {
		lsl_push_chunk_ltp(obj.get(), buffer, static_cast<unsigned long>(buffer_elements), timestamp, pushthrough);
	}
	void push_chunk_multiplexed(const int32_t *buffer, std::size_t buffer_elements,
		double timestamp = 0.0, bool pushthrough = true) {
		lsl_push_chunk_itp(obj.get(), buffer, static_cast<unsigned long>(buffer_elements), timestamp, pushthrough);
	}
	void push_chunk_multiplexed(const int16_t *buffer, std::size_t buffer_elements,
		double timestamp = 0.0, bool pushthrough = true) {
		lsl_push_chunk_stp(obj.get(), buffer, static_cast<unsigned long>(buffer_elements), timestamp, pushthrough);
	}
	void push_chunk_multiplexed(const char *buffer, std::size_t buffer_elements,
		double timestamp = 0.0, bool pushthrough = true) {
		lsl_push_chunk_ctp(obj.get(), buffer, static_cast<unsigned long>(buffer_elements), timestamp, pushthrough);
	}
	void push_chunk_multiplexed(const std::string *buffer, std::size_t buffer_elements,
		double timestamp = 0.0, bool pushthrough = true) {
		if (buffer_elements) {
			std::vector<uint32_t> lengths(buffer_elements);
			std::vector<const char *> pointers(buffer_elements);
			for (std::size_t k = 0; k < buffer_elements; k++) {
				pointers[k] = buffer[k].c_str();
				lengths[k] = (uint32_t)buffer[k].size();
			}
			lsl_push_chunk_buftp(obj.get(), pointers.data(), lengths.data(),
				static_cast<unsigned long>(buffer_elements), timestamp, pushthrough);
		}
	}

	/** Push a chunk of multiplexed samples into the outlet. One timestamp per sample is provided.
	 * @warning Note that the provided buffer size is measured in channel values (e.g., floats)
	 * rather than in samples.
	 * @param data_buffer A buffer of channel values holding the data for zero or more successive
	 * samples to send.
	 * @param timestamp_buffer A buffer of timestamp values holding time stamps for each sample in
	 * the data buffer.
	 * @param data_buffer_elements The number of data values (of type T) in the data buffer. Must be
	 * a multiple of the channel count.
	 * @param pushthrough Whether to push the chunk through to the receivers instead of buffering it
	 * with subsequent samples. Note that the chunk_size, if specified at outlet construction, takes
	 * precedence over the pushthrough flag.
	 */
	void push_chunk_multiplexed(const float *data_buffer, const double *timestamp_buffer,
		std::size_t data_buffer_elements, bool pushthrough = true) {
		lsl_push_chunk_ftnp(obj.get(), data_buffer, static_cast<unsigned long>(data_buffer_elements),
			(timestamp_buffer), pushthrough);
	}
	void push_chunk_multiplexed(const double *data_buffer, const double *timestamp_buffer,
		std::size_t data_buffer_elements, bool pushthrough = true) {
		lsl_push_chunk_dtnp(obj.get(), data_buffer, static_cast<unsigned long>(data_buffer_elements),
			(timestamp_buffer), pushthrough);
	}
	void push_chunk_multiplexed(const int64_t *data_buffer, const double *timestamp_buffer,
		std::size_t data_buffer_elements, bool pushthrough = true) {
		lsl_push_chunk_ltnp(obj.get(), data_buffer, static_cast<unsigned long>(data_buffer_elements),
			(timestamp_buffer), pushthrough);
	}
	void push_chunk_multiplexed(const int32_t *data_buffer, const double *timestamp_buffer,
		std::size_t data_buffer_elements, bool pushthrough = true) {
		lsl_push_chunk_itnp(obj.get(), data_buffer, static_cast<unsigned long>(data_buffer_elements),
			(timestamp_buffer), pushthrough);
	}
	void push_chunk_multiplexed(const int16_t *data_buffer, const double *timestamp_buffer,
		std::size_t data_buffer_elements, bool pushthrough = true) {
		lsl_push_chunk_stnp(obj.get(), data_buffer, static_cast<unsigned long>(data_buffer_elements),
			(timestamp_buffer), pushthrough);
	}
	void push_chunk_multiplexed(const char *data_buffer, const double *timestamp_buffer,
		std::size_t data_buffer_elements, bool pushthrough = true) {
		lsl_push_chunk_ctnp(obj.get(), data_buffer, static_cast<unsigned long>(data_buffer_elements),
			(timestamp_buffer), pushthrough);
	}

	void push_chunk_multiplexed(const std::string *data_buffer, const double *timestamp_buffer,
		std::size_t data_buffer_elements, bool pushthrough = true) {
		if (data_buffer_elements) {
			std::vector<uint32_t> lengths(data_buffer_elements);
			std::vector<const char *> pointers(data_buffer_elements);
			for (std::size_t k = 0; k < data_buffer_elements; k++) {
				pointers[k] = data_buffer[k].c_str();
				lengths[k] = (uint32_t)data_buffer[k].size();
			}
			lsl_push_chunk_buftnp(obj.get(), pointers.data(), lengths.data(),
				static_cast<unsigned long>(data_buffer_elements), timestamp_buffer, pushthrough);
		}
	}


	// ===============================
	// === Miscellaneous Functions ===
	// ===============================

	/** Check whether consumers are currently registered.
	 * While it does not hurt, there is technically no reason to push samples if there is no
	 * consumer.
	 */
	bool have_consumers() { return lsl_have_consumers(obj.get()) != 0; }

	/** Wait until some consumer shows up (without wasting resources).
	 * @return True if the wait was successful, false if the timeout expired.
	 */
	bool wait_for_consumers(double timeout) { return lsl_wait_for_consumers(obj.get(), timeout) != 0; }

	/** Retrieve the stream info provided by this outlet.
	 * This is what was used to create the stream (and also has the Additional Network Information
	 * fields assigned).
	 */
	stream_info info() const { return stream_info(lsl_get_info(obj.get())); }

	/// Return a shared pointer to pass to C-API functions that aren't wrapped yet
	///
	/// Example: @code lsl_push_chunk_buft(outlet.handle().get(), data, …); @endcode
	std::shared_ptr<lsl_outlet_struct_> handle() { return obj; }

	/** Destructor.
	 * The stream will no longer be discoverable after destruction and all paired inlets will stop
	 * delivering data.
	 */
	~stream_outlet() = default;

	/// stream_outlet move constructor
	stream_outlet(stream_outlet &&res) noexcept  = default;

	stream_outlet &operator=(stream_outlet &&rhs) noexcept = default;


private:
	// The outlet is a non-copyable object.
	stream_outlet(const stream_outlet &rhs);
	stream_outlet &operator=(const stream_outlet &rhs);

	/// Check whether a given data length matches the number of channels; throw if not
	void check_numchan(std::size_t N) const {
		if (N != static_cast<std::size_t>(channel_count))
			throw std::runtime_error("Provided element count (" + std::to_string(N) +
									 ") does not match the stream's channel count (" +
									 std::to_string(channel_count) + '.');
	}

	int32_t channel_count;
	double sample_rate;
	std::shared_ptr<lsl_outlet_struct_> obj;
};


// ===========================
// ==== Resolve Functions ====
// ===========================

/** Resolve all streams on the network.
 * This function returns all currently available streams from any outlet on the network.
 * The network is usually the subnet specified at the local router, but may also include
 * a multicast group of machines (given that the network supports it), or list of hostnames.
 * These details may optionally be customized by the experimenter in a configuration file
 * (see Network Connectivity in the LSL wiki).
 * This is the default mechanism used by the browsing programs and the recording program.
 * @param wait_time The waiting time for the operation, in seconds, to search for streams.
 * If this is too short (<0.5s) only a subset (or none) of the outlets that are present on the
 * network may be returned.
 * @return A vector of stream info objects (excluding their desc field), any of which can
 *         subsequently be used to open an inlet. The full info can be retrieve from the inlet.
 */
inline std::vector<stream_info> resolve_streams(double wait_time = 1.0) {
	lsl_streaminfo buffer[1024];
	int nres = check_error(lsl_resolve_all(buffer, sizeof(buffer), wait_time));
	return std::vector<stream_info>(&buffer[0], &buffer[nres]);
}

/** Resolve all streams with a specific value for a given property.
 * If the goal is to resolve a specific stream, this method is preferred over resolving all streams
 * and then selecting the desired one.
 * @param prop The stream_info property that should have a specific value (e.g., "name", "type",
 * "source_id", or "desc/manufaturer").
 * @param value The string value that the property should have (e.g., "EEG" as the type property).
 * @param minimum Return at least this number of streams.
 * @param timeout Optionally a timeout of the operation, in seconds (default: no timeout).
 *                 If the timeout expires, less than the desired number of streams (possibly none)
 * will be returned.
 * @return A vector of matching stream info objects (excluding their meta-data), any of
 *         which can subsequently be used to open an inlet.
 */
inline std::vector<stream_info> resolve_stream(const std::string &prop, const std::string &value,
	int32_t minimum = 1, double timeout = FOREVER) {
	lsl_streaminfo buffer[1024];
	int nres = check_error(
		lsl_resolve_byprop(buffer, sizeof(buffer), prop.c_str(), value.c_str(), minimum, timeout));
	return std::vector<stream_info>(&buffer[0], &buffer[nres]);
}

/** Resolve all streams that match a given predicate.
 *
 * Advanced query that allows to impose more conditions on the retrieved streams; the given
 * string is an [XPath 1.0](http://en.wikipedia.org/w/index.php?title=XPath_1.0) predicate for
 * the `<info>` node (omitting the surrounding []'s)
 * @param pred The predicate string, e.g. `name='BioSemi'` or
 * `type='EEG' and starts-with(name,'BioSemi') and count(info/desc/channel)=32`
 * @param minimum Return at least this number of streams.
 * @param timeout Optionally a timeout of the operation, in seconds (default: no timeout).
 *                 If the timeout expires, less than the desired number of streams (possibly
 * none) will be returned.
 * @return A vector of matching stream info objects (excluding their meta-data), any of
 *         which can subsequently be used to open an inlet.
 */
inline std::vector<stream_info> resolve_stream(
	const std::string &pred, int32_t minimum = 1, double timeout = FOREVER) {
	lsl_streaminfo buffer[1024];
	int nres =
		check_error(lsl_resolve_bypred(buffer, sizeof(buffer), pred.c_str(), minimum, timeout));
	return std::vector<stream_info>(&buffer[0], &buffer[nres]);
}


// ======================
// ==== Stream Inlet ====
// ======================

/** A stream inlet.
 * Inlets are used to receive streaming data (and meta-data) from the lab network.
 */
class stream_inlet {
public:
	/**
	 * Construct a new stream inlet from a resolved stream info.
	 * @param info A resolved stream info object (as coming from one of the resolver functions).
	 * Note: The stream_inlet may also be constructed with a fully-specified stream_info, if the
	 * desired channel format and count is already known up-front, but this is strongly discouraged
	 * and should only ever be done if there is no time to resolve the stream up-front (e.g., due
	 * to limitations in the client program).
	 * @param max_buflen Optionally the maximum amount of data to buffer (in seconds if there is a
	 * nominal sampling rate, otherwise x100 in samples). Recording applications want to use a
	 * fairly large buffer size here, while real-time applications would only buffer as much as
	 * they need to perform their next calculation.
	 * @param max_chunklen Optionally the maximum size, in samples, at which chunks are transmitted
	 * (the default corresponds to the chunk sizes used by the sender).
	 * Recording applications can use a generous size here (leaving it to the network how to pack
	 * things), while real-time applications may want a finer (perhaps 1-sample) granularity.
	 * If left unspecified (=0), the sender determines the chunk granularity.
	 * @param recover Try to silently recover lost streams that are recoverable (=those that that
	 * have a source_id set).
	 * In all other cases (recover is false or the stream is not recoverable) functions may throw a
	 * lsl::lost_error if the stream's source is lost (e.g., due to an app or computer crash).
	 */
	stream_inlet(const stream_info &info, int32_t max_buflen = 360, int32_t max_chunklen = 0,
		bool recover = true, lsl_transport_options_t flags = transp_default)
		: channel_count(info.channel_count()),
		  obj(lsl_create_inlet_ex(info.handle().get(), max_buflen, max_chunklen, recover, flags),
			  &lsl_destroy_inlet) {}

	/// Return a shared pointer to pass to C-API functions that aren't wrapped yet
	///
	/// Example: @code lsl_pull_sample_buf(inlet.handle().get(), buf, …); @endcode
	std::shared_ptr<lsl_inlet_struct_> handle() { return obj; }

	/// Move constructor for stream_inlet
	stream_inlet(stream_inlet &&rhs) noexcept = default;
	stream_inlet &operator=(stream_inlet &&rhs) noexcept= default;


	/** Retrieve the complete information of the given stream, including the extended description.
	 * Can be invoked at any time of the stream's lifetime.
	 * @param timeout Timeout of the operation (default: no timeout).
	 * @throws timeout_error (if the timeout expires), or lost_error (if the stream source has been
	 * lost).
	 */
	stream_info info(double timeout = FOREVER) {
		int32_t ec = 0;
		lsl_streaminfo res = lsl_get_fullinfo(obj.get(), timeout, &ec);
		check_error(ec);
		return stream_info(res);
	}

	/** Subscribe to the data stream.
	 * All samples pushed in at the other end from this moment onwards will be queued and
	 * eventually be delivered in response to pull_sample() or pull_chunk() calls.
	 * Pulling a sample without some preceding open_stream() is permitted (the stream will then be
	 * opened implicitly).
	 * @param timeout Optional timeout of the operation (default: no timeout).
	 * @throws timeout_error (if the timeout expires), or lost_error (if the stream source has been
	 * lost).
	 */
	void open_stream(double timeout = FOREVER) {
		int32_t ec = 0;
		lsl_open_stream(obj.get(), timeout, &ec);
		check_error(ec);
	}

	/** Drop the current data stream.
	 *
	 * All samples that are still buffered or in flight will be dropped and transmission
	 * and buffering of data for this inlet will be stopped. If an application stops being
	 * interested in data from a source (temporarily or not) but keeps the outlet alive,
	 * it should call close_stream() to not waste unnecessary system and network
	 * resources.
	 */
	void close_stream() { lsl_close_stream(obj.get()); }

	/** Retrieve an estimated time correction offset for the given stream.
	 *
	 * The first call to this function takes several milliseconds until a reliable first estimate
	 * is obtained. Subsequent calls are instantaneous (and rely on periodic background updates).
	 * On a well-behaved network, the precision of these estimates should be below 1 ms
	 * (empirically it is within +/-0.2 ms).
	 *
	 * To get a measure of whether the network is well-behaved, use the extended version
	 * time_correction(double*,double*,double) and check uncertainty (i.e. the round-trip-time).
	 *
	 * 0.2 ms is typical of wired networks. 2 ms is typical of wireless networks.
	 * The number can be much higher on poor networks.
	 *
	 * @param timeout Timeout to acquire the first time-correction estimate (default: no timeout).
	 * @return The time correction estimate. This is the number that needs to be added to a time
	 * stamp that was remotely generated via lsl_local_clock() to map it into the local clock
	 * domain of this machine.
	 * @throws #lsl::timeout_error (if the timeout expires), or #lsl::lost_error (if the stream
	 * source has been lost).
	 */

	double time_correction(double timeout = FOREVER) {
		int32_t ec = 0;
		double res = lsl_time_correction(obj.get(), timeout, &ec);
		check_error(ec);
		return res;
	}
	/** @copydoc time_correction(double)
	 * @param remote_time The current time of the remote computer that was used to generate this
	 * time_correction. If desired, the client can fit time_correction vs remote_time to improve
	 * the real-time time_correction further.
	 * @param uncertainty The maximum uncertainty of the given time correction.
	 */
	double time_correction(double *remote_time, double *uncertainty, double timeout = FOREVER) {
		int32_t ec = 0;
		double res = lsl_time_correction_ex(obj.get(), remote_time, uncertainty, timeout, &ec);
		check_error(ec);
		return res;
	}

	/** Set post-processing flags to use.
	 *
	 * By default, the inlet performs NO post-processing and returns the ground-truth time
	 * stamps, which can then be manually synchronized using .time_correction(), and then
	 * smoothed/dejittered if desired.<br>
	 * This function allows automating these two and possibly more operations.<br>
	 * @warning When you enable this, you will no longer receive or be able to recover the original
	 * time stamps.
	 * @param flags An integer that is the result of bitwise OR'ing one or more options from
	 * processing_options_t together (e.g., `post_clocksync|post_dejitter`); the default is to
	 * enable all options.
	 */
	void set_postprocessing(uint32_t flags = post_ALL) {
		check_error(lsl_set_postprocessing(obj.get(), flags));
	}

	// =======================================
	// === Pulling a sample from the inlet ===
	// =======================================

	/** Pull a sample from the inlet and read it into an array of values.
	 * Handles type checking & conversion.
	 * @param sample An array to hold the resulting values.
	 * @param timeout The timeout for this operation, if any.  Use 0.0 to make the function
	 * non-blocking.
	 * @return The capture time of the sample on the remote machine, or 0.0 if no new sample was
	 * available. To remap this time stamp to the local clock, add the value returned by
	 * .time_correction() to it.
	 * @throws lost_error (if the stream source has been lost).
	 */
	template <class T, int N> double pull_sample(T sample[N], double timeout = FOREVER) {
		return pull_sample(&sample[0], N, timeout);
	}

	/** Pull a sample from the inlet and read it into a std vector of values.
	 * Handles type checking & conversion and allocates the necessary memory in the vector if
	 * necessary.
	 * @param sample An STL vector to hold the resulting values.
	 * @param timeout The timeout for this operation, if any.  Use 0.0 to make the function
	 * non-blocking.
	 * @return The capture time of the sample on the remote machine, or 0.0 if no new sample was
	 * available. To remap this time stamp to the local clock, add the value returned by
	 * .time_correction() to it.
	 * @throws lost_error (if the stream source has been lost).
	 */
	double pull_sample(std::vector<float> &sample, double timeout = FOREVER) {
		sample.resize(channel_count);
		return pull_sample(&sample[0], (int32_t)sample.size(), timeout);
	}
	double pull_sample(std::vector<double> &sample, double timeout = FOREVER) {
		sample.resize(channel_count);
		return pull_sample(&sample[0], (int32_t)sample.size(), timeout);
	}
	double pull_sample(std::vector<int64_t> &sample, double timeout = FOREVER) {
		sample.resize(channel_count);
		return pull_sample(&sample[0], (int32_t)sample.size(), timeout);
	}
	double pull_sample(std::vector<int32_t> &sample, double timeout = FOREVER) {
		sample.resize(channel_count);
		return pull_sample(&sample[0], (int32_t)sample.size(), timeout);
	}
	double pull_sample(std::vector<int16_t> &sample, double timeout = FOREVER) {
		sample.resize(channel_count);
		return pull_sample(&sample[0], (int32_t)sample.size(), timeout);
	}
	double pull_sample(std::vector<char> &sample, double timeout = FOREVER) {
		sample.resize(channel_count);
		return pull_sample(&sample[0], (int32_t)sample.size(), timeout);
	}
	double pull_sample(std::vector<std::string> &sample, double timeout = FOREVER) {
		sample.resize(channel_count);
		return pull_sample(&sample[0], (int32_t)sample.size(), timeout);
	}

	/** Pull a sample from the inlet and read it into a pointer to values.
	 * Handles type checking & conversion.
	 * @param buffer A pointer to hold the resulting values.
	 * @param buffer_elements The number of samples allocated in the buffer. Note: it is the
	 * responsibility of the user to allocate enough memory.
	 * @param timeout The timeout for this operation, if any.  Use 0.0 to make the function
	 * non-blocking.
	 * @return The capture time of the sample on the remote machine, or 0.0 if no new sample was
	 * available. To remap this time stamp to the local clock, add the value returned by
	 * .time_correction() to it.
	 * @throws lost_error (if the stream source has been lost).
	 */
	double pull_sample(float *buffer, int32_t buffer_elements, double timeout = FOREVER) {
		int32_t ec = 0;
		double res = lsl_pull_sample_f(obj.get(), buffer, buffer_elements, timeout, &ec);
		check_error(ec);
		return res;
	}
	double pull_sample(double *buffer, int32_t buffer_elements, double timeout = FOREVER) {
		int32_t ec = 0;
		double res = lsl_pull_sample_d(obj.get(), buffer, buffer_elements, timeout, &ec);
		check_error(ec);
		return res;
	}
	double pull_sample(int64_t *buffer, int32_t buffer_elements, double timeout = FOREVER) {
		int32_t ec = 0;
		double res = lsl_pull_sample_l(obj.get(), buffer, buffer_elements, timeout, &ec);
		check_error(ec);
		return res;
	}
	double pull_sample(int32_t *buffer, int32_t buffer_elements, double timeout = FOREVER) {
		int32_t ec = 0;
		double res = lsl_pull_sample_i(obj.get(), buffer, buffer_elements, timeout, &ec);
		check_error(ec);
		return res;
	}
	double pull_sample(int16_t *buffer, int32_t buffer_elements, double timeout = FOREVER) {
		int32_t ec = 0;
		double res = lsl_pull_sample_s(obj.get(), buffer, buffer_elements, timeout, &ec);
		check_error(ec);
		return res;
	}
	double pull_sample(char *buffer, int32_t buffer_elements, double timeout = FOREVER) {
		int32_t ec = 0;
		double res = lsl_pull_sample_c(obj.get(), buffer, buffer_elements, timeout, &ec);
		check_error(ec);
		return res;
	}
	double pull_sample(std::string *buffer, int32_t buffer_elements, double timeout = FOREVER) {
		int32_t ec = 0;
		if (buffer_elements) {
			std::vector<char *> result_strings(buffer_elements);
			std::vector<uint32_t> result_lengths(buffer_elements);
			double res = lsl_pull_sample_buf(
				obj.get(), result_strings.data(), result_lengths.data(), buffer_elements, timeout, &ec);
			check_error(ec);
			for (int32_t k = 0; k < buffer_elements; k++) {
				buffer[k].assign(result_strings[k], result_lengths[k]);
				lsl_destroy_string(result_strings[k]);
			}
			return res;
		} else
			throw std::runtime_error(
				"Provided element count does not match the stream's channel count.");
	}

	/**
	 * Pull a sample from the inlet and read it into a custom C-style struct.
	 *
	 * Overall size checking but no type checking or conversion are done.
	 * Do not use for variable-size/string-formatted streams.
	 * @param sample The raw sample object to hold the data (packed C-style struct).
	 * Search for [`#``pragma pack`](https://stackoverflow.com/a/3318475/73299) for information
	 * on how to pack structs correctly.
	 * @param timeout The timeout for this operation, if any. Use 0.0 to make the function
	 * non-blocking.
	 * @return The capture time of the sample on the remote machine, or 0.0 if no new sample was
	 * available. To remap this time stamp to the local clock, add the value returned by
	 * .time_correction() to it.
	 * @throws lost_error (if the stream source has been lost).
	 */
	template <class T> double pull_numeric_struct(T &sample, double timeout = FOREVER) {
		return pull_numeric_raw((void *)&sample, sizeof(T), timeout);
	}

	/**
	 * Pull a sample from the inlet and read it into a pointer to raw data.
	 *
	 * No type checking or conversions are done (not recommended!).<br>
	 * Do not use for variable-size/string-formatted streams.
	 * @param sample A pointer to hold the resulting raw sample data.
	 * @param buffer_bytes The number of bytes allocated in the buffer.<br>
	 * Note: it is the responsibility of the user to allocate enough memory.
	 * @param timeout The timeout for this operation, if any. Use 0.0 to make the function
	 * non-blocking.
	 * @return The capture time of the sample on the remote machine, or 0.0 if no new sample was
	 * available. To remap this time stamp to the local clock, add the value returned by
	 * .time_correction() to it.
	 * @throws lost_error (if the stream source has been lost).
	 */
	double pull_numeric_raw(void *sample, int32_t buffer_bytes, double timeout = FOREVER) {
		int32_t ec = 0;
		double res = lsl_pull_sample_v(obj.get(), sample, buffer_bytes, timeout, &ec);
		check_error(ec);
		return res;
	}


	// =================================================
	// === Pulling a chunk of samples from the inlet ===
	// =================================================

	/**
	 * Pull a chunk of samples from the inlet.
	 *
	 * This is the most complete version, returning both the data and a timestamp for each sample.
	 * @param chunk A vector of vectors to hold the samples.
	 * @param timestamps A vector to hold the time stamps.
	 * @return True if some data was obtained.
	 * @throws lost_error (if the stream source has been lost).
	 */
	template <class T>
	bool pull_chunk(std::vector<std::vector<T>> &chunk, std::vector<double> &timestamps) {
		std::vector<T> sample;
		chunk.clear();
		timestamps.clear();
		while (double ts = pull_sample(sample, 0.0)) {
			chunk.push_back(sample);
			timestamps.push_back(ts);
		}
		return !chunk.empty();
	}

	/**
	 * Pull a chunk of samples from the inlet.
	 *
	 * This version returns only the most recent sample's time stamp.
	 * @param chunk A vector of vectors to hold the samples.
	 * @return The time when the most recent sample was captured
	 *         on the remote machine, or 0.0 if no new sample was available.
	 * @throws lost_error (if the stream source has been lost)
	 */
	template <class T> double pull_chunk(std::vector<std::vector<T>> &chunk) {
		double timestamp = 0.0;
		std::vector<T> sample;
		chunk.clear();
		while (double ts = pull_sample(sample, 0.0)) {
			chunk.push_back(sample);
			timestamp = ts;
		}
		return timestamp;
	}

	/**
	 * Pull a chunk of samples from the inlet.
	 *
	 * This function does not return time stamps for the samples. Invoked as: mychunk =
	 * pull_chunk<float>();
	 * @return A vector of vectors containing the obtained samples; may be empty.
	 * @throws lost_error (if the stream source has been lost)
	 */
	template <class T> std::vector<std::vector<T>> pull_chunk() {
		std::vector<std::vector<T>> result;
		std::vector<T> sample;
		while (pull_sample(sample, 0.0)) result.push_back(sample);
		return result;
	}

	/**
	 * Pull a chunk of data from the inlet into a pre-allocated buffer.
	 *
	 * This is a high-performance function that performs no memory allocations
	 * (useful for very high data rates or on low-powered devices).
	 * @warning The provided buffer size is measured in channel values (e.g., floats), not samples.
	 * @param data_buffer A pointer to a buffer of data values where the results shall be stored.
	 * @param timestamp_buffer A pointer to a buffer of timestamp values where time stamps shall be
	 * stored. If this is NULL, no time stamps will be returned.
	 * @param data_buffer_elements The size of the data buffer, in channel data elements (of type
	 * T). Must be a multiple of the stream's channel count.
	 * @param timestamp_buffer_elements The size of the timestamp buffer. If a timestamp buffer is
	 * provided then this must correspond to the same number of samples as data_buffer_elements.
	 * @param timeout The timeout for this operation, if any. When the timeout expires, the function
	 * may return before the entire buffer is filled. The default value of 0.0 will retrieve only
	 * data available for immediate pickup.
	 * @return data_elements_written Number of channel data elements written to the data buffer.
	 * @throws lost_error (if the stream source has been lost).
	 */
	std::size_t pull_chunk_multiplexed(float *data_buffer, double *timestamp_buffer,
		std::size_t data_buffer_elements, std::size_t timestamp_buffer_elements,
		double timeout = 0.0) {
		int32_t ec = 0;
		std::size_t res = lsl_pull_chunk_f(obj.get(), data_buffer, timestamp_buffer,
			(unsigned long)data_buffer_elements, (unsigned long)timestamp_buffer_elements, timeout,
			&ec);
		check_error(ec);
		return res;
	}
	std::size_t pull_chunk_multiplexed(double *data_buffer, double *timestamp_buffer,
		std::size_t data_buffer_elements, std::size_t timestamp_buffer_elements,
		double timeout = 0.0) {
		int32_t ec = 0;
		std::size_t res = lsl_pull_chunk_d(obj.get(), data_buffer, timestamp_buffer,
			(unsigned long)data_buffer_elements, (unsigned long)timestamp_buffer_elements, timeout,
			&ec);
		check_error(ec);
		return res;
	}
	std::size_t pull_chunk_multiplexed(int64_t *data_buffer, double *timestamp_buffer,
		std::size_t data_buffer_elements, std::size_t timestamp_buffer_elements,
		double timeout = 0.0) {
		int32_t ec = 0;
		std::size_t res = lsl_pull_chunk_l(obj.get(), data_buffer, timestamp_buffer,
			(unsigned long)data_buffer_elements, (unsigned long)timestamp_buffer_elements, timeout,
			&ec);
		check_error(ec);
		return res;
	}
	std::size_t pull_chunk_multiplexed(int32_t *data_buffer, double *timestamp_buffer,
		std::size_t data_buffer_elements, std::size_t timestamp_buffer_elements,
		double timeout = 0.0) {
		int32_t ec = 0;
		std::size_t res = lsl_pull_chunk_i(obj.get(), data_buffer, timestamp_buffer,
			(unsigned long)data_buffer_elements, (unsigned long)timestamp_buffer_elements, timeout,
			&ec);
		check_error(ec);
		return res;
	}
	std::size_t pull_chunk_multiplexed(int16_t *data_buffer, double *timestamp_buffer,
		std::size_t data_buffer_elements, std::size_t timestamp_buffer_elements,
		double timeout = 0.0) {
		int32_t ec = 0;
		std::size_t res = lsl_pull_chunk_s(obj.get(), data_buffer, timestamp_buffer,
			(unsigned long)data_buffer_elements, (unsigned long)timestamp_buffer_elements, timeout,
			&ec);
		check_error(ec);
		return res;
	}
	std::size_t pull_chunk_multiplexed(char *data_buffer, double *timestamp_buffer,
		std::size_t data_buffer_elements, std::size_t timestamp_buffer_elements,
		double timeout = 0.0) {
		int32_t ec = 0;
		std::size_t res = lsl_pull_chunk_c(obj.get(), data_buffer, timestamp_buffer,
			static_cast<unsigned long>(data_buffer_elements), static_cast<unsigned long>(timestamp_buffer_elements), timeout,
			&ec);
		check_error(ec);
		return res;
	}
	std::size_t pull_chunk_multiplexed(std::string *data_buffer, double *timestamp_buffer,
		std::size_t data_buffer_elements, std::size_t timestamp_buffer_elements,
		double timeout = 0.0) {
		int32_t ec = 0;
		if (data_buffer_elements) {
			std::vector<char *> result_strings(data_buffer_elements);
			std::vector<uint32_t> result_lengths(data_buffer_elements);
			std::size_t num = lsl_pull_chunk_buf(obj.get(), result_strings.data(), result_lengths.data(),
				timestamp_buffer, static_cast<unsigned long>(data_buffer_elements),
				static_cast<unsigned long>(timestamp_buffer_elements), timeout, &ec);
			check_error(ec);
			for (std::size_t k = 0; k < num; k++) {
				data_buffer[k].assign(result_strings[k], result_lengths[k]);
				lsl_destroy_string(result_strings[k]);
			}
			return num;
		};
		return 0;
	}

	/**
	 * Pull a multiplexed chunk of samples and optionally the sample timestamps from the inlet.
	 *
	 * @param chunk A vector to hold the multiplexed (Sample 1 Channel 1,
	 * S1C2, S2C1, S2C2, S3C1, S3C2, ...) samples
	 * @param timestamps A vector to hold the timestamps or nullptr
	 * @param timeout Time to wait for the first sample. The default value of 0.0 will not wait
	 * for data to arrive, pulling only samples already received.
	 * @param append (True:) Append data or (false:) clear them first
	 * @return True if some data was obtained.
	 * @throws lost_error (if the stream source has been lost).
	 */
	template <typename T>
	bool pull_chunk_multiplexed(std::vector<T> &chunk, std::vector<double> *timestamps = nullptr,
		double timeout = 0.0, bool append = false) {
		if (!append) {
			chunk.clear();
			if (timestamps) timestamps->clear();
		}
		std::vector<T> sample;
		double ts;
		if ((ts = pull_sample(sample, timeout)) == 0.0) return false;
		chunk.insert(chunk.end(), sample.begin(), sample.end());
		if (timestamps) timestamps->push_back(ts);
		const auto target = samples_available();
		chunk.reserve(chunk.size() + target * this->channel_count);
		if (timestamps) timestamps->reserve(timestamps->size() + target);
		while ((ts = pull_sample(sample, 0.0)) != 0.0) {
#if LSL_CPP11
			chunk.insert(chunk.end(), std::make_move_iterator(sample.begin()),
				std::make_move_iterator(sample.end()));
#else
			chunk.insert(chunk.end(), sample.begin(), sample.end());
#endif
			if (timestamps) timestamps->push_back(ts);
		}
		return true;
	}

	/**
	 * Pull a chunk of samples from the inlet.
	 *
	 * This is the most complete version, returning both the data and a timestamp for each sample.
	 * @param chunk A vector of C-style structs to hold the samples.
	 * @param timestamps A vector to hold the time stamps.
	 * @return True if some data was obtained.
	 * @throws lost_error (if the stream source has been lost)
	 */
	template <class T>
	bool pull_chunk_numeric_structs(std::vector<T> &chunk, std::vector<double> &timestamps) {
		T sample;
		chunk.clear();
		timestamps.clear();
		while (double ts = pull_numeric_struct(sample, 0.0)) {
			chunk.push_back(sample);
			timestamps.push_back(ts);
		}
		return !chunk.empty();
	}

	/**
	 * Pull a chunk of samples from the inlet.
	 *
	 * This version returns only the most recent sample's time stamp.
	 * @param chunk A vector of C-style structs to hold the samples.
	 * @return The time when the most recent sample was captured
	 *         on the remote machine, or 0.0 if no new sample was available.
	 * @throws lost_error (if the stream source has been lost)
	 */
	template <class T> double pull_chunk_numeric_structs(std::vector<T> &chunk) {
		double timestamp = 0.0;
		T sample;
		chunk.clear();
		while (double ts = pull_numeric_struct(sample, 0.0)) {
			chunk.push_back(sample);
			timestamp = ts;
		}
		return timestamp;
	}

	/**
	 * Pull a chunk of samples from the inlet.
	 *
	 * This function does not return time stamps. Invoked as: mychunk = pull_chunk<mystruct>();
	 * @return A vector of C-style structs containing the obtained samples; may be empty.
	 * @throws lost_error (if the stream source has been lost)
	 */
	template <class T> std::vector<T> pull_chunk_numeric_structs() {
		std::vector<T> result;
		T sample;
		while (pull_numeric_struct(sample, 0.0)) result.push_back(sample);
		return result;
	}

	/**
	 * Query whether samples are currently available for immediate pickup.
	 *
	 * Note that it is not a good idea to use samples_available() to determine whether
	 * a pull_*() call would block: to be sure, set the pull timeout to 0.0 or an acceptably
	 * low value. If the underlying implementation supports it, the value will be the number of
	 * samples available (otherwise it will be 1 or 0).
	 */
	std::size_t samples_available() { return lsl_samples_available(obj.get()); }

	/// Drop all queued not-yet pulled samples, return the nr of dropped samples
	uint32_t flush() noexcept { return lsl_inlet_flush(obj.get()); }

	/**
	 * Query whether the clock was potentially reset since the last call to was_clock_reset().
	 *
	 * This is a rarely-used function that is only useful to applications that combine multiple
	 * time_correction values to estimate precise clock drift; it allows to tolerate cases where the
	 * source machine was hot-swapped or restarted in between two measurements.
	 */
	bool was_clock_reset() { return lsl_was_clock_reset(obj.get()) != 0; }

	/**
	 * Override the half-time (forget factor) of the time-stamp smoothing.
	 *
	 * The default is 90 seconds unless a different value is set in the config file.
	 * Using a longer window will yield lower jitter in the time stamps, but longer
	 * windows will have trouble tracking changes in the clock rate (usually due to
	 * temperature changes); the default is able to track changes up to 10
	 * degrees C per minute sufficiently well.
	 */
	void smoothing_halftime(float value) { check_error(lsl_smoothing_halftime(obj.get(), value)); }

	int get_channel_count() const { return channel_count; }

private:
	// The inlet is a non-copyable object.
	stream_inlet(const stream_inlet &rhs);
	stream_inlet &operator=(const stream_inlet &rhs);

	int32_t channel_count;
	std::shared_ptr<lsl_inlet_struct_> obj;
};


// =====================
// ==== XML Element ====
// =====================

/**
 * A lightweight XML element tree; models the .desc() field of stream_info.
 *
 * Has a name and can have multiple named children or have text content as value; attributes are
 * omitted. Insider note: The interface is modeled after a subset of pugixml's node type and is
 * compatible with it. See also
 * http://pugixml.googlecode.com/svn/tags/latest/docs/manual/access.html for additional
 * documentation.
 */
class xml_element {
public:
	/// Constructor.
	xml_element(lsl_xml_ptr obj = 0) : obj(obj) {}


	// === Tree Navigation ===

	/// Get the first child of the element.
	xml_element first_child() const { return lsl_first_child(obj); }

	/// Get the last child of the element.
	xml_element last_child() const { return lsl_last_child(obj); }

	/// Get the next sibling in the children list of the parent node.
	xml_element next_sibling() const { return lsl_next_sibling(obj); }

	/// Get the previous sibling in the children list of the parent node.
	xml_element previous_sibling() const { return lsl_previous_sibling(obj); }

	/// Get the parent node.
	xml_element parent() const { return lsl_parent(obj); }


	// === Tree Navigation by Name ===

	/// Get a child with a specified name.
	xml_element child(const std::string &name) const { return lsl_child(obj, (name.c_str())); }

	/// Get the next sibling with the specified name.
	xml_element next_sibling(const std::string &name) const {
		return lsl_next_sibling_n(obj, (name.c_str()));
	}

	/// Get the previous sibling with the specified name.
	xml_element previous_sibling(const std::string &name) const {
		return lsl_previous_sibling_n(obj, (name.c_str()));
	}


	// === Content Queries ===

	/// Whether this node is empty.
	bool empty() const { return lsl_empty(obj) != 0; }

	/// Is this a text body (instead of an XML element)? True both for plain char data and CData.
	bool is_text() const { return lsl_is_text(obj) != 0; }

	/// Name of the element.
	const char *name() const { return lsl_name(obj); }

	/// Value of the element.
	const char *value() const { return lsl_value(obj); }

	/// Get child value (value of the first child that is text).
	const char *child_value() const { return lsl_child_value(obj); }

	/// Get child value of a child with a specified name.
	const char *child_value(const std::string &name) const {
		return lsl_child_value_n(obj, (name.c_str()));
	}


	// === Modification ===

	/// Append a child node with a given name, which has a (nameless) plain-text child with the
	/// given text value.
	xml_element append_child_value(const std::string &name, const std::string &value) {
		return lsl_append_child_value(obj, (name.c_str()), (value.c_str()));
	}

	/// Prepend a child node with a given name, which has a (nameless) plain-text child with the
	/// given text value.
	xml_element prepend_child_value(const std::string &name, const std::string &value) {
		return lsl_prepend_child_value(obj, (name.c_str()), (value.c_str()));
	}

	/// Set the text value of the (nameless) plain-text child of a named child node.
	bool set_child_value(const std::string &name, const std::string &value) {
		return lsl_set_child_value(obj, (name.c_str()), (value.c_str())) != 0;
	}

	/**
	 * Set the element's name.
	 * @return False if the node is empty (or if out of memory).
	 */
	bool set_name(const std::string &rhs) { return lsl_set_name(obj, rhs.c_str()) != 0; }

	/**
	 * Set the element's value.
	 * @return False if the node is empty (or if out of memory).
	 */
	bool set_value(const std::string &rhs) { return lsl_set_value(obj, rhs.c_str()) != 0; }

	/// Append a child element with the specified name.
	xml_element append_child(const std::string &name) {
		return lsl_append_child(obj, name.c_str());
	}

	/// Prepend a child element with the specified name.
	xml_element prepend_child(const std::string &name) {
		return lsl_prepend_child(obj, (name.c_str()));
	}

	/// Append a copy of the specified element as a child.
	xml_element append_copy(const xml_element &e) { return lsl_append_copy(obj, e.obj); }

	/// Prepend a child element with the specified name.
	xml_element prepend_copy(const xml_element &e) { return lsl_prepend_copy(obj, e.obj); }

	/// Remove a child element with the specified name.
	void remove_child(const std::string &name) { lsl_remove_child_n(obj, (name.c_str())); }

	/// Remove a specified child element.
	void remove_child(const xml_element &e) { lsl_remove_child(obj, e.obj); }

private:
	lsl_xml_ptr obj;
};

inline xml_element stream_info::desc() { return lsl_get_desc(obj.get()); }


// =============================
// ==== Continuous Resolver ====
// =============================

/**
 * A convenience class that resolves streams continuously in the background throughout
 * its lifetime and which can be queried at any time for the set of streams that are currently
 * visible on the network.
 */
class continuous_resolver {
public:
	/**
	 * Construct a new continuous_resolver that resolves all streams on the network.
	 *
	 * This is analogous to the functionality offered by the free function resolve_streams().
	 * @param forget_after When a stream is no longer visible on the network (e.g., because it was
	 * shut down), this is the time in seconds after which it is no longer reported by the resolver.
	 */
	continuous_resolver(double forget_after = 5.0)
		: obj(lsl_create_continuous_resolver(forget_after), &lsl_destroy_continuous_resolver) {}

	/**
	 * Construct a new continuous_resolver that resolves all streams with a specific value for a
	 * given property.
	 *
	 * This is analogous to the functionality provided by the free function resolve_stream(prop,value).
	 * @param prop The stream_info property that should have a specific value (e.g., "name", "type",
	 * "source_id", or "desc/manufaturer").
	 * @param value The string value that the property should have (e.g., "EEG" as the type
	 * property).
	 * @param forget_after When a stream is no longer visible on the network (e.g., because it was
	 * shut down), this is the time in seconds after which it is no longer reported by the resolver.
	 */
	continuous_resolver(
		const std::string &prop, const std::string &value, double forget_after = 5.0)
		: obj(lsl_create_continuous_resolver_byprop((prop.c_str()), (value.c_str()), forget_after),
			  &lsl_destroy_continuous_resolver) {}

	/**
	 * Construct a new continuous_resolver that resolves all streams that match a given XPath 1.0
	 * predicate.
	 *
	 * This is analogous to the functionality provided by the free function resolve_stream(pred).
	 * @param pred The predicate string, e.g.
	 * `name='BioSemi'` or
	 * `type='EEG' and starts-with(name,'BioSemi') and count(info/desc/channel)=32`
	 * @param forget_after When a stream is no longer visible on the network (e.g., because it was
	 * shut down), this is the time in seconds after which it is no longer reported by the resolver.
	 */
	continuous_resolver(const std::string &pred, double forget_after = 5.0)
		: obj(lsl_create_continuous_resolver_bypred((pred.c_str()), forget_after), &lsl_destroy_continuous_resolver) {}

	/**
	 * Obtain the set of currently present streams on the network (i.e. resolve result).
	 * @return A vector of matching stream info objects (excluding their meta-data), any of
	 *         which can subsequently be used to open an inlet.
	 */
	std::vector<stream_info> results() {
		lsl_streaminfo buffer[1024];
		return std::vector<stream_info>(
			buffer, buffer + check_error(lsl_resolver_results(obj.get(), buffer, sizeof(buffer))));
	}

	/// Move constructor for stream_inlet
	continuous_resolver(continuous_resolver &&rhs) noexcept = default;
	continuous_resolver &operator=(continuous_resolver &&rhs) noexcept = default;

private:
	std::unique_ptr<lsl_continuous_resolver_, void(*)(lsl_continuous_resolver_*)> obj;
};


// ===============================
// ==== Exception Definitions ====
// ===============================

/// Exception class that indicates that a stream inlet's source has been irrecoverably lost.
class lost_error : public std::runtime_error {
public:
	explicit lost_error(const std::string &msg) : std::runtime_error(msg) {}
};


/// Exception class that indicates that an operation failed due to a timeout.
class timeout_error : public std::runtime_error {
public:
	explicit timeout_error(const std::string &msg) : std::runtime_error(msg) {}
};

/// Check error codes returned from the C interface and translate into appropriate exceptions.
inline int32_t check_error(int32_t ec) {
	if (ec < 0) {
		switch (ec) {
		case lsl_timeout_error: throw timeout_error("The operation has timed out.");
		case lsl_lost_error:
			throw timeout_error(
				"The stream has been lost; to continue reading, you need to re-resolve it.");
		case lsl_argument_error:
			throw std::invalid_argument("An argument was incorrectly specified.");
		case lsl_internal_error: throw std::runtime_error("An internal error has occurred.");
		default: throw std::runtime_error("An unknown error has occurred.");
		}
	}
	return ec;
}

} // namespace lsl

#endif // LSL_CPP_H