1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
|
#
# Copyright (c) 2024 Analog Devices Inc.
#
# This file is part of libm2k
# (see http://www.github.com/analogdevicesinc/libm2k).
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 2.1 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
from scipy.stats import pearsonr
from scipy.signal import find_peaks
import numpy as np
import math
import matplotlib.pyplot as plt
import libm2k
import time
from multiprocessing.pool import ThreadPool
import threading
import os
from pandas import DataFrame
import pandas
import random
import sys
import reset_def_values as reset
from helpers import get_result_files, get_sample_rate_display_format, get_time_format, save_data_to_csv, plot_to_file, plot_to_file_multiline
from open_context import ctx_timeout, ctx
from create_files import results_file, results_dir, csv
from shapefile import shape_gen, Shape
# dicts that will be saved to csv files
shape_csv_vals = {}
ampl_csv_vals = {}
phasediff_csv_vals = {}
offset_csv_vals = {}
trig_csv_vals = {}
cyclic_csv_vals = {}
freq_csv_vals = {}
osr_csv_vals = {}
timeout_csv_vals = {}
gen_reports = True
def set_trig_for_signalshape_test(i, channel, trig, delay):
# Set the trigger for verifying the signal shapes
# Arguments:
# i -- Number of the iteration, corresponds to the shape from:
# ['Sine','Square', 'Triangle','Rising_ramp','Falling_ramp']
# channel -- Analog channel under test
# trig -- Trigger object
# delay -- Trigger delay
if i == 0:
set_trig(trig, channel, delay, libm2k.FALLING_EDGE_ANALOG, 0)
elif i == 1:
set_trig(trig, channel, delay, libm2k.FALLING_EDGE_ANALOG, 0)
elif i == 2:
set_trig(trig, channel, delay, libm2k.RISING_EDGE_ANALOG, -0.98)
elif i == 3:
set_trig(trig, channel, 1, libm2k.RISING_EDGE_ANALOG, -0.98)
elif i == 4:
set_trig(trig, channel, 1, libm2k.FALLING_EDGE_ANALOG, 0.98)
return
def set_samplerates_for_shapetest(ain, aout):
# Set the sample rates of DAC and ADC, and compute the number of samples in the input buffer
# Arguments:
# ain -- AnalogIn object
# aout --AnalogOut object
# Returns:
# out0_buffer_samples -- nr of samples in the output buffer on ch0
# out1_buffer_samples -- nr of samples in the output buffer on ch1
# ch0_sample_ratio -- ratio between DAC and ADC samplerates on ch0
# ch1_sample_ratio -- ratio between DAC and ADC samplerates on ch1
# in0_buffer_samples -- nr of samples in the input buffer on ch0
# in1_buffer_samples -- nr of samples in the input buffer on ch0
adc_sample_rate = 1000000
dac_a_sample_rate = 7500000
dac_b_sample_rate = 7500000
test_frequency = 1831
out0_buffer_samples = int(dac_a_sample_rate / test_frequency)
out1_buffer_samples = int(dac_b_sample_rate / test_frequency)
ain.setSampleRate(adc_sample_rate)
aout.setSampleRate(libm2k.ANALOG_IN_CHANNEL_1, dac_a_sample_rate)
aout.setSampleRate(libm2k.ANALOG_IN_CHANNEL_2, dac_b_sample_rate)
ch0_sample_ratio = dac_a_sample_rate / adc_sample_rate
ch1_sample_ratio = dac_b_sample_rate / adc_sample_rate
in0_buffer_samples = int(adc_sample_rate / test_frequency)
in1_buffer_samples = int(adc_sample_rate / test_frequency)
return out0_buffer_samples, out1_buffer_samples, ch0_sample_ratio, ch1_sample_ratio, in0_buffer_samples, in1_buffer_samples
def set_trig(trig, channel, delay, cond=None, level=None):
# Set analog trigger as needed for specific operations
# Arguments:
# trig -- Trigger object
# channel -- Analog channel under test
# delay -- Delay value for the trigger
# Keyword Arguments:
# cond -- Trigger condition (default: {None})
# level -- Trigger level value (default: {None})
trig.setAnalogMode(channel, libm2k.ANALOG) # set analog trigger
trig.setAnalogHysteresis(channel, 0)
trig.setAnalogSource(channel)
trig.setAnalogSourceChannel(channel)
trig.setAnalogDelay(-delay)
if cond is not None:
trig.setAnalogCondition(channel, cond)
if level is not None:
trig.setAnalogLevel(channel, level)
return
def test_calibration(ctx):
# ADC
adc_calib = ctx.calibrateADC()
# DAC
dac_calib = ctx.calibrateDAC()
return adc_calib, dac_calib
def test_amplitude(out_data, ref_data, n, ain, aout, channel, trig):
# Sends signals with different amplitudes and verify if the received data is as expected.
# The amplitude multiplier is defined locally.
# For each value of the amplitude multiplier is computed the maximum and the minimum value of the input signal.
# Arguments:
# out_data -- Output data buffer
# ref_data -- Reference data buffer that will be compared with the input data
# n -- Number of samples in the input buffer
# ain -- AnalogIn object
# aout -- AnalogOut object
# channel -- The analog input channel currently under test
# trig -- Trigger object
# file -- Text file where are saved reference and computed values during the test
# csv_path -- Path to the csv file where are saved the samples
# Returns:
# corr_amplitude_max -- correlation coefficient between the vector that holds the maximum amplitude values in the
# input signal and the vector that holds the maximum amplitude values in the reference signal
# corr_amplitude_min -- correlation coefficient between the vector that holds the minimum amplitude values in the
# input signal and the vector that holds the maximum amplitude values in the reference signal
file_name, dir_name, csv_path = get_result_files(gen_reports)
reset.analog_in(ain)
reset.analog_out(aout)
reset.trigger(trig)
test_name = "amplitude"
data_string = []
set_trig(trig, channel, 0, libm2k.FALLING_EDGE_ANALOG, 0)
ain.setRange(channel, libm2k.PLUS_MINUS_25V)
amplitude = np.arange(0.5, 5.5, 0.5) # amplitude multiplier
# arrays for maximum amplitude values of read data and reference data
max_in = np.array([])
max_ref = np.array([])
# arrays for minimum amplitude values of read data and reference data
min_in = np.array([])
min_ref = np.array([])
data_string.append("Amplitude values : \n")
data_string.append(str(amplitude))
for i in amplitude:
aout.push(channel, (out_data * i)) # push the buffer
# get samples for amplitude multiplied with i
try:
input_data = ain.getSamples(n)
except:
print('Timeout occured')
ain.stopAcquisition()
# generate the buffer that should be received and is compared to the actual input data
ref_data_ampl = i * ref_data
# gen max values from each data buffer
max_in = np.append(max_in, np.amax(input_data[channel]))
max_ref = np.append(max_ref, np.amax(ref_data_ampl))
# gen min values from each data buffer
min_in = np.append(min_in, np.amin(input_data[channel]))
min_ref = np.append(min_ref, np.amin(ref_data_ampl))
if gen_reports:
if channel == 0:
plot_to_file('Signal amplitudes channel 0', input_data[channel], dir_name, 'amplitudes_ch0.png')
ampl_csv_vals['Amplitude ' + str(i) + ' ch0'] = input_data[channel]
save_data_to_csv(ampl_csv_vals, csv_path + 'amplitude.csv')
else:
plot_to_file('Signal amplitudes channel 1', input_data[channel], dir_name, 'amplitudes_ch1.png')
ampl_csv_vals['Amplitude ' + str(i) + ' ch1'] = input_data[channel]
save_data_to_csv(ampl_csv_vals, csv_path + 'amplitude.csv')
# compute correlation of max values
corr_amplitude_max, _ = pearsonr(max_in, max_ref)
corr_amplitude_min, _ = pearsonr(min_in, min_ref)
data_string.append("Maximum amplitude reference:")
data_string.append(str(max_ref))
data_string.append("Maximum amplitude computed:")
data_string.append(str(max_in))
data_string.append("Minimum amplitude reference:")
data_string.append(str(min_ref))
data_string.append("Minimum amplitude computed:")
data_string.append(str(min_in))
if gen_reports:
write_file(file_name, test_name, channel, data_string)
aout.stop(channel)
return corr_amplitude_max, corr_amplitude_min
def test_shape(channel, out_data, ref_data, ain, aout, trig, ch_ratio, shapename):
# Sends signal buffers created in shapefile.py on analog channels. Reads the buffer and compares each result with
# reference buffers.
# Waveforms: ['Sine','Square', 'Triangle','Rising_ramp','Falling_ramp']
# Arguments:
# channel -- Analog channel under test
# out_data -- Output data buffer
# ref_data -- Reference data buffer
# ain -- AnalogIn object
# aout -- AnalogOut object
# trig -- Trigger object
# ch_ratio -- Ratio between DAC and ADC samplerate
# file -- Text file where are saved reference and computed values during the test
# csv_path -- Path to the csv file where are saved the samples
# Returns:
# corr_shape_vect-- vector that holds the correlation coefficients between the input data and the reference data
# for each signal shape
# phase_diff_vect-- vector that holds the phase difference between the input data and the reference data for each
# signal shape
file_name, dir_name, csv_path = get_result_files(gen_reports)
reset.analog_in(ain)
reset.analog_out(aout)
reset.trigger(trig)
test_name = "shape"
data_string = []
# corr_shape_vect
corr_shape_vect = []
# phase difference vector for signals acquired on channel
phase_diff_vect = []
# set the trigger delay
delay = 0
for i in range(len(out_data)):
ctx.setTimeout(5000)
set_trig_for_signalshape_test(i, channel, trig, delay)
n = round(len(out_data[i]) / ch_ratio)
aout.push(channel, out_data[i])
try:
input_data = ain.getSamples(n)[channel]
except:
print('Timeout occured')
ain.stopAcquisition()
if gen_reports:
if channel == 0:
plot_to_file(str(shapename[i]) + ' signal on channel 0', input_data, dir_name,
str(shapename[i]) + 'signal_ch0.png')
shape_csv_vals[str(shapename[i]) + ' ch0'] = input_data
save_data_to_csv(shape_csv_vals, csv_path + 'shapes.csv')
else:
plot_to_file(str(shapename[i]) + ' signal on channel 1', input_data, dir_name,
str(shapename[i]) + 'signal_ch1.png')
shape_csv_vals[str(shapename[i]) + ' ch1'] = input_data
save_data_to_csv(shape_csv_vals, csv_path + 'shapes.csv')
# compute pearson coefficient to determine that the generated and acquired signals are similar
corr_shape, _ = pearsonr(ref_data[i], input_data)
corr_shape_vect = np.append(corr_shape_vect, corr_shape)
phase_diff = ((math.acos(corr_shape)) * 180) / np.pi
phase_diff_vect = np.append(phase_diff_vect, phase_diff)
data_string.append(
"Correlation coefficient between " + shapename[i] + "signal and its reference:" + str(corr_shape))
data_string.append("Phase difference between " + shapename[i] + "signal and its reference:" + str(phase_diff))
if gen_reports:
write_file(file_name, test_name, channel, data_string)
aout.stop(channel)
return corr_shape_vect, phase_diff_vect
def phase_diff_ch0_ch1(aout, ain, trig):
# Sends the same signal on both analog channel and computes the phase difference between the signal received on ch0
# and the signal received on ch1
# Arguments:
# out_data -- Output data buffer
# n --Nr of samples
# aout -- AnalogOut object
# ain -- AnalogIn object
# trig -- Trigger object
# file -- Text file where are saved reference and computed values during the test
# csv_path -- Path to the csv file where are saved the samples
# Returns:
# phase_diff_between_channels-- the phase difference between channels in degrees
#
file_name, dir_name, csv_path = get_result_files(gen_reports)
reset.analog_in(ain)
reset.analog_out(aout)
reset.trigger(trig)
test_name = "phase_diff"
data_string = []
set_trig(trig, libm2k.ANALOG_IN_CHANNEL_1, 0, libm2k.RISING_EDGE_ANALOG, 0.0)
dac_sr = 75000000
adc_sr = [1000000, 10000000, 100000000]
test_frequency = 100000
out_samples = int(dac_sr / test_frequency)
in_samples = 100000 # get a buffer long enough, the phase differences may appear in time
sig = np.sin(np.linspace(-np.pi, np.pi, out_samples)) # test signal
out_data = [sig, sig]
aout.setSampleRate(0, dac_sr)
aout.setSampleRate(1, dac_sr)
aout.push(out_data)
phasediff_csv = {}
phase_diff_between_channels = []
for sr in adc_sr:
ain.setSampleRate(sr)
try:
input_data = ain.getSamples(in_samples)
except:
print("Timeout ocurred")
ain.stopAcquisition()
if gen_reports:
plot_to_file('Same signal on both analog channels, ADC Sample rate:' + str(sr),
input_data[libm2k.ANALOG_IN_CHANNEL_1][90000:in_samples], dir_name,
'ch_phase_diff' + str(sr) + '.png',
data1=input_data[libm2k.ANALOG_IN_CHANNEL_2][90000:in_samples])
corr, _ = pearsonr(input_data[libm2k.ANALOG_IN_CHANNEL_1], input_data[
libm2k.ANALOG_IN_CHANNEL_2]) # compute correlation between the signals on the analog channels
phase_diff_between_channels.append(((math.acos(corr)) * 180) / np.pi) # compute the phase difference
data_string.append("Phase difference between the channels for ADC Sample Rate " + str(sr) + ": " + str(
phase_diff_between_channels[-1]))
phasediff_csv['Ch0, ADCsr=' + str(sr)] = input_data[libm2k.ANALOG_IN_CHANNEL_1]
phasediff_csv['Ch1, ADCsr=' + str(sr)] = input_data[libm2k.ANALOG_IN_CHANNEL_2]
if gen_reports:
channel = 0
write_file(file_name, test_name, channel, data_string)
save_data_to_csv(phasediff_csv, csv_path + 'ph_diff_channels.csv')
aout.stop()
return phase_diff_between_channels, adc_sr
def test_analog_trigger(channel, trig, aout, ain):
# Test the analog trigger conditions
# Arguments:
# channel -- Analog channel under test
# trig -- Trigger object
# ain -- AnalogIn object
# aout -- AnalogOut object
# dir_name -- Directory where the plot files are saved
# file -- Text file where are saved reference and computed values during the test
# csv_path -- Path to the csv file where are saved the samples
# Returns:
# trig_test -- Vector that holds 1 for each trigger condition fulfilled and 0 otherwise
# condition_name-- Vector that holds names of the trigger conditions
file_name, dir_name, csv_path = get_result_files(gen_reports)
reset.analog_in(ain)
reset.analog_out(aout)
reset.trigger(trig)
test_name = "analog_trigger"
data_string = []
low = 0.10
th = 0.1
high = 0.70
level = 0.40
delay = 0
n = 4096 * 4
condition = [libm2k.RISING_EDGE_ANALOG, libm2k.FALLING_EDGE_ANALOG, libm2k.LOW_LEVEL_ANALOG,
libm2k.HIGH_LEVEL_ANALOG]
condition_name = ['rising edge', 'falling edge', 'low', 'high']
trig_test = []
set_trig(trig, channel, delay)
# create a trapezoidal test signal
test_signal = np.append(np.append(np.linspace(0, 0, int(n / 4)), np.linspace(0, 1, int(n / 4))),
np.append(np.linspace(1, 1, int(n / 4)), np.linspace(1, 0, int(n / 4))))
aout.push(channel, test_signal)
# go through all possible trigger conditions
for i in condition:
if i == libm2k.RISING_EDGE_ANALOG:
trig.setAnalogCondition(channel, i)
trig.setAnalogLevel(channel, level)
try:
input_data = ain.getSamples(round(n / 4))[channel]
except:
print('Timeout occured')
ain.stopAcquisition()
if gen_reports:
if channel == 0:
plot_to_file('Trigger condition: Rising Edge channel 0, level=' + str(level), input_data, dir_name,
'trig_RISING_EDGE_ANALOG_ch0.png')
trig_csv_vals['Rising Edge ch0'] = input_data
save_data_to_csv(trig_csv_vals, csv_path + 'trigger.csv')
else:
plot_to_file('Trigger condition: Rising Edge channel1, level=' + str(level), input_data, dir_name,
'trig_RISING_EDGE_ANALOG_ch1.png')
trig_csv_vals['Rising Edge ch1'] = input_data
save_data_to_csv(trig_csv_vals, csv_path + 'trigger.csv')
if (level - th <= input_data[delay] <= level + th) and (
input_data[delay - 1] < input_data[delay + 1]):
trig_test = np.append(trig_test, 1)
else:
trig_test = np.append(trig_test, 0)
data_string.append("Rising edge condition:")
data_string.append("level set: " + str(level))
data_string.append("level read: " + str(input_data[delay]))
elif i == libm2k.FALLING_EDGE_ANALOG:
trig.setAnalogCondition(channel, i)
trig.setAnalogLevel(channel, level)
try:
input_data = ain.getSamples(round(n / 4))[channel]
except:
print('Timeout occured')
ain.stopAcquisition()
if gen_reports:
if channel == 0:
plot_to_file('Trigger condition: Falling Edge channel 0, level=' + str(level), input_data, dir_name,
'trig_falling_edge_ch0.png')
trig_csv_vals['Falling Edge ch0'] = input_data
save_data_to_csv(trig_csv_vals, csv_path + 'trigger.csv')
else:
plot_to_file('Trigger condition: Falling Edge channel 1, level=' + str(level), input_data, dir_name,
'trig_falling_edge_ch1.png')
trig_csv_vals['Falling Edge ch1'] = input_data
save_data_to_csv(trig_csv_vals, csv_path + 'trigger.csv')
if (level - th <= input_data[delay] <= level + th) and (
input_data[delay - 1] > input_data[delay + 1]):
trig_test = np.append(trig_test, 1)
else:
trig_test = np.append(trig_test, 0)
data_string.append("Falling edge condition:")
data_string.append("level set: " + str(level))
data_string.append("level read: " + str(input_data[delay]))
elif i == libm2k.LOW_LEVEL_ANALOG:
trig.setAnalogCondition(channel, i)
trig.setAnalogLevel(channel, low)
try:
input_data = ain.getSamples(round(n / 4))[channel]
except:
print('Timeout occured')
ain.stopAcquisition()
if gen_reports:
if channel == 0:
plot_to_file('Trigger condition: Low Level channel 0, level=' + str(low), input_data, dir_name,
'trig_LOW_LEVEL_ANALOG_ch0.png')
trig_csv_vals['Low level ch0'] = input_data
save_data_to_csv(trig_csv_vals, csv_path + 'trigger.csv')
else:
plot_to_file('Trigger condition: Low Level channel 1, level=' + str(low), input_data, dir_name,
'trig_LOW_LEVEL_ANALOG_ch1.png')
trig_csv_vals['Low level ch1'] = input_data
save_data_to_csv(trig_csv_vals, csv_path + 'trigger.csv')
if input_data[delay + 1] < (low + th) and input_data[delay + 10] < (low + th):
trig_test = np.append(trig_test, 1)
else:
trig_test = np.append(trig_test, 0)
data_string.append("Low level condition:")
data_string.append("level set: " + str(low))
data_string.append("\nlevel read: " + str(input_data[delay]))
elif i == libm2k.HIGH_LEVEL_ANALOG:
trig.setAnalogCondition(channel, i)
trig.setAnalogLevel(channel, high)
try:
input_data = ain.getSamples(round(n / 4))[channel]
except:
print('Timeout occured')
ain.stopAcquisition()
if gen_reports:
if channel == 0:
plot_to_file('Trigger condition: High Level channel 0, level=' + str(high), input_data, dir_name,
'trig_HIGH_LEVEL_ANALOG_ch0.png')
trig_csv_vals['High level ch0'] = input_data
save_data_to_csv(trig_csv_vals, csv_path + 'trigger.csv')
else:
plot_to_file('Trigger condition: High Level channel 1, level=' + str(high), input_data, dir_name,
'trig_HIGH_LEVEL_ANALOG_ch1.png')
trig_csv_vals['High level ch1'] = input_data
save_data_to_csv(trig_csv_vals, csv_path + 'trigger.csv')
if input_data[delay + 1] > (high - th) and input_data[delay + 10] > (high - th):
trig_test = np.append(trig_test, 1)
else:
trig_test = np.append(trig_test, 0)
data_string.append("High level condition:")
data_string.append("level set: " + str(high))
data_string.append("\nlevel read: " + str(input_data[delay]))
if gen_reports:
write_file(file_name, test_name, channel, data_string)
aout.stop(channel)
return trig_test, condition_name
def test_offset(out_data, n, ain, aout, trig, channel):
# Sets different offsets to a signal and compares the offest of the received signal with the reference offset values
# defined locally
# Arguments:
# out_data -- Output data buffer
# n --Nr of samples
# ain -- AnalogIn object
# aout -- AnalogOut object
# trig -- Trigger object
# channel -- Analog channel under test
# dir_name -- Directory where the plot files are saved
# file -- Text file where are saved reference and computed values during the test
# csv_path -- Path to the csv file where are saved the samples
# Returns
# corr_offset -- Correlation coefficient between the computed offset vector and the defined offset vector
file_name, dir_name, csv_path = get_result_files(gen_reports)
reset.analog_in(ain)
reset.analog_out(aout)
reset.trigger(trig)
test_name = "offset"
data_string = []
ain.setRange(channel, libm2k.PLUS_MINUS_25V)
offset = np.arange(-4, 4.5, 0.5) # offset values between -5 and 5 with a step of 0.5V
in_offset = np.array([])
data_string.append("Offset values set:")
data_string.append(str(offset))
data_string.append("Offset values computed:")
for i in offset:
ctx.setTimeout(5000)
set_trig(trig, channel, 0, libm2k.FALLING_EDGE_ANALOG, i + 0.1)
sum = 0
o_buffer = i + out_data # add the output data to the offset value
aout.push(channel, o_buffer) # push the buffer
# get samples for amplitude multiplied with i
try:
input_data = ain.getSamples(n)
except:
print('Timeout occured')
ain.stopAcquisition()
for s in input_data[channel]:
sum = sum + s
average = round(sum / n, 1) # compute the average value of a period of the acquired signal
in_offset = np.append(in_offset, average) # put all the average values in a vector
if gen_reports:
if channel == 0:
plot_to_file('Signal offset on channel 0', input_data[channel], dir_name, 'offsets_ch0.png')
offset_csv_vals['Offset' + str(i) + 'ch0'] = input_data
save_data_to_csv(trig_csv_vals, csv_path + 'offset.csv')
else:
plot_to_file('Signal offset on channel 1', input_data[channel], dir_name, 'offsets_ch1.png')
data_string.append(str(in_offset))
if gen_reports:
write_file(file_name, test_name, channel, data_string)
corr_offset, _ = pearsonr(offset, in_offset) # compare the original offset vector with the average values obtained
aout.stop(channel)
return corr_offset
def test_voltmeter_functionality(channel, ain, aout, ctx):
# Tests voltmeter functionality of analog input channels
# Arguments:
# channel -- Analog channel under test
# ain -- AnalogIn object
# aout -- AnalogOut object
# ctx-- M2k context opened
# file -- Text file where are saved reference and computed values during the test
# Returns:
# voltmeter_ -- Vector thet holds 1 if the read voltage is in specified range and 0 otherwise
file_name, dir_name, csv_path = get_result_files(gen_reports)
reset.analog_in(ain)
reset.analog_out(aout)
test_name = "voltmeter"
data_string = []
voltage = [random.uniform(0.2, 0.3), random.uniform(0.55, 0.75), random.uniform(1.2, 1.5), random.uniform(2.0, 2.2),
random.uniform(2.8, 3.1), random.uniform(3.5, 3.9), random.uniform(4.1, 4.5),
random.uniform(4.6, 5)] # random voltage values
t = 0.15 # threshold
voltmeter_ = [] # voltmeter array
nb_samples = 4096 * 2 # number of samples to be sent
# ctx.calibrateDAC()
aout.enableChannel(channel, True)
for v_sent in voltage:
if v_sent < 2.5:
ain.setRange(channel, libm2k.PLUS_MINUS_2_5V)
else:
ain.setRange(channel, libm2k.PLUS_MINUS_25V)
aout.push(channel, np.linspace(v_sent, v_sent, nb_samples)) # send the voltage value on the output channels
time.sleep(0.2) # wait for the DAC output to settle
Vin = ain.getVoltage()[channel] # read the voltage
data_string.append("Voltage sent: " + str(v_sent))
data_string.append("Voltage read: " + str(Vin))
if (v_sent - t) < Vin < (v_sent + t):
voltmeter_ = np.append(voltmeter_, 1) # the voltage is in the correct range
else:
voltmeter_ = np.append(voltmeter_, 0) # the voltage is out of range
if gen_reports:
write_file(file_name, test_name, channel, data_string)
aout.stop(channel)
return voltmeter_
def set_trig_for_cyclicbuffer_test(trig, delay, level=0.0):
# Sets the trigger for checking the cyclic buffer set to False
# Arguments:
# trig--Trigger object
trig.setAnalogMode(libm2k.ANALOG_IN_CHANNEL_1, libm2k.ANALOG)
trig.setAnalogMode(libm2k.ANALOG_IN_CHANNEL_2, 1)
trig.setAnalogCondition(libm2k.ANALOG_IN_CHANNEL_1, libm2k.LOW_LEVEL_ANALOG)
trig.setAnalogCondition(libm2k.ANALOG_IN_CHANNEL_2, libm2k.LOW_LEVEL_ANALOG)
trig.setAnalogLevel(libm2k.ANALOG_IN_CHANNEL_1, level)
trig.setAnalogLevel(libm2k.ANALOG_IN_CHANNEL_2, level)
trig.setAnalogHysteresis(libm2k.ANALOG_IN_CHANNEL_1, 0) # value for hysteresis is set in raw
trig.setAnalogHysteresis(libm2k.ANALOG_IN_CHANNEL_2, 0) # 63 raw corresponds to 100mV
trig.setAnalogDelay(-delay)
return
def cyclic_buffer_test(aout, ain, channel, trig):
# Test if multiple buffers of data are sent and received when the cyclic buffer is set to true.
# Arguments:
# aout -- AnalogOut object
# ain -- AnalogIn object
# channel -- Analog channel under test
# trig -- Trigger object
# Returns:
# cyclic_false -- Must be 1 if a single buffer was sent and succesfully recieved, 0 otherwise
file_name, dir_name, csv_path = get_result_files(gen_reports)
dac_sr = 75000
adc_sr = 10000
min_periods = 3
reset.analog_in(ain)
reset.analog_out(aout)
reset.trigger(trig)
aout.setCyclic(True)
ain.setSampleRate(adc_sr)
aout.setSampleRate(channel, dac_sr)
set_trig(trig, channel, 0, libm2k.FALLING_EDGE_ANALOG, 0.0)
out_samples = 4096
out_data = np.sin(np.linspace(-np.pi, np.pi, out_samples))
pool = ThreadPool(processes=1) # start a paralel process
async_result = pool.apply_async(get_samples_notcyclic, args=[out_samples, ain, channel])
aout.push(channel, out_data)
return_val = async_result.get() # get the data acquired in the parallel thread
peak_indices, peak_properties = find_peaks(return_val, height=0.97, width=5)
if len(peak_indices) >= min_periods:
cyclic_test = 1
else:
cyclic_test = 0
return cyclic_test
def noncyclic_buffer_test(aout, ain, channel, trig, ctx):
# Test if a single buffer of data is sent and received when the cyclic buffer is set to false.
# This function sets the trigger as needed for this operation then starts a parralel thread where it waits for
# samples. The buffer of samples returned by get_samples_not_cyclic() is compared with a reference buffer
# corresponding to the single buffer sent. After the length of a single buffer the signal must be 0.
# Arguments:
# aout -- AnalogOut object
# ain -- AnalogIn object
# channel -- Analog channel under test
# trig -- Trigger object
# dir_name -- Directory where the plot files are saved
# file -- Text file where are saved reference and computed values during the test
# csv_path -- Path to the csv file where are saved the samples
# Returns:
# cyclic_false -- Must be 1 if a single buffer was sent and succesfully recieved, 0 otherwise
file_name, dir_name, csv_path = get_result_files(gen_reports)
reset.analog_in(ain)
reset.analog_out(aout)
reset.trigger(trig)
# test the cyclic buffer condition
ctx.setTimeout(10000000) # set large value of timeout so single buffer is captured
aout.setCyclic(False)
ain.setSampleRate(1000000)
aout.setSampleRate(channel, 75000000)
trig.setAnalogSource(channel)
trig.setAnalogSourceChannel(channel)
delay = 0
set_trig_for_cyclicbuffer_test(trig, delay, level=-0.25)
out_samples = 4096
out_data = np.sin(np.linspace(-np.pi, np.pi, out_samples))
ain.startAcquisition(out_samples * 4)
aout.push(channel, out_data)
return_val = ain.getSamples(out_samples * 4)[channel]
ain.stopAcquisition()
ch_ratio = aout.getSampleRate(
channel) / ain.getSampleRate() # ratio between the samplerate on the output channel and the input channel
single_buffer_length = round(out_samples / ch_ratio)
ref_data = (np.sin(np.linspace(-np.pi, np.pi,
single_buffer_length))) # generate a reference signal to compare to read signal
corr, _ = pearsonr(ref_data, return_val[
delay:single_buffer_length + delay]) # correlation btw. reference and the input data
if corr > 0.9:
for i in range(out_samples):
if i > out_samples / ch_ratio + delay:
if -0.01 < round(return_val[i]) < 0.01:
cyclic_false = 1
else:
cyclic_false = 0
else:
cyclic_false = 0
if gen_reports:
if channel == 0:
plot_to_file('Cyclic buffer set to False, channel 0', return_val, dir_name, 'cyclic_buffer_plot_ch0.png')
plot_to_file('Cyclic buffer set to False, channel 0', return_val[
delay:single_buffer_length + delay], dir_name,
'cyclic_buffer_plot_ch0_2.png')
cyclic_csv_vals['Channel 0'] = return_val
save_data_to_csv(cyclic_csv_vals, csv_path + 'cyclic_buffer.csv')
else:
plot_to_file('Cyclic buffer set to False, channel 1', return_val, dir_name, 'cyclic_buffer_plot_ch1.png')
cyclic_csv_vals['Channel 1'] = return_val
save_data_to_csv(cyclic_csv_vals, csv_path + 'cyclic_buffer.csv')
aout.stop(channel)
aout.setCyclic(True)
ctx.setTimeout(ctx_timeout) # set the timeout to the initial value
return cyclic_false
def get_samples_notcyclic(n_samples, ain, channel):
# Get samples in the parallel thread of the cyclic buffer test
# Arguments:
# n_samples -- Number of samples
# ain -- AnalogIn object
# channel -- Analog channel under test
# Returns:
# data -- Data read on analog channel under test after the trigger condition was fulfilled
# get samples in the paralel thread
try:
data = ain.getSamples(n_samples)[channel]
except:
print('Timeout occured')
ain.stopAcquisition()
return data
def compute_frequency(channel, ain, aout, trig):
# Loops trough available ADC and DAC samplerates and set the number of samples to be sent according to
# these samplerates. Computes the frequency of the signal corresponding to the output buffer.
# Reads the buffer from the specified channel and computes the frequency of the singnal corresponding to this buffer
# Arguments:
# channel -- Analog channel under test
# ain -- AnalogIn object
# aout -- AnalogOut object
# trig -- Trigger object
# file -- Text file where are saved reference and computed values during the test
# csv_path -- Path to the csv file where are saved the samples
# Returns:
# ofreqs-- Vector that holds the frequencies of the output buffers
# ifreqs-- Vector that holds the frequencies of the input buffers
file_name, dir_name, csv_path = get_result_files(gen_reports)
test_name = "freq"
data_string = []
set_trig(trig, channel, 0, libm2k.FALLING_EDGE_ANALOG)
# available adc samplerates
adc_samplerates = [10000, 100000, 1000000, 10000000, 100000000]
# available dac sampelrates
dac_a_samplerates = [750, 7500, 75000, 750000, 7500000, 75000000]
dac_b_samplerates = [750, 7500, 75000, 750000, 7500000, 75000000]
ofreqs = []
ifreqs = []
if channel == 0:
dac_samplerates = dac_a_samplerates
else:
dac_samplerates = dac_b_samplerates
# loop through sample rates combinations
for adc_sr in adc_samplerates:
for i in range(len(dac_samplerates)):
ain.setSampleRate(adc_sr) # set sample rate for ain channels
aout.setSampleRate(channel, dac_samplerates[i]) # set sample rate for DAC
ch_sampleratio = dac_samplerates[i] / adc_sr # compute ratio between adc and dac sampelrates
if 7.5 <= ch_sampleratio <= 750: # make sure the ratio has an acceptable value
data_string.append("ADC samplerate:" + str(adc_sr))
data_string.append("DAC samplerate:" + str(dac_samplerates[i]))
if ch_sampleratio == 7.5: # set the number of output samples to be sent
out_nr_samples = 2 ** 12 # according to the ratio between dac and adc samplerates
elif ch_sampleratio == 75:
out_nr_samples = 2 ** 13
else:
out_nr_samples = 2 ** 15
in_nr_samples = round(out_nr_samples / ch_sampleratio) # compute the number of input samples
out_data = np.sin(np.linspace(-np.pi, np.pi, out_nr_samples)) # generate test output signal
ref_data = np.sin(np.linspace(-np.pi, np.pi,
in_nr_samples)) # generate a reference signal to be compared with the
# acquired input signal
out_freq = (dac_samplerates[i] / out_nr_samples) # compute the frequency of the signal sent bu the dac
ofreqs = np.append(ofreqs, out_freq)
aout.push(channel, out_data)
try:
input_data = ain.getSamples(round(in_nr_samples))[channel]
except:
print('Timeout occured')
ain.stopAcquisition()
corr, _ = pearsonr(ref_data, input_data) # compare the acquired signal with the expected signal
in_freq = adc_sr / len(input_data)
if corr > 0.8: # a correlation coeff>0.7 => strong correlation
in_freq = (adc_sr / len(input_data)) # if the signal is ok, compute its frequency
ifreqs = np.append(ifreqs, in_freq)
data_string.append("Number of samples in the output buffer: " + str(out_nr_samples))
data_string.append("Number of samples in the input buffer:" + str(in_nr_samples))
data_string.append("Out signal frequency:" + str(out_freq))
data_string.append("In singal frequency:" + str(in_freq))
if gen_reports:
write_file(file_name, test_name, channel, data_string)
return ofreqs, ifreqs
def compare_in_out_frequency(channel, ain, aout, trig):
# Compares the frequency of the signal in the output buffer with the frequency of the signal in the input buffer.
# Frequencies are computed in compute_frequency(channel, ain, aout, trig, file)
# Arguments:
# channel -- Analog channel under test
# ain -- AnalogIn object
# aout -- AnalogOut object
# trig -- Trigger object
# file -- Text file where are saved reference and computed values during the test\n
# Returns:
# freq_test--Vector that holds 1 if the corresponding in and out frequencies are equal and 0 otherwise
reset.analog_in(ain)
reset.analog_out(aout)
reset.trigger(trig)
freq_test = [] # create an array that will hold 1 if the frequencies are equal and 0 otherwise
out_freq, in_freq = compute_frequency(channel, ain, aout, trig) # compute input and output frequencies
if len(out_freq) == len(in_freq): # make sure that for each out freq there is a corresponding input freq
for i in range(len(out_freq)):
if in_freq[i] < 100: # according to the frequency value, check their equality
if round(out_freq[i]) == round(in_freq[i]):
freq_test = np.append(freq_test, 1)
else:
freq_test = np.append(freq_test, 0)
elif in_freq[i] < 1000:
if round(out_freq[i] / 10) == round(in_freq[i] / 10):
freq_test = np.append(freq_test, 1)
else:
freq_test = np.append(freq_test, 0)
elif in_freq[i] < 10000:
if round(out_freq[i] / 100) == round(in_freq[i] / 100):
freq_test = np.append(freq_test, 1)
else:
freq_test = np.append(freq_test, 0)
elif in_freq[i] < 100000:
if round(out_freq[i] / 1000) == round(in_freq[i] / 1000):
freq_test = np.append(freq_test, 1)
else:
freq_test = np.append(freq_test, 0)
aout.stop(channel)
return freq_test
def test_oversampling_ratio(channel, ain, aout, trig):
# Sets different values for Ain oversampling ratios, sends a buffer at the output.
# From the corresponding input buffer, computes the oversampling ratio and compares it with the value previously set
# Arguments:
# channel -- Analog channel under test\n
# ain -- AnalogIn object \n
# aout -- AnalogOut object\n
# trig -- Trigger object \n
# file-- Text file where are saved reference and computed values during the test\n
# csv_path -- Path to the csv file where are saved the samples\n
# Returns:
# test_osr -- Must be 1 if the computed oversampling ratio is equal with the set oversampling ratio
# and 0 otherwise
file_name, dir_name, csv_path = get_result_files(gen_reports)
reset.analog_in(ain)
reset.analog_out(aout)
reset.trigger(trig)
test_name = "osr"
data_string = []
set_trig(trig, channel, 0, libm2k.FALLING_EDGE_ANALOG, 0.0)
osr = [1, random.randint(3, 7), random.randint(7, 11), random.randint(11, 15),
random.randint(16, 20), random.randint(20, 23)] # random.randint(1, 3)some values for oversampling ratio
verify_osr = []
adc_sr = 100000000
dac_sr = 75000000
out_nr_samples = 512 # a smaller number of sample so the zero rising edge crossing is easier to detect
ain.setSampleRate(adc_sr)
aout.setSampleRate(channel, dac_sr)
ch_sampleratio = dac_sr / adc_sr # ratio between dac sample rate and adc sample rate
in_nr_samples = round(out_nr_samples / ch_sampleratio) # round(out_nr_samples +(out_nr_samples%4))
out_data = np.sin(np.linspace(-np.pi, np.pi, out_nr_samples))
data_string.append("Oversampling ratios set:\n" + str(osr))
for j in osr:
ain.setOversamplingRatio(j)
aout.push(channel, out_data)
try:
input_data = ain.getSamples(in_nr_samples)[channel]
except:
print("Timeout ocurred")
ain.stopAcquisition()
c = 0 # set the counter of rising edge zero crossings to 0
for i in range(10, len(input_data) - 10):
if round(input_data[i - 1], 3) <= 0 < round(input_data[i],
3): # test if there is a zero crossing on the rising edge (
# middle of a sine period)
c = c + 1 # count how many periods of a sine wave are acquired at the input
verify_osr = np.append(verify_osr,
c) # append the counted crossings for each oversampling ratio in the verify array
osr_csv_vals['Oversamplingratio:' + str(j) + ' ch' + str(channel)] = input_data
save_data_to_csv(osr_csv_vals, csv_path + 'ain_oversampling_ratio.csv')
if gen_reports:
save_data_to_csv(osr_csv_vals, csv_path + 'ain_oversampling_ratio.csv')
data_string.append("Oversampling ratios computed: \n" + str(verify_osr))
if gen_reports:
write_file(file_name, test_name, channel, data_string)
test_osr = 1
for i in range(len(osr)):
if osr[i] != verify_osr[i]:
test_osr = 0
aout.stop(channel)
return test_osr
def channels_diff_in_samples(trig, channel, aout, ain):
# Find if there is a sample delay between channels for the same signal and trigger
# Arguments:
# trig -- Trigger object
# channel -- Channel source for the trigger
# aout -- Analog Out object
# ain -- Analog In object
# file -- File where are printed the results
# csv_path -- Path for csv file with results
# Returns:
# diff_adc_sr-- 2-D array, holds the difference in samples for each ADC sample rate
# and Dac oversampling ratio combination
# adc_sr-- sample rate set for Ain
# dac_osr-- oversampling ratios set for Aout
# freq -- frequency of the signals used for the test
file_name, dir_name, csv_path = get_result_files(gen_reports)
reset.analog_in(ain)
reset.analog_out(aout) # /len(samples_diff1[i])
reset.trigger(trig)
data_string = []
test_name = "phase_dif_samples"
n = 150 # nr of samples, for max samplerate=> 1Mhz frequency for 75 samples in a buffer
delay = 10
max_dac_samplerate = 75000000
aout.setSampleRate(0, max_dac_samplerate)
aout.setSampleRate(1, max_dac_samplerate)
adc_sr = [1000000, 10000000, 100000000]
dac_osr = [1, 10, 100, 1000, 10000]
set_trig(trig, channel, delay, cond=libm2k.RISING_EDGE_ANALOG, level=0)
test_signal = np.append(np.linspace(-1, -1, int(n / 2)), np.linspace(1, 1, int(n / 2)))
diff_adc_sr = []
diff_in_samples0 = {}
diff_in_samples1 = {}
freq = []
input_data = []
for i in dac_osr:
freq.append(max_dac_samplerate / (n * i))
for sr in adc_sr:
ain.setSampleRate(sr)
diff_osr = []
for osr in dac_osr:
aout.setOversamplingRatio(0, osr)
aout.setOversamplingRatio(1, osr)
aout.push([test_signal, test_signal])
try:
input_data = ain.getSamples(delay * 2)
except:
print("Timeout occurred")
input_data0 = input_data[libm2k.ANALOG_IN_CHANNEL_1][delay - 5:delay + 5]
input_data1 = input_data[libm2k.ANALOG_IN_CHANNEL_2][delay - 5:delay + 5]
diff_in_samples0['ADC sr' + str(sr) + '; DAC osr:' + str(osr)] = input_data[0]
diff_in_samples1['ADC sr' + str(sr) + '; DAC osr:' + str(osr)] = input_data[1]
ain.stopAcquisition()
for i in range(len(input_data0) - 1):
if (input_data0[i] <= 0 < input_data0[i + 1]) or (input_data0[i] >= 0 > input_data0[i + 1]):
p0 = i # position of trigger on channel 0
if (input_data1[i] <= 0 < input_data1[i + 1]) or (input_data1[i] >= 0 > input_data1[i + 1]):
p1 = i # position of trigger on channel 1
diff_osr.append(p1 - p0)
diff_adc_sr.append(diff_osr)
data_string.append('ADC sample rate: ' + str(sr))
data_string.append('DAC sample rate: ' + str(max_dac_samplerate))
data_string.append('Frequency: ' + str(freq))
data_string.append('DAC oversampling ratio' + str(dac_osr))
data_string.append('Samples difference: ' + str(diff_osr))
if gen_reports:
write_file(file_name, test_name, channel, data_string)
save_data_to_csv(diff_in_samples0, csv_path + 'diffSamples_ch0_trigSrc_' + str(channel) + '.csv')
save_data_to_csv(diff_in_samples1, csv_path + 'diffSamples_ch1_trigSrc_' + str(channel) + '.csv')
aout.stop()
return diff_adc_sr, adc_sr, dac_osr, freq
def write_file(file, test_name, channel, data_string):
if test_name == "phase_dif_samples":
file.write("\n\n Difference in samples between Analog channels, Trigger source: Ch " + str(channel) + '\n')
elif test_name == "osr":
file.write("\n\n Ain oversampling ratio test on channel: " + str(channel) + "\n")
elif test_name == "freq":
file.write("\n\nFrequency test on channel " + str(channel) + "\n")
elif test_name == "voltmeter":
file.write("\n\nVoltmeter functionality on channel " + str(channel) + ": \n")
elif test_name == "offset":
file.write("\n\n Offset test on channel " + str(channel) + "\n")
elif test_name == "analog_trigger":
file.write("\n\nTrigger conditions on channel " + str(channel) + ":\n")
elif test_name == "phase_diff":
file.write("\n\n The same buffer sent simultaneously on both analog channels:\n")
elif test_name == "shape":
file.write("\n\nTest of analog input and output with different signal shapes:\n")
elif test_name == "amplitude":
file.write("\n\nAmplitude test on channel " + str(channel) + ": \n")
elif test_name == "buffer_transition_glitch":
file.write("\n\nTest buffer transition glitch on channel " + str(channel) + ": \n")
elif test_name == "aout_triggering":
file.write("\n\nTest aout start with trigger event on channel = " + str(channel) + ": \n")
for i in range(len(data_string)):
file.write(str(data_string[i]) + '\n')
def test_timeout(ctx, ain, aout, trig, channel, dir_name, file, csv_path):
# Set timeout, set trigger. Acquire data and if timeout occurs, set timeout to 0 and
# reset trigger then acquire data again. The signal has an offset so if you compute the mean it is different than 0.
# Arguments:
# ctx-Context
# ain -- AnalogIn object
# aout -- AnalogOut object
# trig -- Trigger object
# channel -- Analog channel under test
# dir_name -- Directory where the plot files are saved
# file -- Text file where are saved reference and computed values during the test
# csv_path -- Path to the csv file where are saved the samples
# Returns
# offset -- value of the average set
# average-- value of the computed average
# t_occ-- False by default, True if timeout occurred
reset.analog_in(ain)
reset.analog_out(aout)
reset.trigger(trig)
timeout_val = 2 # value of the timeout, small value so timeout occurrs during test
t_occ = False
in_samples = 4096
out_samples = 4096
offset = 0.5 # average value of the signal
suma = 0
average = 0
# gen out_data buffer
x = offset + np.sin(np.linspace(-np.pi, np.pi, out_samples))
out_data = [x, x] # output buffer, same signal on both analog channels
set_trig(trig, 0, 0, libm2k.FALLING_EDGE_ANALOG, 0) # set trigger condition
ctx.setTimeout(timeout_val) # set timeout
ain.stopAcquisition() # flush buffer so previous values will not influence average
# send data
aout.push(out_data)
try:
input_data = ain.getSamples(in_samples) # get data
except:
# timeout occurred
t_occ = True
ctx.setTimeout(0) # set timeout to 0
reset.trigger(trig) # reset trigger
input_data = ain.getSamples(in_samples) # getdata after timeout and trigger reset
for s in input_data[channel]: # compute average value of the acquired data
suma = suma + s
average = suma / in_samples
ctx.setTimeout(ctx_timeout) # set timeout to the initial value
if gen_reports:
file.write("\n\n Timeout test on channel " + str(channel) + "\n")
file.write("Timeout occured:\n" + str(t_occ) + "\n")
file.write("Average of the data set:" + str(offset) + "\n Average of the data read: " + str(average) + "\n")
if channel == 0:
plot_to_file('Timeout: ' + str(t_occ) + ' on ch' + str(channel), input_data[channel], dir_name,
'timeout' + str(t_occ) + '_ch0.png')
timeout_csv_vals['Timeout: ' + str(t_occ) + ' ch0'] = input_data[channel]
save_data_to_csv(timeout_csv_vals, csv_path + 'timeout.csv')
else:
plot_to_file('Timeout: ' + str(t_occ) + ' on ch' + str(channel), input_data[channel], dir_name,
'timeout' + str(t_occ) + '_ch1.png')
timeout_csv_vals['Timeout: ' + str(t_occ) + ' ch1'] = input_data[channel]
save_data_to_csv(timeout_csv_vals, csv_path + 'timeout.csv')
plt.close()
aout.stop()
return offset, average, t_occ
def test_kernel_buffers(ain, trig, nb_kernel_buffers):
error = False
reset.analog_in(ain)
reset.trigger(trig)
ain.setSampleRate(1000000)
ain.startAcquisition(10000)
ain.stopAcquisition()
try:
ain.setKernelBuffersCount(nb_kernel_buffers)
except:
error = True
return error
def compute_percentage_diff(v1, v2):
# https://www.oracle.com/webfolder/technetwork/data-quality/edqhelp/content/processor_library/matching/comparisons/percent_difference.htm
vals = sorted([v1, v2])
percentage_diff = 0
try:
percentage_diff = ((vals[1] - vals[0]) / vals[1])
except:
pass
return percentage_diff
def compute_y_distance(v1, v2):
lens = sorted([v1, v2])
distance = lens[1] - lens[0]
return distance
def is_spike(data, peak, threshold = 0.25):
# for sampling_frequency_in = 1_000_000 the center of of the glitch is at 75 samples distance with repect to the peak
dx_small = 75
dx_large = 200
prev_sample, next_sample = data[peak - dx_small], data[peak + dx_small]
step_inside_glitch_range = compute_y_distance(prev_sample, next_sample)
prev_sample, next_sample = data[peak - dx_large], data[peak + dx_large]
step_outside_glitch_range = compute_y_distance(prev_sample, next_sample)
percentage_dif = compute_percentage_diff(step_inside_glitch_range, step_outside_glitch_range)
return percentage_dif > threshold
def test_buffer_transition_glitch(channel, ain, aout, trig, waveform, amplitude=1):
file_name, dir_name, csv_path = get_result_files(gen_reports)
BUFFER_SIZE = 5_00_000
reset.analog_in(ain)
reset.analog_out(aout)
reset.trigger(trig)
test_name = "buffer_transition_glitch"
data_string = []
dac_sr = 75_000
adc_sr = 1_000_000
ain.setSampleRate(adc_sr)
ain.setRange(channel, libm2k.PLUS_MINUS_2_5V)
set_trig(trig, channel, 0, libm2k.RISING_EDGE_ANALOG, 0.1)
aout.setSampleRate(channel, dac_sr)
aout.enableChannel(channel, True)
aout.setCyclic(True)
ctx.setTimeout(10000)
out_samples = 4096
if waveform == 'sine':
offset = 0
data_high = amplitude* np.sin(np.linspace(offset, 2*np.pi + offset, out_samples ))
data_low = -amplitude* np.sin(np.linspace(offset, 2*np.pi + offset, out_samples))
if waveform == 'dc':
data_high = [amplitude] * out_samples
data_low = [-amplitude] * out_samples
ain.startAcquisition(BUFFER_SIZE)
for _ in range(5):
aout.push(channel, data_high)
time.sleep(0.1)
aout.push(channel, data_low)
time.sleep(0.1)
try:
data = np.array(ain.getSamples(BUFFER_SIZE)[channel][int(BUFFER_SIZE* 0.05):])
except:
print('Timeout occured')
aout.stop()
ain.stopAcquisition()
param_args = {
'sine': {
'threshold': 0.1,
'find_peaks_args': {
'prominence': (0.25, 1),
'height': (0.1, amplitude),
},
},
'dc': {
'threshold': 0.4,
'find_peaks_args': {
'prominence': 1,
'height': 0.1,
},
},
}
peaks_pos, _ = find_peaks(data, **param_args[waveform]["find_peaks_args"])
peaks_neg, _ = find_peaks(-data, **param_args[waveform]["find_peaks_args"])
peaks = np.concatenate((peaks_pos, peaks_neg))
filtered_peaks = list(filter(lambda peak: is_spike(data, peak, param_args[waveform]["threshold"]), peaks))
num_peaks = len(filtered_peaks)
data_string.append(
"Number of glitch peaks found in " + waveform + " signal :" + str(num_peaks))
if gen_reports:
write_file(file_name, test_name, channel, data_string)
plot_to_file(f'Buffer Glitch , channel{channel}',
data,
dir_name,
f'buffer_glitch_plot_ch{channel}_{waveform}.png',
data_marked=filtered_peaks)
return num_peaks
def get_experiment_config_for_sample_hold(dac_sr):
cfg = {}
if dac_sr == 75_000_000:
cfg["dac_sr"] = dac_sr
cfg["adc_sr"] = 100_000_000
cfg["buffer_size"] = 20_000
cfg["trig_threshold"] = 2.9
cfg["amplitude"] = 5
cfg["samples_per_period"] = 1024 * 8
cfg["offset"] = 0
elif dac_sr == 7_500_000:
cfg["dac_sr"] = dac_sr
cfg["adc_sr"] = 100_000_000
cfg["buffer_size"] = 30_000
cfg["trig_threshold"] = 2.9
cfg["amplitude"] = 5
cfg["samples_per_period"] = 1024
cfg["offset"] = 0
elif dac_sr == 750_000:
cfg["dac_sr"] = dac_sr
cfg["adc_sr"] = 10_000_000
cfg["buffer_size"] = 30_000
cfg["trig_threshold"] = 2.9
cfg["amplitude"] = 5
cfg["samples_per_period"] = 1024
cfg["offset"] = 0
elif dac_sr == 75_000:
cfg["dac_sr"] = dac_sr
cfg["adc_sr"] = 1_000_000
cfg["buffer_size"] = 30_000
cfg["trig_threshold"] = 2.9
cfg["amplitude"] = 5
cfg["samples_per_period"] = 1024
cfg["offset"] = 0
elif dac_sr == 7_500:
cfg["dac_sr"] = dac_sr
cfg["adc_sr"] = 1_000_000
cfg["buffer_size"] = 30_000
cfg["trig_threshold"] = 2.9
cfg["amplitude"] = 5
cfg["samples_per_period"] = 128
cfg["offset"] = 0
# 750 Hz ommited to avoid long test duration
else:
raise ValueError("Invalid DAC sample rate.")
return cfg
def are_values_within_range(data: np.ndarray, lower_bound, upper_bound, chn=None):
assert lower_bound < upper_bound, "Invalid bounds"
is_CH0_in_range = np.all((lower_bound <= data[0]) & (data[0] <= upper_bound))
is_CH1_in_range = np.all((lower_bound <= data[1]) & (data[1] <= upper_bound))
if chn is None:
return is_CH0_in_range and is_CH1_in_range
elif chn == libm2k.ANALOG_IN_CHANNEL_1:
return is_CH0_in_range
elif chn == libm2k.ANALOG_IN_CHANNEL_2:
return is_CH1_in_range
else:
raise ValueError(f"Unknown channel: {chn}")
def test_last_sample_hold(
ain: libm2k.M2kAnalogIn,
aout: libm2k.M2kAnalogOut,
trig: libm2k.M2kHardwareTrigger,
ctx: libm2k.M2k,
cfg, channel
):
def step_ramp_rising(aout_chn, trig_chn, buffer_ramp_up):
set_trig(trig, trig_chn, 8192, libm2k.RISING_EDGE_ANALOG, -cfg.get("trig_threshold"))
ain.startAcquisition(cfg.get("buffer_size"))
if aout_chn is None:
aout.push([buffer_ramp_up, buffer_ramp_up])
else:
aout.push(aout_chn, buffer_ramp_up)
data = np.array(ain.getSamples(cfg.get("buffer_size")))
# Flush values from previous buffer
ain.stopAcquisition()
return data
def step_ramp_falling(aout_chn, trig_chn, buffer_ramp_down):
set_trig(trig, trig_chn, 8192, libm2k.FALLING_EDGE_ANALOG, cfg.get("trig_threshold"))
ain.startAcquisition(cfg.get("buffer_size"))
if aout_chn is None:
aout.push([buffer_ramp_down, buffer_ramp_down])
else:
aout.push(aout_chn, buffer_ramp_down)
data = np.array(ain.getSamples(cfg.get("buffer_size")))
# Flush values from previous buffer
ain.stopAcquisition()
return data
def check_for_glitch(data, threshold=0.3):
# The glitch is unwanted and happened in between the last sample of the previous buffer and the first sample of the new buffer.
# NOTE: At DAC_SR <= 7.5 KHz we see oscilations due to the response of the HDL filter
glitch_found = False
for chn_samples in data:
if any(abs(left - right) >= threshold for left, right in zip(chn_samples, chn_samples[1:])):
glitch_found = True
return glitch_found
file_name, dir_name, csv_path = get_result_files(gen_reports)
test_name = "sample_hold"
data_string = []
chn_str = "both_channels" if channel is None else f"CH{channel}"
sr_str = get_sample_rate_display_format(cfg.get("dac_sr"))
x_time, x_label = get_time_format(cfg.get("buffer_size"), cfg.get("adc_sr"))
if gen_reports:
subdir_name = f"{dir_name}/last_sample_hold/{chn_str}"
os.makedirs(subdir_name, exist_ok=True)
SLEEP = 0.15
glitched = False
is_last_sample_hold_ok = True # Assume it is ok until proven otherwise
is_idle_ok = True
assert channel in [libm2k.ANALOG_IN_CHANNEL_1, libm2k.ANALOG_IN_CHANNEL_2, None], "Invalid channel ... None means use both channels"
trig_chn = libm2k.ANALOG_IN_CHANNEL_1 if channel is None else channel
buffer_ramp_up = shape_gen(n=cfg["samples_per_period"],
amplitude=cfg["amplitude"],
offset=cfg["offset"])[Shape.RISING_RAMP.value]
buffer_ramp_down = shape_gen(n=cfg["samples_per_period"],
amplitude=cfg["amplitude"],
offset=cfg["offset"])[Shape.FALLING_RAMP.value]
ain.enableChannel(libm2k.ANALOG_IN_CHANNEL_1, True)
ain.enableChannel(libm2k.ANALOG_IN_CHANNEL_2, True)
ain.setSampleRate(cfg.get("adc_sr"))
ain.setRange(0, libm2k.PLUS_MINUS_25V)
ain.setRange(1, libm2k.PLUS_MINUS_25V)
aout.setSampleRate(0, cfg.get("dac_sr"))
aout.setSampleRate(1, cfg.get("dac_sr"))
aout.setKernelBuffersCount(0, 4)
aout.setKernelBuffersCount(1, 4)
aout.enableChannel(0, True)
aout.enableChannel(1, True)
aout.setCyclic(False)
# Alternate between rising and falling ramps: rising, falling, rising, falling
# NOTE: we selected an arbitraty number of samples from both ends to validate sample hold and reset functionality
# 1: Rising
data = step_ramp_rising(channel, trig_chn, buffer_ramp_up)
if channel is None:
# Both channels should idle at 0V before push due to being reset
is_idle_ok = is_idle_ok and are_values_within_range(data[:, :2000], -0.20, 0.20, channel)
elif channel == libm2k.ANALOG_IN_CHANNEL_1:
# CH2 should idle at 0V if we are testing CH1
is_idle_ok = is_idle_ok and are_values_within_range(data, -0.20, 0.20, libm2k.ANALOG_IN_CHANNEL_2)
elif channel == libm2k.ANALOG_IN_CHANNEL_2:
is_idle_ok = is_idle_ok and are_values_within_range(data, -0.20, 0.20, libm2k.ANALOG_IN_CHANNEL_1)
# Shoud hold last sample from new buffer for current channel config
is_idle_ok = is_idle_ok and are_values_within_range(data[:, -2000:], cfg["amplitude"] * 0.85, cfg["amplitude"] * 1.15, channel)
if gen_reports:
plot_to_file(title=f"Last Sample Hold: {chn_str} - {sr_str} - Rising Ramp",
data=data[0],
data1=data[1],
x_data=x_time,
xlabel = x_label,
dir_name=subdir_name,
y_lim=(-6, 6),
filename=f"last_sample_hold_{chn_str}_{sr_str}_step1.png")
time.sleep(SLEEP) # wait for the DAC output to settle with last sample
# 2: Falling
data = step_ramp_falling(channel, trig_chn, buffer_ramp_down)
# Shoud start with last sample from previous buffer
is_last_sample_hold_ok = is_last_sample_hold_ok and are_values_within_range(data[:, :2000], cfg["amplitude"] * 0.85, cfg["amplitude"] * 1.15, channel)
# Shoud hold last sample from new buffer
is_last_sample_hold_ok = is_last_sample_hold_ok and are_values_within_range(data[:, -2000:], -cfg["amplitude"] * 1.15, -cfg["amplitude"] * 0.85, channel)
if channel == libm2k.ANALOG_IN_CHANNEL_1:
# CH2 should idle at 0V if we are testing CH1
is_idle_ok = is_idle_ok and are_values_within_range(data, -0.20, 0.20, libm2k.ANALOG_IN_CHANNEL_2)
elif channel == libm2k.ANALOG_IN_CHANNEL_2:
is_idle_ok = is_idle_ok and are_values_within_range(data, -0.20, 0.20, libm2k.ANALOG_IN_CHANNEL_1)
glitched = glitched or check_for_glitch(data)
if gen_reports:
plot_to_file(title=f"Last Sample Hold: {chn_str} - {sr_str} - Falling Ramp",
data=data[0],
data1=data[1],
x_data=x_time,
xlabel = x_label,
dir_name=subdir_name,
y_lim=(-6, 6),
filename=f"last_sample_hold_{chn_str}_{sr_str}_step2.png")
time.sleep(SLEEP) # wait for the DAC output to settle with last sample
# 3: Rising
data = step_ramp_rising(channel, trig_chn, buffer_ramp_up)
# Shoud start with last sample from previous buffer
is_last_sample_hold_ok = is_last_sample_hold_ok and are_values_within_range(data[:, :2000], -cfg["amplitude"] * 1.15, -cfg["amplitude"] * 0.85, channel)
# Shoud hold last sample from new buffer
is_last_sample_hold_ok = is_last_sample_hold_ok and are_values_within_range(data[:, -2000:], cfg["amplitude"] * 0.85, cfg["amplitude"] * 1.15, channel)
if channel == libm2k.ANALOG_IN_CHANNEL_1:
# CH2 should idle at 0V if we are testing CH1
is_idle_ok = is_idle_ok and are_values_within_range(data, -0.20, 0.20, libm2k.ANALOG_IN_CHANNEL_2)
elif channel == libm2k.ANALOG_IN_CHANNEL_2:
is_idle_ok = is_idle_ok and are_values_within_range(data, -0.20, 0.20, libm2k.ANALOG_IN_CHANNEL_1)
glitched = glitched or check_for_glitch(data)
if gen_reports:
plot_to_file(title=f"Last Sample Hold: {chn_str} - {sr_str} - Rising Ramp",
data=data[0],
data1=data[1],
x_data=x_time,
xlabel = x_label,
dir_name=subdir_name,
y_lim=(-6, 6),
filename=f"last_sample_hold_{chn_str}_{sr_str}_step3.png")
time.sleep(SLEEP) # wait for the DAC output to settle with last sample
# 4: Falling
data = step_ramp_falling(channel, trig_chn, buffer_ramp_down)
# Shoud start with last sample from previous buffer
is_last_sample_hold_ok = is_last_sample_hold_ok and are_values_within_range(data[:, :2000], cfg["amplitude"] * 0.85, cfg["amplitude"] * 1.15, channel)
# Shoud hold last sample from new buffer
is_last_sample_hold_ok = is_last_sample_hold_ok and are_values_within_range(data[:, -2000:], -cfg["amplitude"] * 1.15, -cfg["amplitude"] * 0.85, channel)
if channel == libm2k.ANALOG_IN_CHANNEL_1:
# CH2 should idle at 0V if we are testing CH1
is_idle_ok = is_idle_ok and are_values_within_range(data, -0.20, 0.20, libm2k.ANALOG_IN_CHANNEL_2)
elif channel == libm2k.ANALOG_IN_CHANNEL_2:
is_idle_ok = is_idle_ok and are_values_within_range(data, -0.20, 0.20, libm2k.ANALOG_IN_CHANNEL_1)
glitched = glitched or check_for_glitch(data)
if gen_reports:
plot_to_file(title=f"Last Sample Hold: {chn_str} - {sr_str} - Falling Ramp",
data=data[0],
data1=data[1],
x_data=x_time,
xlabel = x_label,
dir_name=subdir_name,
y_lim=(-6, 6),
filename=f"last_sample_hold_{chn_str}_{sr_str}_step4.png")
aout.stop()
return glitched, is_last_sample_hold_ok, is_idle_ok
def test_aout_triggering(
ain: libm2k.M2kAnalogIn,
aout: libm2k.M2kAnalogOut,
dig: libm2k.M2kDigital,
trig: libm2k.M2kHardwareTrigger,
ctx: libm2k.M2k,
auto_rearm : bool, isCyclic : bool, status
):
def configure_trigger(trig: libm2k.M2kHardwareTrigger,
dig: libm2k.M2kDigital,
trig_pin, status, delay):
trig.setAnalogDelay(-delay)
trig.setDigitalDelay(-delay)
trig.setDigitalSource(libm2k.SRC_NONE) # DigitalIn conditioned by internal trigger structure
trig.setDigitalCondition(trig_pin, libm2k.RISING_EDGE_DIGITAL)
trig.setAnalogOutTriggerSource(libm2k.TRIGGER_LA) # aout conditioned by the LA trigger
trig.setAnalogOutTriggerStatus(status)
file_name, dir_name, csv_path = get_result_files(gen_reports)
test_name = "aout_triggering"
data_string = []
TRIG_PIN = libm2k.DIO_CHANNEL_0
DELAY = 8_000
BUFFER_SIZE = 16_000
OVERSAMPLING = 1
KB_COUNT = 40
N_SAMPLES = 1024
AMPLITUDE = 5
OFFSET = 0
TIMEOUT = 10_000
ADC_SR = 100_000_000
DAC_SR = 75_000_000
SR_IN_DIG = 100_000_000
SR_OUT_DIG = 100_000_000
ctx.reset()
ctx.calibrateADC()
ctx.calibrateDAC()
ctx.setTimeout(TIMEOUT)
ain.setSampleRate(ADC_SR)
ain.setOversamplingRatio(OVERSAMPLING)
ain.enableChannel(libm2k.ANALOG_IN_CHANNEL_1, True)
ain.enableChannel(libm2k.ANALOG_IN_CHANNEL_2, True)
ain.setRange(libm2k.ANALOG_IN_CHANNEL_1, -10, 10)
ain.setRange(libm2k.ANALOG_IN_CHANNEL_2, -10, 10)
assert ain.getSampleRate() == ADC_SR, "Failed to set the sample rate for AnalogIn"
aout.setSampleRate(0, DAC_SR)
aout.setSampleRate(1, DAC_SR)
aout.enableChannel(0, True)
aout.enableChannel(1, True)
aout.setOversamplingRatio(0, 1)
aout.setOversamplingRatio(1, 1)
aout.setKernelBuffersCount(0, KB_COUNT)
aout.setKernelBuffersCount(1, KB_COUNT)
assert aout.getSampleRate(1) == DAC_SR, "Failed to set the sample rate for AnalogOut1"
dig.setDirection(TRIG_PIN, libm2k.DIO_OUTPUT)
dig.setOutputMode(TRIG_PIN, libm2k.DIO_PUSHPULL)
dig.enableChannel(TRIG_PIN, True)
dig.setCyclic(False)
dig.setValueRaw(TRIG_PIN, libm2k.LOW)
dig.setSampleRateIn(SR_IN_DIG)
dig.setSampleRateOut(SR_OUT_DIG)
assert dig.getSampleRateIn() == SR_IN_DIG , "Failed to set the sample rate for DigitalIn"
assert dig.getSampleRateOut() == SR_OUT_DIG , "Failed to set the sample rate for DigitalOut"
# LA trigger will determine an action for the aout based on the provided status
configure_trigger(trig, dig, TRIG_PIN, status, DELAY)
aout.setCyclic(isCyclic)
aout.setBufferRearmOnTrigger(auto_rearm)
# Configure Aout Signal
buf = shape_gen(n=N_SAMPLES, amplitude=AMPLITUDE, offset=OFFSET)[Shape.FALLING_RAMP.value]
aout.push([buf, buf])
ctx.startMixedSignalAcquisition(BUFFER_SIZE)
dig.setValueRaw(TRIG_PIN, libm2k.HIGH) # Trigger event -> should start the AOUT
analog_data = np.array(ain.getSamples(BUFFER_SIZE))
digital_data = np.array(dig.getSamples(BUFFER_SIZE))
mask = 0x0001 << TRIG_PIN
digital_data_chn = (digital_data & mask) >> TRIG_PIN
ctx.stopMixedSignalAcquisition()
# Validate test
peaks_CH0, _ = find_peaks(analog_data[0], prominence=1, height=1, distance = 100)
peaks_CH1, _ = find_peaks(analog_data[1], prominence=1, height=1, distance = 100)
CH0_left = analog_data[0][:DELAY]
CH0_right = analog_data[0][DELAY:]
peaks_CH0_left, _ = find_peaks(CH0_left, prominence=1, height=1, distance = 100)
peaks_CH0_right, _ = find_peaks(CH0_right, prominence=1, height=1, distance = 100)
CH1_left = analog_data[1][:DELAY]
CH1_right = analog_data[1][DELAY:]
peaks_CH1_left, _ = find_peaks(CH1_left, prominence=1, height=1, distance = 100)
peaks_CH1_right, _ = find_peaks(CH1_right, prominence=1, height=1, distance = 100)
status_str = "START" if status == libm2k.START else "STOP"
isCyclic_str = "Cyclic" if isCyclic else "Non-Cyclic"
rearm_str = "Ream" if auto_rearm else "No-Rearm"
data_string.append(f"Configuration: status={status_str} \t isCyclic={isCyclic_str} \t auto_rearm={rearm_str}")
data_string.append(f"\tPeaks before trigger: CH0={len(peaks_CH0_left)} CH1={len(peaks_CH1_left)}")
data_string.append(f"\tPeaks after trigger: CH0={len(peaks_CH0_right)} CH1={len(peaks_CH1_right)}")
result = True
# NOTE: auto_rearm only has effect on START status
# Case 1, 2, 4
if ((status == libm2k.START) and (not isCyclic) and (not auto_rearm)) or \
((status == libm2k.START) and (not isCyclic) and (auto_rearm)) or \
((status == libm2k.START) and (isCyclic) and (auto_rearm)):
# Should IDLE before trigger at 0V because the channel was reset
result = are_values_within_range(analog_data[:, :DELAY - 500], -0.2, 0.2)
# result = result and (len(peaks_CH0_left) == 0) and (len(peaks_CH1_left) == 0)
# Should output exactly 1 period after trigger
result = result and (len(peaks_CH0_right) == 1) and (len(peaks_CH1_right) == 1)
# Case 3
if (status == libm2k.START) and (isCyclic) and (not auto_rearm):
# Should IDLE before trigger at 0V because the channel was reset
result = are_values_within_range(analog_data[:, :DELAY ], -0.2, 0.2)
# Should output multiple period after trigger
result = result and (len(peaks_CH0_right) > 1) and (len(peaks_CH1_right) > 1)
# Case 5 and 6
if ((status == libm2k.STOP) and (not isCyclic) and (not auto_rearm)) or \
((status == libm2k.STOP) and (not isCyclic) and (auto_rearm)):
# The channels are in the last sample hold state and STOP is not available for non-cyclic buffers due to HDL limitations
# We expect both channels to hold last sample for the entire duration
result = result and are_values_within_range(analog_data, -AMPLITUDE * 1.2, -AMPLITUDE * 0.8)
result = result and (len(peaks_CH0_left) == 0) and (len(peaks_CH1_left) == 0)
result = result and (len(peaks_CH0_right) == 0) and (len(peaks_CH1_right) == 0)
# Case 7 and 8
if ((status == libm2k.STOP) and (isCyclic) and (not auto_rearm)) or \
((status == libm2k.STOP) and (isCyclic) and (auto_rearm)):
# Should be generating cyclic signal before trigger
result = result and (len(peaks_CH0_left) > 1) and (len(peaks_CH1_left) > 1)
# Should stop generating signal after trigger
# TODO: might need aditional delay since the channel takes some time untill it stops from when the trigger event occurs
result = result and are_values_within_range(analog_data[:, -DELAY + 500:], -0.2, 0.2)
if gen_reports:
write_file(file_name, test_name, "Both Channels", data_string)
filename_str = f"aout_triggering_{status_str}_{isCyclic_str}_{rearm_str}.png"
plot_to_file_multiline(
title="AOUT Triggering",
datasets=[
(None, digital_data_chn, {"label":"Digital"}),
(None, analog_data[0], {"label" : "Analog CH0"}),
(peaks_CH0, analog_data[0], {"label" : "Peaks CH0", "marker" : "x"}),
(None, analog_data[1],{"label" : "Analog CH1"}),
(peaks_CH1, analog_data[1], {"label" : "Peaks CH1", "marker" : "x"}),
],
dir_name=dir_name,
filename=filename_str,
ylim=(-6, 6),
)
aout.stop()
return result
|