File: stream_test_adc.cpp

package info (click to toggle)
libm2k 0.9.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 95,580 kB
  • sloc: xml: 1,611,497; cpp: 16,278; python: 4,181; cs: 516; sh: 471; ansic: 403; makefile: 35
file content (388 lines) | stat: -rw-r--r-- 12,312 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
/*
 * Copyright (c) 2019 Analog Devices Inc.
 *
 * This file is part of libm2k
 * (see http://www.github.com/analogdevicesinc/libm2k).
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation, either version 2.1 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 *
 */

// This example assumes the following connections:
// W1 -> 1+
// W2 -> 2+
// GND -> 1-
// GND -> 2-
//
// This example shows the analog streaming feature of the m2k
//
// Running example: ./stream_test_adc uri=usb:1.6.5  kernel=64 oversampling_ratio=10 no_samples=15384 frequency_out=75000 amplitude_out=2.0 timeout=5
//
// Help:
// -kernel : integer number of desired kernel buffers
// -oversampling_ratio : integer number to determine sample_rate for ADC (sample_rate = 100MHz/oversampling-ratio
// -no_samples : integer number to determine the buffer size for ADC
// -frequency_out : The frequency of sawtooth signal generated on the DAC channels (in Hz)
// -amplitude_out: The frequency of sawtooth signal generated on the DAC channels (in Volts)
// -timeout: How long should this test run. Leave empty to run forever.
//
// The application will generate a sawtooth wave on W1 and W2.
// (The amplitude and frequency should be provided as arguments to this application).
// The signal is fed back into the analog input and the voltage values are analyzed by the Analog Input.
// If a timeout value is provided, the program will exit and print whether the capture was stable
// with the Analog In running at the provided samplerate.

#include <iostream>
#include <libm2k/m2k.hpp>
#include <libm2k/contextbuilder.hpp>
#include <libm2k/analog/m2kanalogin.hpp>
#include <libm2k/analog/m2kanalogout.hpp>
#include <bitset>
#include <queue>

#include <thread>
#include <mutex>
#include <condition_variable>
#include <cmath>
#include <fstream>

using namespace std;
using namespace libm2k;
using namespace libm2k::analog;
using namespace libm2k::context;

#define MAX_SAMPLE_RATE_OUT 75000000
#define MAX_SAMPLE_RATE_IN 100000000

static int KERNEL_BUFFERS_COUNT;
static string URI;
static int OVERSAMPLING_RATIO;
static int IN_NO_SAMPLES;
static double FREQUENCY_SIGNAL_OUT;
static double AMPLITUDE_SIGNAL_OUT;
static double TIMEOUT = 0;
static double OFFSET_SIGNAL_OUT;

static bool DONT_STOP_STREAMING = true;
static vector<bool> running {true, true};
static std::mutex data_mtx, process_mtx, analyze_mtx;
static std::condition_variable cv_process, cv_process_done, cv_analyze;
static const short* tmp_buffer_p = nullptr;
static std::vector<queue<double>> values = {std::queue<double>(), std::queue<double>()};


std::vector<double> generate_sawtooth_wave(double signal_frequency, double signal_amplitude, double signal_offset)
{
	std::vector<double> best_buffer_out;
	double best_fract = 1.0;
	double current_fract;
	double current_int;
	double N_BUFFER = 0;
	double N_SIGNAL = MAX_SAMPLE_RATE_OUT / signal_frequency;
	for (int i = 1; i < 10000; i++) {
		N_BUFFER = i * N_SIGNAL;
		current_fract = modf (N_BUFFER, &current_int);
		if ((current_fract == 0.0) && (((int)N_BUFFER % 4) == 0)) {
			break;
		}
		if (current_fract < best_fract) {
			best_fract = current_fract;
		}
	}

	for (int i = 0; i < N_BUFFER; i++) {
		double intpart;
		double fract = modf(i / N_SIGNAL, &intpart);
		double sawtooth_val = (signal_amplitude * fract) + signal_offset;
		best_buffer_out.push_back(sawtooth_val);
	}

	return best_buffer_out;
}

void refill_thread(M2kAnalogIn *ain) {
	while (DONT_STOP_STREAMING) {
		unique_lock<mutex> lock(data_mtx);

		cv_process.wait(lock, ([](){return (tmp_buffer_p == nullptr); }));
		tmp_buffer_p = ain->getSamplesRawInterleaved(IN_NO_SAMPLES);

		lock.unlock();
		cv_process.notify_one();
	}
}

void process_thread(M2kAnalogIn *ain){
	while (true) {
		unique_lock<mutex> lock(data_mtx);
		int nb_channels = ain->getNbChannels();

		if (!DONT_STOP_STREAMING && tmp_buffer_p == nullptr) {
			cv_analyze.notify_all();
			lock.unlock();
			break;
		}

		cv_process.wait(lock, ([](){return (tmp_buffer_p != nullptr); }));
		unique_lock<mutex> lock_analyze(analyze_mtx);
		for (int i = 0; i < IN_NO_SAMPLES; i++) {
			values[0].push(ain->convertRawToVolts(0, tmp_buffer_p[i * nb_channels]));
			values[1].push(ain->convertRawToVolts(1, tmp_buffer_p[i * nb_channels + 1]));
		}
		lock_analyze.unlock();
		tmp_buffer_p = nullptr;

		lock.unlock();
		cv_process.notify_one();
		cv_analyze.notify_all();
	}
}


void analyze_thread(M2kAnalogIn *ain, unsigned int channel) {
	int buffer_counter = 0;
	int current_index = 0;
	int samp_cnt = 0;		// count the samples between zero crossings
	int prev_samp_cnt = 0;		// the previous count
	int nb_crossings = 0;
	double last_sample = 0;
	bool stable = true;


	std::ofstream outfile;
	std::string filename = "stream-ch" + to_string(channel) + ".csv";
	outfile.open(filename);
	outfile.close();

	while (true) {
		unique_lock<mutex> lock(analyze_mtx);

		if (!DONT_STOP_STREAMING && values[channel].empty()) {
			lock.unlock();
			break;
		}

		cv_analyze.wait(lock, ([&channel]{ return (!values[channel].empty()); }));
		lock.unlock();

		stable = true;

		std::ofstream outfile;
		std::string filename = "stream-ch" + to_string(channel) + ".csv";
		outfile.open(filename, std::ofstream::app);

		/* If this is the first aquired buffer, find the first transition
			 * And also initialize the counters */
		if (nb_crossings == 0) {
			last_sample = values[channel].front();
			unique_lock<mutex> lock(analyze_mtx);
			values[channel].pop();
			lock.unlock();
			outfile << last_sample << "\n";
			current_index++;
			while (values[channel].size() > 0) {
				double current_sample = values[channel].front();
				// find the difference between the first 2 zero crossings on falling edge
				if ((current_sample <= 0) && (last_sample > 0) && (abs(current_sample - last_sample) >= 0.1)) {
					prev_samp_cnt = samp_cnt;
					samp_cnt = 1;
					nb_crossings++;
				} else {
					samp_cnt++;
				}
				outfile << current_sample << "\n";
				last_sample = current_sample;
				unique_lock<mutex> lock(analyze_mtx);
				values[channel].pop();
				lock.unlock();
				current_index++;

				if (nb_crossings > 1) {
					break;
				}
			}
		}

		while (values[channel].size() > 0) {
			double current_sample = values[channel].front();

			if ((current_sample <= 0) && (last_sample > 0) && (abs(last_sample - current_sample) >= 0.1)) {
				if (abs(prev_samp_cnt - samp_cnt) > 1) {
					stable = false;
					std::cout << std::endl << "UNSTABLE channel: " << channel
						  << " cross. len: " << samp_cnt
						  << " from len: " << prev_samp_cnt
						  << " @ index " << current_index;
				}
				samp_cnt = 1;
				nb_crossings++;
			} else {
				samp_cnt++;
			}

			if (current_index % IN_NO_SAMPLES == 0) {
				std::cout << " channel: " << channel
					  << " @ buffer: " << current_index/IN_NO_SAMPLES << std::endl;
			}
			outfile << current_sample << "\n";
			last_sample = current_sample;
			unique_lock<mutex> lock(analyze_mtx);
			values[channel].pop();
			lock.unlock();
			current_index++;
		}

		if (nb_crossings == 0) {
			stable = false;
		}

		outfile.close();
		buffer_counter++;
	}
	std::cout << ((stable) ? "  STABLE, " : "UNSTABLE, ") << " channel " << channel << std::endl;
	running[channel] = false;
	cv_process_done.notify_one();
}


std::vector<std::string> split(std::string s, std::string delimiter) {
	size_t pos_start = 0, pos_end, delim_len = delimiter.length();
	std::string token;
	std::vector<std::string> res;
	while ((pos_end = s.find(delimiter, pos_start)) != string::npos) {
		token = s.substr(pos_start, pos_end - pos_start);
		pos_start = pos_end + delim_len;
		res.push_back(token);
	}
	res.push_back(s.substr(pos_start));
	return res;
}


int main(int argc, char **argv)
{
	if (argc != 8) {
		std::cout << "Missing parameters: 'stream_test_adc.exe uri=<usb:x.y.z or ip:192.168.2.1>"
			     "kernel=<1..64> "
			     "oversampling_ratio=<1..1E6> "
			     "no_samples=<int> "
			     "frequency_out=<double> "
			     "amplitude_out=<1.0..5.0> "
			     "timeout=<seconds> ' \n\n"
			     "Help:\n"
			     "-uri : The URI of ADALM2000.\n"
			     "-kernel : integer number of desired kernel buffers\n"
			     "-oversampling_ratio : integer number to determine sample_rate for ADC (sample_rate = 100MHz/oversampling-ratio\n"
			     "-no_samples : integer number to determine the buffer size for ADC\n"
			     "-frequency_out : The frequency of sawtooth signal generated on the DAC channels (in Hz)\n"
			     "-amplitude_out: The frequency of sawtooth signal generated on the DAC channels (in Volts)\n"
			     "-timeout: How long should this test run. Leave empty to run forever."
			  << std::endl;
		return 1;
	}

	URI = split(argv[1], "=")[1];
	KERNEL_BUFFERS_COUNT = stoi(split(argv[2], "=")[1]);
	OVERSAMPLING_RATIO =  stoi(split(argv[3], "=")[1]);
	IN_NO_SAMPLES =  stoi(split(argv[4], "=")[1]);
	FREQUENCY_SIGNAL_OUT =  stod(split(argv[5], "=")[1]);
	AMPLITUDE_SIGNAL_OUT = stod(split(argv[6], "=")[1]);
	auto tmp = split(argv[7], "=");
	if (tmp[1] != "") {
		TIMEOUT = stod(tmp[1]);
	} else {
		TIMEOUT = 0;
	}
	OFFSET_SIGNAL_OUT = -(AMPLITUDE_SIGNAL_OUT/2);


	printf("ADC stream speed test parameters\nDAC generating a %f sawtooth of amplitude %f\nBuffersize: %d\nKernel Buffers: %d\nADC Samplerate: %f\n",
	       FREQUENCY_SIGNAL_OUT, AMPLITUDE_SIGNAL_OUT, IN_NO_SAMPLES, KERNEL_BUFFERS_COUNT, (double)MAX_SAMPLE_RATE_IN / OVERSAMPLING_RATIO);

	M2k *ctx = m2kOpen(URI.c_str());
	if (!ctx) {
		std::cout << "Connection Error: No ADALM2000 device available/connected to your PC." << std::endl;
		return 1;
	}

	M2kAnalogIn *ain = ctx->getAnalogIn();
	M2kAnalogOut *aout = ctx->getAnalogOut();
	M2kHardwareTrigger *trig = ain->getTrigger();

	// Prevent bad initial config
	ain->reset();
	aout->reset();

	ctx->calibrateADC();
	ctx->calibrateDAC();

	/* Always use MAX_SR_IN, adjust the samplerate using oversampling_ratio (sr_divider) */
	ain->setSampleRate(MAX_SAMPLE_RATE_IN);
	aout->setSampleRate(0, MAX_SAMPLE_RATE_OUT);
	aout->setSampleRate(1, MAX_SAMPLE_RATE_OUT);

	// set number of kernel buffers for the analog input interface
	ain->setKernelBuffersCount(KERNEL_BUFFERS_COUNT);

	for(unsigned int i = 0; i < ain->getNbChannels(); i++) {
		ain->enableChannel(i, true);
	}

	trig->setAnalogMode(0, ALWAYS);
	trig->setAnalogMode(1, ALWAYS);

	auto buf_ch1 = generate_sawtooth_wave(FREQUENCY_SIGNAL_OUT, AMPLITUDE_SIGNAL_OUT, OFFSET_SIGNAL_OUT);
	vector<vector<double>> bufferOut {buf_ch1, buf_ch1};

	/* Enable the DAC channels before every push(after every stop) in order to setup powerdown */
	aout->enableChannel(0, true);
	aout->enableChannel(1, true);
	aout->setOversamplingRatio(0, 1);
	aout->setOversamplingRatio(1, 1);

	aout->setCyclic(true);
	aout->push(bufferOut);

	ain->setOversamplingRatio(OVERSAMPLING_RATIO);
	trig->setAnalogStreamingFlag(false);
	trig->setAnalogStreamingFlag(true);

	// Startup refill threads
	std::thread producer = std::thread([](M2kAnalogIn *ain){ refill_thread(ain); }, ain);
	std::thread consumer = std::thread([](M2kAnalogIn *ain){ process_thread(ain); }, ain);
	std::thread analyzer_ch0 = std::thread([](M2kAnalogIn *ain, unsigned int ch){ analyze_thread(ain, ch); }, ain, 0);
	std::thread analyzer_ch1 = std::thread([](M2kAnalogIn *ain, unsigned int ch){ analyze_thread(ain, ch); }, ain, 1);

	if (TIMEOUT != 0) {
		std::this_thread::sleep_for(std::chrono::duration<double>(TIMEOUT));
		DONT_STOP_STREAMING = false;
	}

	std::unique_lock<std::mutex> lk(process_mtx);
	cv_process_done.wait(lk, []{return (!running[0] && ! running[1]);});

	producer.join();
	consumer.join();
	analyzer_ch0.join();
	analyzer_ch1.join();


	ain->cancelAcquisition();
	ain->stopAcquisition();
	aout->stop();
	ain->setOversamplingRatio(1);
	contextClose(ctx);

	return 0;
}