1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
|
/*
* Copyright (c) 2019 Analog Devices Inc.
*
* This file is part of libm2k
* (see http://www.github.com/analogdevicesinc/libm2k).
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 2.1 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
// This example assumes the following connections:
// W1 -> 1+
// W2 -> 2+
// GND -> 1-
// GND -> 2-
//
// This example shows the analog streaming feature of the m2k
//
// Running example: ./stream_test_adc uri=usb:1.6.5 kernel=64 oversampling_ratio=10 no_samples=15384 frequency_out=75000 amplitude_out=2.0 timeout=5
//
// Help:
// -kernel : integer number of desired kernel buffers
// -oversampling_ratio : integer number to determine sample_rate for ADC (sample_rate = 100MHz/oversampling-ratio
// -no_samples : integer number to determine the buffer size for ADC
// -frequency_out : The frequency of sawtooth signal generated on the DAC channels (in Hz)
// -amplitude_out: The frequency of sawtooth signal generated on the DAC channels (in Volts)
// -timeout: How long should this test run. Leave empty to run forever.
//
// The application will generate a sawtooth wave on W1 and W2.
// (The amplitude and frequency should be provided as arguments to this application).
// The signal is fed back into the analog input and the voltage values are analyzed by the Analog Input.
// If a timeout value is provided, the program will exit and print whether the capture was stable
// with the Analog In running at the provided samplerate.
#include <iostream>
#include <libm2k/m2k.hpp>
#include <libm2k/contextbuilder.hpp>
#include <libm2k/analog/m2kanalogin.hpp>
#include <libm2k/analog/m2kanalogout.hpp>
#include <bitset>
#include <queue>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <cmath>
#include <fstream>
using namespace std;
using namespace libm2k;
using namespace libm2k::analog;
using namespace libm2k::context;
#define MAX_SAMPLE_RATE_OUT 75000000
#define MAX_SAMPLE_RATE_IN 100000000
static int KERNEL_BUFFERS_COUNT;
static string URI;
static int OVERSAMPLING_RATIO;
static int IN_NO_SAMPLES;
static double FREQUENCY_SIGNAL_OUT;
static double AMPLITUDE_SIGNAL_OUT;
static double TIMEOUT = 0;
static double OFFSET_SIGNAL_OUT;
static bool DONT_STOP_STREAMING = true;
static vector<bool> running {true, true};
static std::mutex data_mtx, process_mtx, analyze_mtx;
static std::condition_variable cv_process, cv_process_done, cv_analyze;
static const short* tmp_buffer_p = nullptr;
static std::vector<queue<double>> values = {std::queue<double>(), std::queue<double>()};
std::vector<double> generate_sawtooth_wave(double signal_frequency, double signal_amplitude, double signal_offset)
{
std::vector<double> best_buffer_out;
double best_fract = 1.0;
double current_fract;
double current_int;
double N_BUFFER = 0;
double N_SIGNAL = MAX_SAMPLE_RATE_OUT / signal_frequency;
for (int i = 1; i < 10000; i++) {
N_BUFFER = i * N_SIGNAL;
current_fract = modf (N_BUFFER, ¤t_int);
if ((current_fract == 0.0) && (((int)N_BUFFER % 4) == 0)) {
break;
}
if (current_fract < best_fract) {
best_fract = current_fract;
}
}
for (int i = 0; i < N_BUFFER; i++) {
double intpart;
double fract = modf(i / N_SIGNAL, &intpart);
double sawtooth_val = (signal_amplitude * fract) + signal_offset;
best_buffer_out.push_back(sawtooth_val);
}
return best_buffer_out;
}
void refill_thread(M2kAnalogIn *ain) {
while (DONT_STOP_STREAMING) {
unique_lock<mutex> lock(data_mtx);
cv_process.wait(lock, ([](){return (tmp_buffer_p == nullptr); }));
tmp_buffer_p = ain->getSamplesRawInterleaved(IN_NO_SAMPLES);
lock.unlock();
cv_process.notify_one();
}
}
void process_thread(M2kAnalogIn *ain){
while (true) {
unique_lock<mutex> lock(data_mtx);
int nb_channels = ain->getNbChannels();
if (!DONT_STOP_STREAMING && tmp_buffer_p == nullptr) {
cv_analyze.notify_all();
lock.unlock();
break;
}
cv_process.wait(lock, ([](){return (tmp_buffer_p != nullptr); }));
unique_lock<mutex> lock_analyze(analyze_mtx);
for (int i = 0; i < IN_NO_SAMPLES; i++) {
values[0].push(ain->convertRawToVolts(0, tmp_buffer_p[i * nb_channels]));
values[1].push(ain->convertRawToVolts(1, tmp_buffer_p[i * nb_channels + 1]));
}
lock_analyze.unlock();
tmp_buffer_p = nullptr;
lock.unlock();
cv_process.notify_one();
cv_analyze.notify_all();
}
}
void analyze_thread(M2kAnalogIn *ain, unsigned int channel) {
int buffer_counter = 0;
int current_index = 0;
int samp_cnt = 0; // count the samples between zero crossings
int prev_samp_cnt = 0; // the previous count
int nb_crossings = 0;
double last_sample = 0;
bool stable = true;
std::ofstream outfile;
std::string filename = "stream-ch" + to_string(channel) + ".csv";
outfile.open(filename);
outfile.close();
while (true) {
unique_lock<mutex> lock(analyze_mtx);
if (!DONT_STOP_STREAMING && values[channel].empty()) {
lock.unlock();
break;
}
cv_analyze.wait(lock, ([&channel]{ return (!values[channel].empty()); }));
lock.unlock();
stable = true;
std::ofstream outfile;
std::string filename = "stream-ch" + to_string(channel) + ".csv";
outfile.open(filename, std::ofstream::app);
/* If this is the first aquired buffer, find the first transition
* And also initialize the counters */
if (nb_crossings == 0) {
last_sample = values[channel].front();
unique_lock<mutex> lock(analyze_mtx);
values[channel].pop();
lock.unlock();
outfile << last_sample << "\n";
current_index++;
while (values[channel].size() > 0) {
double current_sample = values[channel].front();
// find the difference between the first 2 zero crossings on falling edge
if ((current_sample <= 0) && (last_sample > 0) && (abs(current_sample - last_sample) >= 0.1)) {
prev_samp_cnt = samp_cnt;
samp_cnt = 1;
nb_crossings++;
} else {
samp_cnt++;
}
outfile << current_sample << "\n";
last_sample = current_sample;
unique_lock<mutex> lock(analyze_mtx);
values[channel].pop();
lock.unlock();
current_index++;
if (nb_crossings > 1) {
break;
}
}
}
while (values[channel].size() > 0) {
double current_sample = values[channel].front();
if ((current_sample <= 0) && (last_sample > 0) && (abs(last_sample - current_sample) >= 0.1)) {
if (abs(prev_samp_cnt - samp_cnt) > 1) {
stable = false;
std::cout << std::endl << "UNSTABLE channel: " << channel
<< " cross. len: " << samp_cnt
<< " from len: " << prev_samp_cnt
<< " @ index " << current_index;
}
samp_cnt = 1;
nb_crossings++;
} else {
samp_cnt++;
}
if (current_index % IN_NO_SAMPLES == 0) {
std::cout << " channel: " << channel
<< " @ buffer: " << current_index/IN_NO_SAMPLES << std::endl;
}
outfile << current_sample << "\n";
last_sample = current_sample;
unique_lock<mutex> lock(analyze_mtx);
values[channel].pop();
lock.unlock();
current_index++;
}
if (nb_crossings == 0) {
stable = false;
}
outfile.close();
buffer_counter++;
}
std::cout << ((stable) ? " STABLE, " : "UNSTABLE, ") << " channel " << channel << std::endl;
running[channel] = false;
cv_process_done.notify_one();
}
std::vector<std::string> split(std::string s, std::string delimiter) {
size_t pos_start = 0, pos_end, delim_len = delimiter.length();
std::string token;
std::vector<std::string> res;
while ((pos_end = s.find(delimiter, pos_start)) != string::npos) {
token = s.substr(pos_start, pos_end - pos_start);
pos_start = pos_end + delim_len;
res.push_back(token);
}
res.push_back(s.substr(pos_start));
return res;
}
int main(int argc, char **argv)
{
if (argc != 8) {
std::cout << "Missing parameters: 'stream_test_adc.exe uri=<usb:x.y.z or ip:192.168.2.1>"
"kernel=<1..64> "
"oversampling_ratio=<1..1E6> "
"no_samples=<int> "
"frequency_out=<double> "
"amplitude_out=<1.0..5.0> "
"timeout=<seconds> ' \n\n"
"Help:\n"
"-uri : The URI of ADALM2000.\n"
"-kernel : integer number of desired kernel buffers\n"
"-oversampling_ratio : integer number to determine sample_rate for ADC (sample_rate = 100MHz/oversampling-ratio\n"
"-no_samples : integer number to determine the buffer size for ADC\n"
"-frequency_out : The frequency of sawtooth signal generated on the DAC channels (in Hz)\n"
"-amplitude_out: The frequency of sawtooth signal generated on the DAC channels (in Volts)\n"
"-timeout: How long should this test run. Leave empty to run forever."
<< std::endl;
return 1;
}
URI = split(argv[1], "=")[1];
KERNEL_BUFFERS_COUNT = stoi(split(argv[2], "=")[1]);
OVERSAMPLING_RATIO = stoi(split(argv[3], "=")[1]);
IN_NO_SAMPLES = stoi(split(argv[4], "=")[1]);
FREQUENCY_SIGNAL_OUT = stod(split(argv[5], "=")[1]);
AMPLITUDE_SIGNAL_OUT = stod(split(argv[6], "=")[1]);
auto tmp = split(argv[7], "=");
if (tmp[1] != "") {
TIMEOUT = stod(tmp[1]);
} else {
TIMEOUT = 0;
}
OFFSET_SIGNAL_OUT = -(AMPLITUDE_SIGNAL_OUT/2);
printf("ADC stream speed test parameters\nDAC generating a %f sawtooth of amplitude %f\nBuffersize: %d\nKernel Buffers: %d\nADC Samplerate: %f\n",
FREQUENCY_SIGNAL_OUT, AMPLITUDE_SIGNAL_OUT, IN_NO_SAMPLES, KERNEL_BUFFERS_COUNT, (double)MAX_SAMPLE_RATE_IN / OVERSAMPLING_RATIO);
M2k *ctx = m2kOpen(URI.c_str());
if (!ctx) {
std::cout << "Connection Error: No ADALM2000 device available/connected to your PC." << std::endl;
return 1;
}
M2kAnalogIn *ain = ctx->getAnalogIn();
M2kAnalogOut *aout = ctx->getAnalogOut();
M2kHardwareTrigger *trig = ain->getTrigger();
// Prevent bad initial config
ain->reset();
aout->reset();
ctx->calibrateADC();
ctx->calibrateDAC();
/* Always use MAX_SR_IN, adjust the samplerate using oversampling_ratio (sr_divider) */
ain->setSampleRate(MAX_SAMPLE_RATE_IN);
aout->setSampleRate(0, MAX_SAMPLE_RATE_OUT);
aout->setSampleRate(1, MAX_SAMPLE_RATE_OUT);
// set number of kernel buffers for the analog input interface
ain->setKernelBuffersCount(KERNEL_BUFFERS_COUNT);
for(unsigned int i = 0; i < ain->getNbChannels(); i++) {
ain->enableChannel(i, true);
}
trig->setAnalogMode(0, ALWAYS);
trig->setAnalogMode(1, ALWAYS);
auto buf_ch1 = generate_sawtooth_wave(FREQUENCY_SIGNAL_OUT, AMPLITUDE_SIGNAL_OUT, OFFSET_SIGNAL_OUT);
vector<vector<double>> bufferOut {buf_ch1, buf_ch1};
/* Enable the DAC channels before every push(after every stop) in order to setup powerdown */
aout->enableChannel(0, true);
aout->enableChannel(1, true);
aout->setOversamplingRatio(0, 1);
aout->setOversamplingRatio(1, 1);
aout->setCyclic(true);
aout->push(bufferOut);
ain->setOversamplingRatio(OVERSAMPLING_RATIO);
trig->setAnalogStreamingFlag(false);
trig->setAnalogStreamingFlag(true);
// Startup refill threads
std::thread producer = std::thread([](M2kAnalogIn *ain){ refill_thread(ain); }, ain);
std::thread consumer = std::thread([](M2kAnalogIn *ain){ process_thread(ain); }, ain);
std::thread analyzer_ch0 = std::thread([](M2kAnalogIn *ain, unsigned int ch){ analyze_thread(ain, ch); }, ain, 0);
std::thread analyzer_ch1 = std::thread([](M2kAnalogIn *ain, unsigned int ch){ analyze_thread(ain, ch); }, ain, 1);
if (TIMEOUT != 0) {
std::this_thread::sleep_for(std::chrono::duration<double>(TIMEOUT));
DONT_STOP_STREAMING = false;
}
std::unique_lock<std::mutex> lk(process_mtx);
cv_process_done.wait(lk, []{return (!running[0] && ! running[1]);});
producer.join();
consumer.join();
analyzer_ch0.join();
analyzer_ch1.join();
ain->cancelAcquisition();
ain->stopAcquisition();
aout->stop();
ain->setOversamplingRatio(1);
contextClose(ctx);
return 0;
}
|