File: digital_functions.py

package info (click to toggle)
libm2k 0.9.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 95,580 kB
  • sloc: xml: 1,611,497; cpp: 16,278; python: 4,181; cs: 516; sh: 471; ansic: 403; makefile: 35
file content (585 lines) | stat: -rw-r--r-- 19,983 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
#
# Copyright (c) 2024 Analog Devices Inc.
#
# This file is part of libm2k
# (see http://www.github.com/analogdevicesinc/libm2k).
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 2.1 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#

import matplotlib.pyplot as plt
import numpy as np
import libm2k
from multiprocessing.pool import ThreadPool
import threading
import random
import time
from open_context import ctx
from helpers import get_result_files, save_data_to_csv, plot_to_file
import reset_def_values as reset

from scipy.signal import find_peaks

sample = random.randint(0, 255)
gen_reports = True


def set_digital_trigger(dig):
    # Set the digital trigger
    # Arguments:
    #    dig  -- Digital object

    d_trig = dig.getTrigger()
    d_trig.setDigitalMode(0)
    d_trig.setDigitalStreamingFlag(True)
    for i in range(16):
        d_trig.setDigitalCondition(i, 0)
    return d_trig


def check_digital_channels_state(dig, channel):
    dig.reset()
    # enable channel under test
    dig.setDirection(channel, libm2k.DIO_OUTPUT)
    dig.enableChannel(channel, True)
    dig.setValueRaw(channel, libm2k.LOW)
    # enable 8 input channels
    ch1 = []
    for level in [libm2k.HIGH, libm2k.LOW]:
        dig.setValueRaw(channel, level)
        val = dig.getValueRaw(channel)
        if val == level:
            ch1.append(1)
        else:
            ch1.append(0)

    return ch1


def check_digital_output(dig):
    dig.stopAcquisition()
    dig.stopBufferOut()
    dig.reset()
    d_trig = dig.getTrigger()
    d_trig.setDigitalMode(0)
    d_trig.setDigitalStreamingFlag(False)
    for i in range(16):
        d_trig.setDigitalCondition(i, libm2k.NO_TRIGGER_DIGITAL)
    dig.setCyclic(True)

    for i in range(16):
        dig.setDirection(i, libm2k.DIO_OUTPUT)
        dig.enableChannel(i, True)
    ch2 = []
    for i in range(16):
        # get the signal from the digital channel i
        buff = [(2 ** i)] * 16
        dig.push(buff)
        dig.startAcquisition(16)
        data = dig.getSamples(16)
        dig.stopAcquisition()
        val = data[0]
        if val & (2 ** i) == 2 ** i:
            ch2.append(1)
        else:
            ch2.append(0)
    return ch2


def get_data_to_check_trig_condition(dig, channel, i, buff):
    ch = []
    n = 1024
    delay = 1
    dig.stopBufferOut()
    ctx.setTimeout(5000)
    d_trig = dig.getTrigger()
    d_trig.reset()
    d_trig.setDigitalMode(0)
    d_trig.setDigitalStreamingFlag(False)
    for j in range(16):
        d_trig.setDigitalCondition(j, libm2k.NO_TRIGGER_DIGITAL)
    d_trig.setDigitalCondition(channel, i)
    d_trig.setDigitalDelay(-delay)
    dig.setDirection(channel, libm2k.DIO_OUTPUT)
    dig.enableChannel(channel, True)
    dig.setCyclic(True)
    dig.push(buff)
    data = dig.getSamples(n)
    dig.stopAcquisition()

    for val in data:
        if val & (2 ** channel) == 2 ** channel:
            ch = np.append(ch, 1)
        else:
            ch = np.append(ch, 0)

    dig.stopAcquisition()
    dig.stopBufferOut()

    return ch


def check_digital_trigger(channel, dig, d_trig):
    file_name, dir_name, csv_path = get_result_files(gen_reports)

    reset.digital(dig)
    delay = 1

    condition = [libm2k.RISING_EDGE_DIGITAL, libm2k.FALLING_EDGE_DIGITAL, libm2k.LOW_LEVEL_DIGITAL,
                 libm2k.HIGH_LEVEL_DIGITAL, libm2k.ANY_EDGE_DIGITAL, libm2k.NO_TRIGGER_DIGITAL]
    trig_test = []
    dig.setSampleRateIn(1000000)
    dig.setSampleRateOut(1000000)
    # create square buffer containing 2 periods
    duty = 256 / 2  # 50%
    signal = np.arange(256) < duty
    buff = list(map(lambda s: int(s) << channel, signal))
    buff.extend(buff)
    # go through all possible trigger conditions
    for i in condition:
        if i == libm2k.RISING_EDGE_DIGITAL:
            ch = get_data_to_check_trig_condition(dig, channel, i, buff)
            if ch[delay] <= ch[delay + 3]:
                trig_test = np.append(trig_test, 1)
            else:
                trig_test = np.append(trig_test, 0)

            if gen_reports:
                plot_to_file("Rising Edge Trigger on ch" + str(channel), ch, dir_name,
                             "digital_trigger_rising_edge_ch" + str(channel) + ".png")
        elif i == libm2k.FALLING_EDGE_DIGITAL:
            ch = get_data_to_check_trig_condition(dig, channel, i, buff)
            if ch[delay] >= ch[delay + 3]:
                trig_test = np.append(trig_test, 1)
            else:
                trig_test = np.append(trig_test, 0)
            if gen_reports:
                plot_to_file("Falling Edge Trigger on ch" + str(channel), ch, dir_name,
                             "digital_trigger_falling_edge_ch" + str(channel) + ".png")
        elif i == libm2k.LOW_LEVEL_DIGITAL:
            d_trig.reset()
            ch = get_data_to_check_trig_condition(dig, channel, i, buff)
            if ch[delay] == 0:
                trig_test = np.append(trig_test, 1)
            else:
                trig_test = np.append(trig_test, 0)
            if gen_reports:
                plot_to_file("Low Level Trigger on ch" + str(channel), ch, dir_name,
                             "digital_trigger_low_level_ch" + str(channel) + ".png")
        elif i == libm2k.HIGH_LEVEL_DIGITAL:
            d_trig.reset()
            ch = get_data_to_check_trig_condition(dig, channel, i, buff)
            if ch[delay] == 1:
                trig_test = np.append(trig_test, 1)
            else:
                trig_test = np.append(trig_test, 0)

            if gen_reports:
                plot_to_file("High Level Trigger on ch" + str(channel), ch, dir_name,
                             "digital_trigger_high_level_ch" + str(channel) + ".png")

        elif i == libm2k.ANY_EDGE_DIGITAL:
            ch = get_data_to_check_trig_condition(dig, channel, i, buff)
            if ch[delay] <= ch[delay + 3]:
                trig_test = np.append(trig_test, 1)
            elif ch[delay] >= ch[delay + 3]:
                trig_test = np.append(trig_test, 1)
            else:
                trig_test = np.append(trig_test, 0)

            if gen_reports:
                plot_to_file("Any Edge Trigger on ch" + str(channel), ch, dir_name,
                             "digital_trigger_any_edge_ch" + str(channel) + ".png")

    return trig_test


def check_open_drain_mode(dig, channel):
    # TBD
    dig.enableChannel(channel, True)
    dig.enableChannel(channel + 8, True)
    dig.setSampleRateIn(1000)
    dig.setSampleRateOut(1000)  # set sample rate and buffer length for a frequency smaller than 450HZ
    dig.setOutputMode(channel, libm2k.DIO_OPENDRAIN)  # OD, PP
    dig.setDirection(channel, libm2k.DIO_OUTPUT)
    dig.setDirection(channel + 8, libm2k.DIO_INPUT)
    ch = []
    buff = [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1]  # 100Hz frequency
    dig.push(buff)
    data = dig.getSamples(100)
    for val in data:
        if val & (2 ** channel) == 2 ** channel:
            ch = np.append(ch, 1)
        else:
            ch = np.append(ch, 0)

    return


def task1(nb_samples, dig):
    # Parallel process where data is read
    # Arguments:
    #    nb_samples  -- Number of samples
    #    dig  -- Digital object

    data = dig.getSamples(nb_samples)
    dig.stopAcquisition()
    return data


def test_digital_cyclic_buffer(dig, d_trig, channel):
    file, dir_name, csv_path = get_result_files(gen_reports)

    dig.setDirection(channel, libm2k.DIO_OUTPUT)
    dig.enableChannel(channel, True)
    d_trig.setDigitalCondition(channel, libm2k.LOW_LEVEL_DIGITAL)
    dig.setCyclic(True)
    dig.setSampleRateOut(1000000)
    dig.setSampleRateIn(1000000)
    n = 1024
    duty = 256 / 2  # 50%
    signal = np.arange(256) < duty
    buff = list(map(lambda s: int(s) << channel, signal))
    buff.extend(buff)
    ch = []
    pool = ThreadPool(processes=1)

    async_result = pool.apply_async(task1, args=[n, dig])
    dig.push(buff)
    return_val = async_result.get()
    for val in return_val:
        if val & (2 ** channel) == 2 ** channel:
            ch = np.append(ch, 1)
        else:
            ch = np.append(ch, 0)
    dig.stopBufferOut()
    dig.stopAcquisition()
    nb_read_buffers = find_peaks(ch)
    if gen_reports:
        plot_to_file("Cyclic Buffer on Digital Channel " + str(channel), ch, dir_name,
                     "cyclic_buff_ch" + str(channel) + ".png")
        save_data_to_csv(ch, csv_path)
    if len(nb_read_buffers) >= 3:
        passed = True
    else:
        passed = False
    return passed

def plot_to_file_all_channels(title, data, dir_name, filename, xlabel=None, ylabel=None):
    # Saves the plots in a separate folder
    # Arguments:
    #    title  -- Title of the plot\n
    #    data  -- Data to be plotted\n
    #    filename  -- Name of the file with the plot\n
    # Keyword Arguments:
    #    xlabel  -- Label of x-Axis (default: {None})
    #    ylabel  -- Label of y-Axis(default: {None})

    # plot the signals in a separate folder
    plt.title(title)
    if xlabel is not None:  # if xlabel and ylabel are not specified there will be default values
        plt.xlabel(xlabel)
    else:
        plt.xlabel('Samples')
    if ylabel is not None:
        plt.ylabel(ylabel)
    else:
        plt.ylabel('Voltage [V]')
    plt.grid(visible=True)
    for chn in range(16):
        DIO_chn = np.array(list(map(lambda s: (((0x0001 << chn) & int(s)) >> chn), data)))
        plt.plot(DIO_chn+chn) # offset the channels
    plt.yticks(range(17))
    plt.savefig(dir_name + "/" + filename)
    plt.close()
    return

def test_kernel_buffers(dig, nb_kernel_buffers):
    error = False
    dig.reset()

    dig.startAcquisition(16)
    data = dig.getSamples(16)
    dig.stopAcquisition()
    try:
        dig.setKernelBuffersCountIn(nb_kernel_buffers)
    except:
        error = True
    return error


def write_file(file, test_name, channel, data_string):
    if test_name == "pattern_generator_pulse":
        file.write("\n\nTest pattern generator on DIO_" + str(channel) + '\n')

    for i in range(len(data_string)):
        file.write(str(data_string[i]) + '\n')


def count_edges(data, threshold = 0.5):
    # Count number of edges for each digital channel
    rising_edges = 0
    falling_edges = 0
    for channel in range(0, 16):
        crnt_chn_dio = np.array(list(map(lambda s: (((0x0001 << channel) & int(s)) >> channel), data)))
        rising_edges += np.sum(np.diff(crnt_chn_dio) > 0)
        falling_edges += np.sum(np.diff(-crnt_chn_dio + 1) > 0) # inverted signal -> falling edges
        
    return rising_edges + falling_edges


def test_pattern_generator_pulse(dig, d_trig, channel):
    # channel == -1: means all channels
    if gen_reports:
        from create_files import results_file, results_dir, csv, open_files_and_dirs
        if results_file is None:
            file, dir_name, csv_path = open_files_and_dirs()
        else:
            file = results_file
            dir_name = results_dir
            csv_path = csv
    else:
        file = []
        
    timeout = 15_000 # [ms]
    delay = 8192
    buffer_size = 100_000
    sampling_frequency_in = 10_000_000
    sampling_frequency_out = 10_000
    
    test_name = "pattern_generator_glitch"
    data_string = []
    
    dig.reset()
    ctx.setTimeout(timeout)
    
    dig.setSampleRateIn(sampling_frequency_in)
    dig.setSampleRateOut(sampling_frequency_out) 
    dig.setCyclic(False)
    
    d_trig.reset()
    d_trig.setDigitalMode(libm2k.DIO_OR)
    d_trig.setDigitalStreamingFlag(False)

    for i in range(16): 
        d_trig.setDigitalCondition(i, libm2k.NO_TRIGGER_DIGITAL)
    
    # Configure trigger
    if channel == -1:
        for i in range(16):
            d_trig.setDigitalCondition(i, libm2k.RISING_EDGE_DIGITAL)
            dig.setDirection(i, libm2k.DIO_OUTPUT) 
            dig.setValueRaw(i, libm2k.LOW)
            dig.enableChannel(i,True)
    else:
        d_trig.setDigitalCondition(channel, libm2k.RISING_EDGE_DIGITAL)
        dig.setDirection(channel, libm2k.DIO_OUTPUT) 
        dig.setValueRaw(channel, libm2k.LOW)
        dig.enableChannel(channel,True)

    d_trig.setDigitalDelay(-delay)
    dig.startAcquisition(buffer_size) 

    # Generate pattern
    # each sample==1 should create 1 edge in the current channel
    # 0, 0, 0, sample, sample, 0 , 0, sample sample, 0 , 0, sample, sample, 0, 0
    #         1               2       3             4      5               6
    sample = 1 << channel if channel != -1 else 0xFFFF
    TX_data = np.tile(A = np.array([sample, 0 , 0, sample]), reps = 2) 
    TX_data= np.insert(TX_data, 0, [0, 0, 0, sample])    
    TX_data = np.append(TX_data, [sample, 0, 0, 0])
    
    expected_num_edges = count_edges(TX_data)
    TX_data = TX_data.tolist()
    dig.push(TX_data)
    
    RX_data = dig.getSamples(buffer_size)
    actual_num_edges = count_edges(np.array(RX_data))
    
    extra_edges = abs(expected_num_edges - actual_num_edges) 
    data_string.append(f"\tExpected: {expected_num_edges}, found {actual_num_edges}")
    
    if gen_reports:
        write_file(file, test_name, channel, data_string)    
        channel_name = f'DIO{channel}'if channel != -1 else 'all channels'
        plot_to_file_all_channels(title=f"Pattern generator on {channel_name}",
                                  data=RX_data, dir_name=dir_name, 
                                  filename=f"pattern_generator_glitch_{channel_name}.png",
                                  xlabel='Samples', ylabel='DIO channel')
    dig.stopAcquisition()
    dig.stopBufferOut()
    
    return extra_edges


def generate_digital_clock(
    n_samples: int,
    duty: float,
    channel = None
):
    """
    Generates a digital clock signal with a specified number of samples, duty cycle, and optional channel.

    Args:
        n_samples (int): The total number of samples in the signal. Must be greater than or equal to 16 and a multiple of 4.
        duty (float): The duty cycle of the clock signal as a fraction (0 <= duty <= 1). This defines the proportion of the signal that will be high.
        channel (Optional[int]): The specific digital channel for which to generate the signal. If None, all channels will be set.
    Returns:
        List[int]: A list of integers representing the digital clock signal, where each element corresponds to a sample.
    """
    assert n_samples >= 16, "Number of samples must be greater than 16"
    assert n_samples % 4 == 0, "Number of samples must be a multiple of 4"
    assert 0 <= duty <= 1, "Duty cycle must be between 0 and 1"

    signal : np.ndarray = np.arange(n_samples) > (n_samples * duty) # should be 0s then 1s
    if channel is not None:
        signal  = signal << channel
    else: 
        signal = signal * 0xFFFF
    return signal.tolist()


def verify_samples(
    samples: np.ndarray,
    expected_value: int,
    position: str = 'end',
    sample_range=5000
):
    """
    Verifies that samples hold the expected value at the specified position.

    Args:
        samples (np.ndarray): Samples to verify.
        expected_value (int): Expected value to hold.
        position (str): Position to check ('start' or 'end').
        sample_window (int): Number of samples to consider for verification.

    Returns:
        bool: True if verification passes, False otherwise.
    """
    if position == 'start':
        sample_segment = samples[:sample_range]
    elif position == 'end':
        sample_segment = samples[-sample_range:]
    else:
        raise ValueError("Invalid position. Must be 'start' or 'end'.")
    return np.all(sample_segment == expected_value)


def get_DIO_chn_samples(samples, channel):
    """
    Isolates the samples for a specific digital channel.
    """
    channel_mask = 1 << channel
    extracted_samples = [(samples & channel_mask) >> channel for samples in samples]
    return extracted_samples


def test_last_sample_hold(dig: libm2k.M2kDigital, trig: libm2k.M2kHardwareTrigger, ctx:libm2k.M2k, channel=None):
    if gen_reports:
        from create_files import results_file, results_dir, csv, open_files_and_dirs
        if results_file is None:
            file, dir_name, csv_path = open_files_and_dirs()
        else:
            file = results_file
            dir_name = results_dir
            csv_path = csv
    else:
        file = []

    test_name = "pattern_generator_last_sample_hold"
    data_string = []

    HIGH = 1
    HIGH_ALL = 0xFFFF
    HOLD_VALUE = HIGH if channel is not None else HIGH_ALL

    delay = 8192
    timeout = 15_000 # [ms]
    buffer_size = 30_000
    sampling_frequency_in = 100_000_000
    sampling_frequency_out = 10_000_000
    cyclic = False

    buff = generate_digital_clock(n_samples=1024, duty=0.5, channel=channel)

    ctx.setTimeout(timeout)
    dig.stopAcquisition()
    dig.stopBufferOut()
    dig.reset()

    dig.setSampleRateIn(sampling_frequency_in)
    dig.setSampleRateOut(sampling_frequency_out) 
    assert dig.getSampleRateIn() == sampling_frequency_in, "Failed to set sample rate IN"
    assert dig.getSampleRateOut() == sampling_frequency_out, "Failed to set sample rate OUT"

    dig.setCyclic(False)
    assert dig.getCyclic() == cyclic, "Failed to set cyclic mode"

    # Digital trigger rests
    trig.reset()
    trig.setDigitalMode(libm2k.DIO_OR)
    trig.setDigitalStreamingFlag(False)
    for i in range(16): 
        trig.setDigitalCondition(i, libm2k.NO_TRIGGER_DIGITAL)

    # Config trigger
    if channel is not None:
        trig.setDigitalCondition(channel, libm2k.RISING_EDGE_DIGITAL)
        dig.setDirection(channel, libm2k.DIO_OUTPUT)
        dig.enableChannel(channel, True)
    else:
        for i in range(16):
            trig.setDigitalCondition(i, libm2k.RISING_EDGE_DIGITAL)
            dig.setDirection(i, libm2k.DIO_OUTPUT)
            dig.enableChannel(i, True)
    trig.setDigitalDelay(-delay)

    chn_str = str(channel) if channel is not None else "ALL"
    # Step 1
    dig.startAcquisition(buffer_size)
    dig.push(buff)
    RX_data = dig.getSamples(buffer_size)
    samples = np.array(get_DIO_chn_samples(RX_data, channel) if channel is not None else RX_data)
    result_step1 = verify_samples(samples, HOLD_VALUE, position='end', sample_range=50)
    if gen_reports:
        plot_to_file_all_channels(
            title=f"Last sample hold on DIO_{chn_str}",
            data=RX_data, dir_name=dir_name,
            filename=f"last_sample_hold_DIO_{chn_str}_step{1}.png",
            xlabel='Samples', ylabel='DIO channel'
        )
    time.sleep(0.15)

    # Step 2
    if channel is not None:
        trig.setDigitalCondition(channel, libm2k.FALLING_EDGE_DIGITAL)
    else:
        for i in range(16):
            trig.setDigitalCondition(i, libm2k.FALLING_EDGE_DIGITAL)
    dig.push(buff)
    RX_data = dig.getSamples(buffer_size)
    samples = np.array(get_DIO_chn_samples(RX_data, channel) if channel is not None else RX_data)
    result_step2 = (
        verify_samples(samples, HOLD_VALUE, position='start', sample_range=50) and
        verify_samples(samples, HOLD_VALUE, position='end', sample_range=50)
    )
    if gen_reports:
        plot_to_file_all_channels(
            title=f"Last sample hold on DIO_{chn_str}",
            data=RX_data, dir_name=dir_name,
            filename=f"last_sample_hold_DIO_{chn_str}_step{2}.png",
            xlabel='Samples', ylabel='DIO channel'
        )
    return result_step1 and result_step2