1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
#
# Copyright (c) 2024 Analog Devices Inc.
#
# This file is part of libm2k
# (see http://www.github.com/analogdevicesinc/libm2k).
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 2.1 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
Requirements: x1 ADALM2000
This example assumes the following connections:
W1 -> 1+
W2 -> 2+
GND -> 1-
GND -> 2-
DIO_0 -> TI
This demo application alternates between generating a rising ramp signal and a sine wave on both output channels, W1 and W2.
The generated signal is then fed back into the analog input channels for further analysis or processing.
This rising edge is generated using the DIO_0 pin but could be generated from an external source.
The channel idles with the last sample of the current buffer until the next trigger event.
Rearm functionality:
- When rearm is enabled, the non-cyclic buffers are sent sequentially after each trigger event.
- When rearm is disabled, a trigger event will send all the buffers in the queue.
NOTE: Due to HDL limitation it is recommend combining small buffers into a small buffers when REARM is disabled.
NOTE: All buffers must be of the same size.
"""
import time
import libm2k
import numpy as np
import matplotlib.pyplot as plt
# NOTE: change to see the effect of rearm on non-cyclic buffers
WITH_REARM = True
DAC_SR = 75_000_000
INPUT_BUFFER_SIZE = 20_000
DELAY = 8192
TRIGGER_THRESHOLD = 1
N_SAMPLES = 2048
AMPLITUDE = 5
# Each push operation consumes one kernel buffer for the specified channel.
# Therefore, if you plan to perform N push operations, ensure that you have N + 1 kernel buffers available.
KB_COUNT_OUT = 5
def main():
try:
context: libm2k.M2k = libm2k.m2kOpen("ip:192.168.2.1")
if context is None:
print("Connection Error: No ADALM2000 device available/connected to your PC.")
exit(1)
ain: libm2k.M2kAnalogIn = context.getAnalogIn()
aout: libm2k.M2kAnalogOut = context.getAnalogOut()
dig: libm2k.M2kDigital = context.getDigital()
trig: libm2k.M2kHardwareTrigger = ain.getTrigger()
# Prevent bad initial configuration
context.reset()
context.calibrateADC()
context.calibrateDAC()
context.setTimeout(10_000) # [ms]
ain.setSampleRate(100_000_000)
ain.enableChannel(libm2k.ANALOG_IN_CHANNEL_1, True)
ain.enableChannel(libm2k.ANALOG_IN_CHANNEL_2, True)
aout.setSampleRate(0, DAC_SR)
aout.setSampleRate(1, DAC_SR)
aout.enableChannel(0, True)
aout.enableChannel(1, True)
aout.setKernelBuffersCount(0, KB_COUNT_OUT)
aout.setKernelBuffersCount(1, KB_COUNT_OUT)
aout.setCyclic(False)
dig.setSampleRateOut(100_000_000)
dig.setDirection(libm2k.DIO_CHANNEL_0, libm2k.DIO_OUTPUT)
dig.setOutputMode(libm2k.DIO_CHANNEL_0, libm2k.DIO_PUSHPULL)
dig.setValueRaw(libm2k.DIO_CHANNEL_0, libm2k.LOW)
dig.enableChannel(libm2k.DIO_CHANNEL_0, True)
# ain acquisition trigger
trig.setAnalogSource(libm2k.ANALOG_IN_CHANNEL_1)
trig.setAnalogCondition(libm2k.ANALOG_IN_CHANNEL_1, libm2k.RISING_EDGE_ANALOG)
trig.setAnalogLevel(libm2k.ANALOG_IN_CHANNEL_1, TRIGGER_THRESHOLD)
trig.setAnalogDelay(-DELAY)
trig.setAnalogMode(libm2k.ANALOG_IN_CHANNEL_1, libm2k.ANALOG)
trig.setAnalogMode(libm2k.ANALOG_IN_CHANNEL_1, libm2k.ANALOG)
# aout triggering: starts when the TI pin is triggered
trig.setAnalogOutTriggerSource(libm2k.TRIGGER_TI)
trig.setAnalogOutTriggerCondition(libm2k.RISING_EDGE_OUT)
trig.setAnalogOutTriggerStatus(libm2k.START)
aout.setBufferRearmOnTrigger(WITH_REARM)
print("Starting acquisition ...")
ain.startAcquisition(INPUT_BUFFER_SIZE)
print("Sending waveforms to DAC ...")
rising_ramp = AMPLITUDE * (np.linspace(-1, 1, N_SAMPLES))
sine = AMPLITUDE * np.sin(np.linspace(0, 2 * np.pi, N_SAMPLES))
# sine = AMPLITUDE * np.sin(np.linspace(0, 2 * np.pi, N_SAMPLES))
aout.push([rising_ramp, rising_ramp])
aout.push([sine, sine])
aout.push([rising_ramp, rising_ramp])
aout.push([sine, sine])
for i in range(4 if WITH_REARM else 1):
print("Waiting for trigger ...")
time.sleep(0.5)
print("Sending trigger event ...")
dig.setValueRaw(libm2k.DIO_CHANNEL_0, libm2k.HIGH)
data = np.array(ain.getSamples(INPUT_BUFFER_SIZE))
time_axis = np.linspace(0, len(data[0]) / ain.getSampleRate(), len(data[0])) * 1e6
plt.plot(time_axis, data[0], label="W1")
plt.plot(time_axis, data[1], label="W2")
plt.xlabel("Time [us]")
plt.ylabel("Voltage [V]")
plt.legend(loc="upper right")
plt.grid(True)
plt.show()
dig.setValueRaw(libm2k.DIO_CHANNEL_0, libm2k.LOW)
except Exception as e:
print("Timeout occurred ... No trigger event detected")
print(e)
libm2k.contextClose(context)
if __name__ == '__main__':
main()
|