1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
|
#
# Copyright (c) 2024 Analog Devices Inc.
#
# This file is part of libm2k
# (see http://www.github.com/analogdevicesinc/libm2k).
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 2.1 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# This example assumes the following connections:
# W1 -> 1+
# W2 -> 2+
# GND -> 1-
# GND -> 2-
#
# The application will generate a sine and triangular wave on W1 and W2. The signal is fed back into the analog input
# and the voltage values are displayed on the screen
import libm2k
import matplotlib.pyplot as plt
import time
import numpy as np
import struct
NB_OUT_SAMPLES = 1024
ctx=libm2k.m2kOpen()
if ctx is None:
print("Connection Error: No ADALM2000 device available/connected to your PC.")
exit(1)
ain=ctx.getAnalogIn()
aout=ctx.getAnalogOut()
trig=ain.getTrigger()
# Prevent bad initial config for ADC and DAC
ain.reset()
aout.reset()
ctx.calibrateADC()
ctx.calibrateDAC()
ain.enableChannel(0,True)
ain.enableChannel(1,True)
ain.setSampleRate(100000)
ain.setRange(0,-10,10)
ain.setKernelBuffersCount(1)
### uncomment the following block to enable triggering
#trig.setAnalogSource(0) # Channel 0 as source
#trig.setAnalogCondition(0,libm2k.RISING_EDGE_ANALOG)
#trig.setAnalogLevel(0,0.5) # Set trigger level at 0.5
#trig.setAnalogDelay(0) # Trigger is centered
#trig.setAnalogMode(1, libm2k.ANALOG)
aout.setSampleRate(0, 750000)
aout.setSampleRate(1, 750000)
aout.enableChannel(0, True)
aout.enableChannel(1, True)
x=np.linspace(-np.pi, np.pi, NB_OUT_SAMPLES)
buffer1=np.linspace(-3.0, 3.00, NB_OUT_SAMPLES)
buffer2=np.sin(x)
aout.setCyclic(True)
# Convert every voltage sample from the signal to its raw value.
# The library method expects a short* (C++), but in Python a bytearray is accepted.
# Change the type of the array from 'int64' to 'int16'.
buffer1_raw = np.array([aout.convertVoltsToRaw(0, item) for item in buffer1])
buffer1_raw = buffer1_raw.astype('int16')
buffer1_raw = bytearray(buffer1_raw)
buffer2_raw = np.array([aout.convertVoltsToRaw(1, item) for item in buffer2])
buffer2_raw = buffer2_raw.astype('int16')
buffer2_raw = bytearray(buffer2_raw)
aout.pushRawBytes(0, buffer1_raw, NB_OUT_SAMPLES)
aout.pushRawBytes(1, buffer2_raw, NB_OUT_SAMPLES)
for i in range(10): # gets 10 triggered samples then quits
ain.stopAcquisition()
data = ain.getSamplesRawInterleaved(1000) # allows a memory view
data = data.tobytes() # convert the memory view to a readable bytearray
count = int(len(data) / 2)
data = struct.unpack('h'*count, data) # interpret the raw interleaved samples as shorts
data1 = data[0::2]
data2 = data[1::2]
# convert raw values to Volts for each channel
data1 = [ain.convertRawToVolts(0, item) for item in data1]
data2 = [ain.convertRawToVolts(1, item) for item in data2]
print(data1)
plt.plot(data1)
plt.plot(data2)
plt.show()
time.sleep(0.1)
libm2k.contextClose(ctx)
|