1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
#include <stdint.h>
#include "../../include/lsl_cpp.h"
#include <boost/chrono.hpp>
#include <boost/thread.hpp>
#include <boost/bind.hpp>
#include <boost/lexical_cast.hpp>
#include <iostream>
#include <map>
#include <time.h>
#include <stdlib.h>
using namespace std;
// set to true by the main program when we're ready to quit
bool stop_inlet = false, stop_outlet = false, start_outlet = false;
// get the current time
double now() { return lsl::local_clock(); }
// initialize a sample with data
template<class T>
vector<T> init_sample(int numchan) {
vector<T> sample(numchan);
for (int c=0;c<numchan;c++)
sample[c] = 17.3;
return sample;
}
// initialize a sample with data
template<class T>
void init_sample(int numchan, vector<T> &sample) {
sample.resize(numchan);
for (int c=0;c<numchan;c++)
sample[c] = 17.3f;
}
// run an outlet
template<class T>
void run_outlet(string name, string type, int numchan, lsl::channel_format_t fmt, double srate, int chunk_len, int max_samples) {
try {
// create a new streaminfo and outlet
std::ostringstream uid; uid << name << type << numchan << fmt;
lsl::stream_info info(name,type,numchan,srate,fmt,uid.str());
lsl::stream_outlet outlet(info);
cout << "outlet started." << endl;
while (!start_outlet)
lslboost::this_thread::sleep(lslboost::posix_time::milliseconds(1));
// initialize data to send
vector<T> sample,chunk;
init_sample(numchan,sample);
init_sample((int)(numchan*(chunk_len*srate/1000*5)),chunk);
// send in bursts
double start_time = lsl::local_clock();
for (int target,diff,written=0;written<max_samples && !stop_outlet;written+=diff) {
lslboost::this_thread::sleep(lslboost::posix_time::milliseconds(chunk_len));
target = (int)floor((lsl::local_clock()-start_time)*srate);
int num_elements = std::min((std::size_t)((target-written)*numchan),chunk.size());
outlet.push_chunk_multiplexed(&chunk[0],num_elements);
diff = num_elements/numchan;
}
cout << "outlet finished." << endl;
}
catch(lslboost::thread_interrupted &) {}
catch(std::exception &e) {
std::cerr << "ERROR during run_outlet() Stress-test function: " << e.what() << std::endl;
}
}
// run an inlet for some time (optionally with sporadic interruptions in between)
template<class T>
void run_inlet(string type, bool in_chunks, int buffer_len) {
try {
vector<vector<T> > chunk;
vector<T> sample;
// resolve by type and create inlet
vector<lsl::stream_info> results = lsl::resolve_stream("type",type);
lsl::stream_inlet inlet(results[0],buffer_len);
cout << "inlet started." << endl;
start_outlet = true;
// variables for data rate testing
double starttime = lsl::local_clock(), next_display = starttime+1;
double ts, last_ts;
// run
for (int k=0,num_samples=0;!stop_inlet;k++) {
lslboost::this_thread::sleep(lslboost::posix_time::milliseconds(10));
if (in_chunks) {
inlet.pull_chunk(chunk);
num_samples += chunk.size();
} else {
while (ts = inlet.pull_sample(sample,0.0)) {
last_ts = ts;
num_samples++;
}
}
// display code
if (k % 50 == 0) {
double now = lsl::local_clock();
if (now>next_display) {
cout << num_samples/(now-starttime) << " samples/sec" << endl; // " samples/sec; latency = " << 1000*(now-last_ts) << " ms." << endl; // NOTE: testing latency requires that data is sent with a burst length of 0
next_display = now+1;
}
}
}
cout << "inlet finished." << endl;
}
catch(lslboost::thread_interrupted &) {}
catch(std::exception &e) {
std::cerr << "ERROR during run_inlet() Stress-test function: " << e.what() << std::endl;
}
}
int main(int argc, char* argv[]) {
double srate = 500000;
int numchans = 1;
lsl::channel_format_t format = lsl::cf_int8;
int burstlen = 10;
int maxsamples = 10000000;
int bufferlen = 10;
if (argc > 1)
srate = lslboost::lexical_cast<double>(argv[1]);
if (argc > 2)
numchans = lslboost::lexical_cast<int>(argv[2]);
if (argc > 3) {
std::map<std::string,lsl::channel_format_t> m; m["int8"]=lsl::cf_int8;m["int16"]=lsl::cf_int16;m["int32"]=lsl::cf_int32;m["int64"]=lsl::cf_int64;m["float"]=lsl::cf_float32;m["double"]=lsl::cf_double64;m["float32"]=lsl::cf_float32;m["double64"]=lsl::cf_double64; m["string"]=lsl::cf_string;
format = m[argv[3]];
}
if (argc > 4)
burstlen = lslboost::lexical_cast<int>(argv[4]);
if (argc > 5)
maxsamples = lslboost::lexical_cast<int>(argv[5]);
if (argc > 6)
bufferlen = lslboost::lexical_cast<int>(argv[6]);
{
// fast serial transmission (1-channel char)
lslboost::thread outlet(lslboost::bind(&run_outlet<float>,"FastSerial","Serial",numchans,format,srate,burstlen,maxsamples));
lslboost::thread inlet(lslboost::bind(&run_inlet<float>,"Serial",false,bufferlen));
// typical audio transmission (44KHz, 2-ch, 16-bit, 512-sample chunks)
//boost::thread a(boost::bind(&run_outlet<char>,"TypicalAudio","Audio",2,lsl::cf_int16,44100,512,1000000));
//boost::thread b(boost::bind(&run_inlet<char>,"Audio",true,10));
// HD video transmission (30Hz, 2-ch, 16-bit, 512-sample chunks)
//boost::thread outlet(boost::bind(&run_outlet<char>,"HDVideo","Video",640*480*3,lsl::cf_int8,10,0,1000000));
//boost::thread inlet(boost::bind(&run_inlet<char>,"Video",false,1));
//boost::thread highchan_outlet_thread(boost::bind(&run_outlet,1000000,"HighChanStream","Video",1920*1080*3,lsl::cf_int8,60,1000000,-1));
//boost::thread highchan_inlet_thread(boost::bind(&run_inlet,1000000,"HighChanStream","Video",false,false,false,1000000));
//cout << "Press [Enter] to exit: " << endl; cin.get();
// take'em down
outlet.join();
stop_inlet = true;
inlet.join();
}
cout << "exiting..." << endl;
return 0;
}
|