File: mzd.h

package info (click to toggle)
libm4ri 20200125-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, sid
  • size: 2,560 kB
  • sloc: ansic: 12,633; sh: 4,304; makefile: 137
file content (1330 lines) | stat: -rw-r--r-- 36,281 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
/**
 * \file mzd.h
 * \brief Dense matrices over GF(2) represented as a bit field.
 *
 * \author Gregory Bard <bard@fordham.edu>
 * \author Martin Albrecht <martinralbrecht+m4ri@googlemail.com>
 * \author Carlo Wood <carlo@alinoe.com>
 */

#ifndef M4RI_MZD
#define M4RI_MZD

/*******************************************************************
*
*                M4RI: Linear Algebra over GF(2)
*
*    Copyright (C) 2007, 2008 Gregory Bard <bard@fordham.edu>
*    Copyright (C) 2008-2013 Martin Albrecht <M.R.Albrecht@rhul.ac.uk>
*    Copyright (C) 2011 Carlo Wood <carlo@alinoe.com>
*
*  Distributed under the terms of the GNU General Public License (GPL)
*  version 2 or higher.
*
*    This code is distributed in the hope that it will be useful,
*    but WITHOUT ANY WARRANTY; without even the implied warranty of
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
*    General Public License for more details.
*
*  The full text of the GPL is available at:
*
*                  http://www.gnu.org/licenses/
*
********************************************************************/

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <m4ri/m4ri_config.h>

#include <assert.h>
#include <math.h>
#include <stdio.h>

#if __M4RI_HAVE_SSE2
#include <emmintrin.h>
#endif

#include <m4ri/misc.h>
#include <m4ri/debug_dump.h>

/**
 * Maximum number of words allocated for one mzd_t block.
 *
 * \note This value must fit in an int, even though it's type is size_t.
 */

#define __M4RI_MAX_MZD_BLOCKSIZE (((size_t)1) << 27)

/**
 * \brief Matrix multiplication block-ing dimension.
 *
 * Defines the number of rows of the matrix A that are
 * processed as one block during the execution of a multiplication
 * algorithm.
 */

#define __M4RI_MUL_BLOCKSIZE MIN(((int)sqrt((double)(4 * __M4RI_CPU_L3_CACHE))) / 2, 2048)

/**
 * \brief Data containers containing the values packed into words
 */

typedef struct {
  size_t size; /*!< number of words */
  word *begin; /*!< first word */
  word *end;   /*!< last word */
} mzd_block_t;

/**
 * \brief Dense matrices over GF(2).
 *
 * The most fundamental data type in this library.
 */

typedef struct mzd_t {

  rci_t nrows; /*!< Number of rows. */
  rci_t ncols; /*!< Number of columns. */
  wi_t width;  /*!< Number of words with valid bits: width = ceil(ncols / m4ri_radix) */

  /**
   * Offset in words between rows.
   *
   * rowstride = (width < mzd_paddingwidth || (width & 1) == 0) ? width : width + 1;
   * where width is the width of the underlying non-windowed matrix.
   */

  wi_t rowstride;

  /**
   * Offset in words from start of block to first word.
   *
   * rows[0] = blocks[0].begin + offset_vector;
   * This, together with rowstride, makes the rows array obsolete.
   */

  wi_t offset_vector;

  wi_t row_offset; /*!< Number of rows to the first row counting from the start of the first block. */

  /**
   * Booleans to speed up things.
   *
   * The bits have the following meaning:
   *
   * 1: Has non-zero excess.
   * 2: Is windowed, but has zero offset.
   * 3: Is windowed, but has zero excess.
   * 4: Is windowed, but owns the blocks allocations.
   * 5: Spans more than 1 block.
   */

  uint8_t flags;

  /**
   * blockrows_log = log2(blockrows);
   * where blockrows is the number of rows in one block, which is a power of 2.
   */

  uint8_t blockrows_log;

  /* ensures sizeof(mzd_t) == 64 */
  uint8_t padding[62 - 2 * sizeof(rci_t) - 4 * sizeof(wi_t) - sizeof(word) - 2 * sizeof(void *)];

  word high_bitmask;   /*!< Mask for valid bits in the word with the highest index (width - 1). */
  mzd_block_t *blocks; /*!< Pointers to the actual blocks of memory containing the values packed into words. */
  word **rows;         /*!< Address of first word in each row, so the first word of row i is is m->rows[i] */
} mzd_t;

/**
 * \brief The minimum width where padding occurs.
 */
static wi_t const mzd_paddingwidth = 1;

/**
 * \brief flag when ncols%64 == 0
 */

static uint8_t const mzd_flag_nonzero_excess = 0x2;

/**
 * \brief flag for windowed matrix
 */

static uint8_t const mzd_flag_windowed_zerooffset = 0x4;

/**
 * \brief flag for windowed matrix where ncols%64 == 0
 */

static uint8_t const mzd_flag_windowed_zeroexcess = 0x8;

/**
 * \brief flag for windowed matrix wich owns its memory
 */

static uint8_t const mzd_flag_windowed_ownsblocks = 0x10;

/**
 * \brief flag for multiply blocks
 */

static uint8_t const mzd_flag_multiple_blocks = 0x20;

/**
 * \brief Test if a matrix is windowed.
 *
 * \param M Matrix
 *
 * \return a non-zero value if the matrix is windowed, otherwise return zero.
 */
static inline int mzd_is_windowed(mzd_t const *M) { return M->flags & (mzd_flag_windowed_zerooffset); }

/**
 * \brief Test if this mzd_t should free blocks.
 *
 * \param M Matrix
 *
 * \return TRUE iff blocks is non-zero and should be freed upon a call to mzd_free.
 */
static inline int mzd_owns_blocks(mzd_t const *M) {
  return M->blocks && (!mzd_is_windowed(M) || ((M->flags & mzd_flag_windowed_ownsblocks)));
}

/**
 * \brief Get a pointer the first word.
 *
 * \param M Matrix
 *
 * \return a pointer to the first word of the first row.
 */

static inline word *mzd_first_row(mzd_t const *M) {
  word *result = M->blocks[0].begin + M->offset_vector;
  assert(M->nrows == 0 || result == M->rows[0]);
  return result;
}

/**
 * \brief Get a pointer to the first word in block n.
 *
 * Use mzd_first_row for block number 0.
 *
 * \param M Matrix
 * \param n The block number. Must be larger than 0.
 *
 * \return a pointer to the first word of the first row in block n.
 */
static inline word *mzd_first_row_next_block(mzd_t const *M, int n) {
  assert(n > 0);
  return M->blocks[n].begin + M->offset_vector - M->row_offset * M->rowstride;
}

/**
 * \brief Convert row to blocks index.
 *
 * \param M Matrix.
 * \param row The row to convert.
 *
 * \return the block number that contains this row.
 */

static inline int mzd_row_to_block(mzd_t const *M, rci_t row) { return (M->row_offset + row) >> M->blockrows_log; }

/**
 * \brief Total number of rows in this block.
 *
 * Should be called with a constant n=0, or with
 * n > 0 when n is a variable, for optimization
 * reasons.
 *
 * \param M Matrix
 * \param n The block number.
 *
 * \return the total number of rows in this block.
 */

static inline wi_t mzd_rows_in_block(mzd_t const *M, int n) {
  if (__M4RI_UNLIKELY(M->flags & mzd_flag_multiple_blocks)) {
    if (__M4RI_UNLIKELY(n == 0)) {
      return (1 << M->blockrows_log) - M->row_offset;
    } else {
      int const last_block = mzd_row_to_block(M, M->nrows - 1);
      if (n < last_block) {
        return (1 << M->blockrows_log);
      }
      return M->nrows + M->row_offset - (n << M->blockrows_log);
    }
  }
  return n ? 0 : M->nrows;
}

/**
 * \brief Number of rows in this block including r
 *
 * \param M Matrix
 * \param r row
 *
 * \return the number of rows with index >= r in this block
 */

static inline wi_t mzd_remaining_rows_in_block(mzd_t const *M, rci_t r) {
  const int n = mzd_row_to_block(M, r);
  r = (r - (n << M->blockrows_log));
  if (__M4RI_UNLIKELY(M->flags & mzd_flag_multiple_blocks)) {
    if (__M4RI_UNLIKELY(n == 0)) {
      return (1 << M->blockrows_log) - M->row_offset - r;
    } else {
      int const last_block = mzd_row_to_block(M, M->nrows - 1);
      if (n < last_block) {
        return (1 << M->blockrows_log) - r;
      }
      return M->nrows + M->row_offset - (n << M->blockrows_log) - r;
    }
  }
  return n ? 0 : M->nrows - r;
}

/**
 * \brief Get pointer to first word of row.
 *
 * \param M Matrix
 * \param row The row index.
 *
 * \return pointer to first word of the row.
 */

static inline word *mzd_row(mzd_t const *M, rci_t row) {
  wi_t big_vector = M->offset_vector + row * M->rowstride;
  word *result    = M->blocks[0].begin + big_vector;
  if (__M4RI_UNLIKELY(M->flags & mzd_flag_multiple_blocks)) {
    int const n = (M->row_offset + row) >> M->blockrows_log;
    result = M->blocks[n].begin + big_vector - n * (M->blocks[0].size / sizeof(word));
  }
  assert(result == M->rows[row]);
  return result;
}

/**
 * \brief Create a new matrix of dimension r x c.
 *
 * Use mzd_free to kill it.
 *
 * \param r Number of rows
 * \param c Number of columns
 *
 */

mzd_t *mzd_init(rci_t const r, rci_t const c);

/**
 * \brief Free a matrix created with mzd_init.
 *
 * \param A Matrix
 */

void mzd_free(mzd_t *A);

/**
 * \brief Create a window/view into the matrix M.
 *
 * A matrix window for M is a meta structure on the matrix M. It is
 * setup to point into the matrix so M \em must \em not be freed while the
 * matrix window is used.
 *
 * This function puts the restriction on the provided parameters that
 * all parameters must be within range for M which is not enforced
 * currently .
 *
 * Use mzd_free_window to free the window.
 *
 * \param M Matrix
 * \param lowr Starting row (inclusive)
 * \param lowc Starting column (inclusive, must be multiple of m4ri_radix)
 * \param highr End row (exclusive)
 * \param highc End column (exclusive)
 *
 */

mzd_t *mzd_init_window(mzd_t *M, rci_t const lowr, rci_t const lowc, rci_t const highr, rci_t const highc);

/**
 * \brief Create a const window/view into a const matrix M.
 *
 * See mzd_init_window, but for constant M.
 */

static inline mzd_t const *mzd_init_window_const(mzd_t const *M, rci_t const lowr, rci_t const lowc, rci_t const highr,
                                                 rci_t const highc) {
  return mzd_init_window((mzd_t *)M, lowr, lowc, highr, highc);
}

/**
 * \brief Free a matrix window created with mzd_init_window.
 *
 * \param A Matrix
 */

#define mzd_free_window mzd_free

/**
 * \brief Swap the two rows rowa and rowb starting at startblock.
 *
 * \param M Matrix with a zero offset.
 * \param rowa Row index.
 * \param rowb Row index.
 * \param startblock Start swapping only in this block.
 */

static inline void _mzd_row_swap(mzd_t *M, rci_t const rowa, rci_t const rowb, wi_t const startblock) {
  if ((rowa == rowb) || (startblock >= M->width)) {
    return;
  }

  wi_t width = M->width - startblock - 1;
  word *a    = M->rows[rowa] + startblock;
  word *b    = M->rows[rowb] + startblock;
  word tmp;
  word const mask_end = M->high_bitmask;

  for (wi_t i = 0; i < width; ++i) {
    tmp  = a[i];
    a[i] = b[i];
    b[i] = tmp;
  }
  tmp = (a[width] ^ b[width]) & mask_end;
  a[width] ^= tmp;
  b[width] ^= tmp;

  __M4RI_DD_ROW(M, rowa);
  __M4RI_DD_ROW(M, rowb);
}

/**
 * \brief Swap the two rows rowa and rowb.
 *
 * \param M Matrix
 * \param rowa Row index.
 * \param rowb Row index.
 */

static inline void mzd_row_swap(mzd_t *M, rci_t const rowa, rci_t const rowb) { _mzd_row_swap(M, rowa, rowb, 0); }

/**
 * \brief copy row j from A to row i from B.
 *
 * The offsets of A and B must match and the number of columns of A
 * must be less than or equal to the number of columns of B.
 *
 * \param B Target matrix.
 * \param i Target row index.
 * \param A Source matrix.
 * \param j Source row index.
 */

void mzd_copy_row(mzd_t *B, rci_t i, mzd_t const *A, rci_t j);

/**
 * \brief Swap the two columns cola and colb.
 *
 * \param M Matrix.
 * \param cola Column index.
 * \param colb Column index.
 */

void mzd_col_swap(mzd_t *M, rci_t const cola, rci_t const colb);

/**
 * \brief Swap the two columns cola and colb but only between start_row and stop_row.
 *
 * \param M Matrix.
 * \param cola Column index.
 * \param colb Column index.
 * \param start_row Row index.
 * \param stop_row Row index (exclusive).
 */

static inline void mzd_col_swap_in_rows(mzd_t *M, rci_t const cola, rci_t const colb, rci_t const start_row,
                                        rci_t const stop_row) {
  if (cola == colb) {
    return;
  }

  rci_t const _cola = cola;
  rci_t const _colb = colb;

  wi_t const a_word = _cola / m4ri_radix;
  wi_t const b_word = _colb / m4ri_radix;

  int const a_bit = _cola % m4ri_radix;
  int const b_bit = _colb % m4ri_radix;

  word *RESTRICT ptr  = mzd_row(M, start_row);
  int max_bit         = MAX(a_bit, b_bit);
  int count_remaining = stop_row - start_row;
  int min_bit         = a_bit + b_bit - max_bit;
  int block           = mzd_row_to_block(M, start_row);
  int offset          = max_bit - min_bit;
  word mask           = m4ri_one << min_bit;
  int count = MIN(mzd_remaining_rows_in_block(M, start_row), count_remaining);

  // Apparently we're calling with start_row == stop_row sometimes (seems a bug to me).
  if (count <= 0) {
    return;
  }

  if (a_word == b_word) {
    while (1) {
      count_remaining -= count;
      ptr += a_word;
      int fast_count = count / 4;
      int rest_count = count - 4 * fast_count;
      word xor_v[4];
      wi_t const rowstride = M->rowstride;
      while (fast_count--) {
        xor_v[0] = ptr[0];
        xor_v[1] = ptr[rowstride];
        xor_v[2] = ptr[2 * rowstride];
        xor_v[3] = ptr[3 * rowstride];
        xor_v[0] ^= xor_v[0] >> offset;
        xor_v[1] ^= xor_v[1] >> offset;
        xor_v[2] ^= xor_v[2] >> offset;
        xor_v[3] ^= xor_v[3] >> offset;
        xor_v[0] &= mask;
        xor_v[1] &= mask;
        xor_v[2] &= mask;
        xor_v[3] &= mask;
        xor_v[0] |= xor_v[0] << offset;
        xor_v[1] |= xor_v[1] << offset;
        xor_v[2] |= xor_v[2] << offset;
        xor_v[3] |= xor_v[3] << offset;
        ptr[0] ^= xor_v[0];
        ptr[rowstride] ^= xor_v[1];
        ptr[2 * rowstride] ^= xor_v[2];
        ptr[3 * rowstride] ^= xor_v[3];
        ptr += 4 * rowstride;
      }
      while (rest_count--) {
        word xor_v = *ptr;
        xor_v ^= xor_v >> offset;
        xor_v &= mask;
        *ptr ^= xor_v | (xor_v << offset);
        ptr += rowstride;
      }
      block++;
      if ((count = MIN(mzd_rows_in_block(M, block), count_remaining)) <= 0) {
        break;
      }
      ptr = mzd_first_row_next_block(M, block);
    }
  } else {
    word *RESTRICT min_ptr;
    wi_t max_offset;
    if (min_bit == a_bit) {
      min_ptr    = ptr + a_word;
      max_offset = b_word - a_word;
    } else {
      min_ptr    = ptr + b_word;
      max_offset = a_word - b_word;
    }
    while (1) {
      count_remaining -= count;
      wi_t const rowstride = M->rowstride;
      while (count--) {
        word xor_v = (min_ptr[0] ^ (min_ptr[max_offset] >> offset)) & mask;
        min_ptr[0] ^= xor_v;
        min_ptr[max_offset] ^= xor_v << offset;
        min_ptr += rowstride;
      }
      block++;
      if ((count = MIN(mzd_rows_in_block(M, +block), count_remaining)) <= 0) {
        break;
      }
      ptr = mzd_first_row_next_block(M, block);
      if (min_bit == a_bit) {
        min_ptr = ptr + a_word;
      } else {
        min_ptr = ptr + b_word;
      }
    }
  }

  __M4RI_DD_MZD(M);
}

/**
 * \brief Read the bit at position M[row,col].
 *
 * \param M Matrix
 * \param row Row index
 * \param col Column index
 *
 * \note No bounds checks whatsoever are performed.
 *
 */

static inline BIT mzd_read_bit(mzd_t const *M, rci_t const row, rci_t const col) {
  return __M4RI_GET_BIT(M->rows[row][col / m4ri_radix], col % m4ri_radix);
}

/**
 * \brief Write the bit value to position M[row,col]
 *
 * \param M Matrix
 * \param row Row index
 * \param col Column index
 * \param value Either 0 or 1
 *
 * \note No bounds checks whatsoever are performed.
 *
 */

static inline void mzd_write_bit(mzd_t *M, rci_t const row, rci_t const col, BIT const value) {
  __M4RI_WRITE_BIT(M->rows[row][col / m4ri_radix], col % m4ri_radix, value);
}

/**
 * \brief XOR n bits from values to M starting a position (x,y).
 *
 * \param M Source matrix.
 * \param x Starting row.
 * \param y Starting column.
 * \param n Number of bits (<= m4ri_radix);
 * \param values Word with values;
 */

static inline void mzd_xor_bits(mzd_t const *M, rci_t const x, rci_t const y, int const n, word values) {
  int const spot   = y % m4ri_radix;
  wi_t const block = y / m4ri_radix;
  M->rows[x][block] ^= values << spot;
  int const space = m4ri_radix - spot;
  if (n > space) {
    M->rows[x][block + 1] ^= values >> space;
  }
}

/**
 * \brief AND n bits from values to M starting a position (x,y).
 *
 * \param M Source matrix.
 * \param x Starting row.
 * \param y Starting column.
 * \param n Number of bits (<= m4ri_radix);
 * \param values Word with values;
 */

static inline void mzd_and_bits(mzd_t const *M, rci_t const x, rci_t const y, int const n, word values) {
  /* This is the best way, since this will drop out once we inverse the bits in values: */
  values >>= (m4ri_radix - n); /* Move the bits to the lowest columns */

  int const spot   = y % m4ri_radix;
  wi_t const block = y / m4ri_radix;
  M->rows[x][block] &= values << spot;
  int const space = m4ri_radix - spot;
  if (n > space) {
    M->rows[x][block + 1] &= values >> space;
  }
}

/**
 * \brief Clear n bits in M starting a position (x,y).
 *
 * \param M Source matrix.
 * \param x Starting row.
 * \param y Starting column.
 * \param n Number of bits (0 < n <= m4ri_radix);
 */

static inline void mzd_clear_bits(mzd_t const *M, rci_t const x, rci_t const y, int const n) {
  assert(n > 0 && n <= m4ri_radix);
  word values      = m4ri_ffff >> (m4ri_radix - n);
  int const spot   = y % m4ri_radix;
  wi_t const block = y / m4ri_radix;
  M->rows[x][block] &= ~(values << spot);
  int const space = m4ri_radix - spot;
  if (n > space) {
    M->rows[x][block + 1] &= ~(values >> space);
  }
}

/**
 * \brief Add the rows sourcerow and destrow and stores the total in the row
 * destrow, but only begins at the column coloffset.
 *
 * \param M Matrix
 * \param dstrow Index of target row
 * \param srcrow Index of source row
 * \param coloffset Start column (0 <= coloffset < M->ncols)
 *
 * \warning This function expects that there is at least one word worth of work.
 */

static inline void mzd_row_add_offset(mzd_t *M, rci_t dstrow, rci_t srcrow, rci_t coloffset) {
  assert(dstrow < M->nrows && srcrow < M->nrows && coloffset < M->ncols);
  wi_t const startblock = coloffset / m4ri_radix;
  wi_t wide             = M->width - startblock;
  word *src             = M->rows[srcrow] + startblock;
  word *dst             = M->rows[dstrow] + startblock;
  word const mask_begin = __M4RI_RIGHT_BITMASK(m4ri_radix - coloffset % m4ri_radix);
  word const mask_end   = M->high_bitmask;

  *dst++ ^= *src++ & mask_begin;
  --wide;

#if __M4RI_HAVE_SSE2
  int not_aligned = __M4RI_ALIGNMENT(src, 16) != 0; /* 0: Aligned, 1: Not aligned */
  if (wide > not_aligned + 1)                       /* Speed up for small matrices */
  {
    if (not_aligned) {
      *dst++ ^= *src++;
      --wide;
    }
    /* Now wide > 1 */
    __m128i *__src     = (__m128i *)src;
    __m128i *__dst     = (__m128i *)dst;
    __m128i *const eof = (__m128i *)((unsigned long)(src + wide) & ~0xFUL);
    do {
      __m128i xmm1 = _mm_xor_si128(*__dst, *__src);
      *__dst++     = xmm1;
    } while (++__src < eof);
    src  = (word *)__src;
    dst  = (word *)__dst;
    wide = ((sizeof(word) * wide) % 16) / sizeof(word);
  }
#endif
  wi_t i = -1;
  while (++i < wide) {
    dst[i] ^= src[i];
  }
  /*
   * Revert possibly non-zero excess bits.
   * Note that i == wide here, and wide can be 0.
   * But really, src[wide - 1] is M->rows[srcrow][M->width - 1] ;)
   * We use i - 1 here to let the compiler know these are the same addresses
   * that we last accessed, in the previous loop.
   */
  dst[i - 1] ^= src[i - 1] & ~mask_end;

  __M4RI_DD_ROW(M, dstrow);
}

/**
 * \brief Add the rows sourcerow and destrow and stores the total in
 * the row destrow.
 *
 * \param M Matrix
 * \param sourcerow Index of source row
 * \param destrow Index of target row
 *
 * \note this can be done much faster with mzd_combine.
 */

void mzd_row_add(mzd_t *M, rci_t const sourcerow, rci_t const destrow);

/**
 * \brief Transpose a matrix.
 *
 * This function uses the fact that:
\verbatim
   [ A B ]T    [AT CT]
   [ C D ]  =  [BT DT]
 \endverbatim
 * and thus rearranges the blocks recursively.
 *
 * \param DST Preallocated return matrix, may be NULL for automatic creation.
 * \param A Matrix
 */

mzd_t *mzd_transpose(mzd_t *DST, mzd_t const *A);

/**
 * \brief Naive cubic matrix multiplication.
 *
 * That is, compute C such that C == AB.
 *
 * \param C Preallocated product matrix, may be NULL for automatic creation.
 * \param A Input matrix A.
 * \param B Input matrix B.
 *
 * \note Normally, if you will multiply several times by b, it is
 * smarter to calculate bT yourself, and keep it, and then use the
 * function called _mzd_mul_naive
 *
 */
mzd_t *mzd_mul_naive(mzd_t *C, mzd_t const *A, mzd_t const *B);

/**
 * \brief Naive cubic matrix multiplication and addition
 *
 * That is, compute C such that C == C + AB.
 *
 * \param C Preallocated product matrix.
 * \param A Input matrix A.
 * \param B Input matrix B.
 *
 * \note Normally, if you will multiply several times by b, it is
 * smarter to calculate bT yourself, and keep it, and then use the
 * function called _mzd_mul_naive
 */

mzd_t *mzd_addmul_naive(mzd_t *C, mzd_t const *A, mzd_t const *B);

/**
 * \brief Naive cubic matrix multiplication with the pre-transposed B.
 *
 * That is, compute C such that C == AB^t.
 *
 * \param C Preallocated product matrix.
 * \param A Input matrix A.
 * \param B Pre-transposed input matrix B.
 * \param clear Whether to clear C before accumulating AB
 */

mzd_t *_mzd_mul_naive(mzd_t *C, mzd_t const *A, mzd_t const *B, int const clear);

/**
 * \brief Matrix multiplication optimized for v*A where v is a vector.
 *
 * \param C Preallocated product matrix.
 * \param v Input matrix v.
 * \param A Input matrix A.
 * \param clear If set clear C first, otherwise add result to C.
 *
 */
mzd_t *_mzd_mul_va(mzd_t *C, mzd_t const *v, mzd_t const *A, int const clear);

/**
 * \brief Fill matrix M with uniformly distributed bits.
 *
 * \param M Matrix
 */

void mzd_randomize(mzd_t *M);

/**
 * \brief Random callback that produces uniformly distributed random
 * words on every call.
 *
 * \param data callback data
 *
 * \return uniformly distributed random word
 */
typedef word (*m4ri_random_callback)(void* data);

/**
 * \brief Fill matrix M with uniformly distributed bits.
 *
 * \param M Matrix
 * \param rc callback
 * \param data callback data passed to every call to rc
 */
void mzd_randomize_custom(mzd_t *M, m4ri_random_callback rc, void* data);

/**
 * \brief Set the matrix M to the value equivalent to the integer
 * value provided.
 *
 * Specifically, this function does nothing if value%2 == 0 and
 * returns the identity matrix if value%2 == 1.
 *
 * If the matrix is not square then the largest possible square
 * submatrix is set to the identity matrix.
 *
 * \param M Matrix
 * \param value Either 0 or 1
 */

void mzd_set_ui(mzd_t *M, unsigned int const value);

/**
 * \brief Gaussian elimination.
 *
 * This will do Gaussian elimination on the matrix m but will start
 * not at column 0 necc but at column startcol. If full=FALSE, then it
 * will do triangular style elimination, and if full=TRUE, it will do
 * Gauss-Jordan style, or full elimination.
 *
 * \param M Matrix
 * \param startcol First column to consider for reduction.
 * \param full Gauss-Jordan style or upper triangular form only.
 */

rci_t mzd_gauss_delayed(mzd_t *M, rci_t const startcol, int const full);

/**
 * \brief Gaussian elimination.
 *
 * This will do Gaussian elimination on the matrix m.  If full=FALSE,
 *  then it will do triangular style elimination, and if full=TRUE,
 *  it will do Gauss-Jordan style, or full elimination.
 *
 * \param M Matrix
 * \param full Gauss-Jordan style or upper triangular form only.
 *
 * \sa mzd_echelonize_m4ri(), mzd_echelonize_pluq()
 */

rci_t mzd_echelonize_naive(mzd_t *M, int const full);

/**
 * \brief Return TRUE if A == B.
 *
 * \param A Matrix
 * \param B Matrix
 */

int mzd_equal(mzd_t const *A, mzd_t const *B);

/**
 * \brief Return -1,0,1 if if A < B, A == B or A > B respectively.
 *
 * \param A Matrix.
 * \param B Matrix.
 *
 * \note This comparison is not well defined mathematically and
 * relatively arbitrary since elements of GF(2) don't have an
 * ordering.
 */

int mzd_cmp(mzd_t const *A, mzd_t const *B);

/**
 * \brief Copy matrix  A to DST.
 *
 * \param DST May be NULL for automatic creation.
 * \param A Source matrix.
 */

mzd_t *mzd_copy(mzd_t *DST, mzd_t const *A);

/**
 * \brief Concatenate B to A and write the result to C.
 *
 * That is,
 *
 \verbatim
 [ A ], [ B ] -> [ A  B ] = C
 \endverbatim
 *
 * The inputs are not modified but a new matrix is created.
 *
 * \param C Matrix, may be NULL for automatic creation
 * \param A Matrix
 * \param B Matrix
 *
 * \note This is sometimes called augment.
 */

mzd_t *mzd_concat(mzd_t *C, mzd_t const *A, mzd_t const *B);

/**
 * \brief Stack A on top of B and write the result to C.
 *
 * That is,
 *
 \verbatim
 [ A ], [ B ] -> [ A ] = C
                 [ B ]
 \endverbatim
 *
 * The inputs are not modified but a new matrix is created.
 *
 * \param C Matrix, may be NULL for automatic creation
 * \param A Matrix
 * \param B Matrix
 */

mzd_t *mzd_stack(mzd_t *C, mzd_t const *A, mzd_t const *B);

/**
 * \brief Copy a submatrix.
 *
 * Note that the upper bounds are not included.
 *
 * \param S Preallocated space for submatrix, may be NULL for automatic creation.
 * \param M Matrix
 * \param lowr start rows
 * \param lowc start column
 * \param highr stop row (this row is \em not included)
 * \param highc stop column (this column is \em not included)
 */
mzd_t *mzd_submatrix(mzd_t *S, mzd_t const *M, rci_t const lowr, rci_t const lowc, rci_t const highr,
                     rci_t const highc);

/**
 * \brief Invert the matrix target using Gaussian elimination.
 *
 * To avoid recomputing the identity matrix over and over again, I may
 * be passed in as identity parameter.
 *
 * \param INV Preallocated space for inversion matrix, may be NULL for automatic creation.
 * \param A Matrix to be reduced.
 * \param I Identity matrix.
 */

mzd_t *mzd_invert_naive(mzd_t *INV, mzd_t const *A, mzd_t const *I);

/**
 * \brief Set C = A+B.
 *
 * C is also returned. If C is NULL then a new matrix is created which
 * must be freed by mzd_free.
 *
 * \param C Preallocated sum matrix, may be NULL for automatic creation.
 * \param A Matrix
 * \param B Matrix
 */

mzd_t *mzd_add(mzd_t *C, mzd_t const *A, mzd_t const *B);

/**
 * \brief Same as mzd_add but without any checks on the input.
 *
 * \param C Preallocated sum matrix, may be NULL for automatic creation.
 * \param A Matrix
 * \param B Matrix
 */

mzd_t *_mzd_add(mzd_t *C, mzd_t const *A, mzd_t const *B);

/**
 * \brief Same as mzd_add.
 *
 * \param C Preallocated difference matrix, may be NULL for automatic creation.
 * \param A Matrix
 * \param B Matrix
 */

#define mzd_sub mzd_add

/**
 * \brief Same as mzd_sub but without any checks on the input.
 *
 * \param C Preallocated difference matrix, may be NULL for automatic creation.
 * \param A Matrix
 * \param B Matrix
 */

#define _mzd_sub _mzd_add

/**
 * Get n bits starting a position (x,y) from the matrix M.
 *
 * \param M Source matrix.
 * \param x Starting row.
 * \param y Starting column.
 * \param n Number of bits (<= m4ri_radix);
 */

static inline word mzd_read_bits(mzd_t const *M, rci_t const x, rci_t const y, int const n) {
  int const spot   = y % m4ri_radix;
  wi_t const block = y / m4ri_radix;
  int const spill  = spot + n - m4ri_radix;
  word temp        = (spill <= 0) ? M->rows[x][block] << -spill
                           : (M->rows[x][block + 1] << (m4ri_radix - spill)) | (M->rows[x][block] >> spill);
  return temp >> (m4ri_radix - n);
}

/**
 * \brief a_row[a_startblock:] += b_row[b_startblock:] for offset 0
 *
 * Adds a_row of A, starting with a_startblock to the end, to
 * b_row of B, starting with b_startblock to the end. This gets stored
 * in A, in a_row, starting with a_startblock.
 *
 * \param A destination matrix
 * \param a_row destination row for matrix C
 * \param a_startblock starting block to work on in matrix C
 * \param B source matrix
 * \param b_row source row for matrix B
 * \param b_startblock starting block to work on in matrix B
 *
 */

static inline void mzd_combine_even_in_place(mzd_t *A,       rci_t const a_row, wi_t const a_startblock,
                                             mzd_t const *B, rci_t const b_row, wi_t const b_startblock) {

  wi_t wide = A->width - a_startblock - 1;

  word *a = A->rows[a_row] + a_startblock;
  word *b = B->rows[b_row] + b_startblock;

#if __M4RI_HAVE_SSE2
  if (wide > 2) {
    /** check alignments **/
    if (__M4RI_ALIGNMENT(a, 16)) {
      *a++ ^= *b++;
      wide--;
    }

    if (__M4RI_ALIGNMENT(a, 16) == 0 && __M4RI_ALIGNMENT(b, 16) == 0) {
      __m128i *a128      = (__m128i *)a;
      __m128i *b128      = (__m128i *)b;
      const __m128i *eof = (__m128i *)((unsigned long)(a + wide) & ~0xFUL);

      do {
        *a128 = _mm_xor_si128(*a128, *b128);
        ++b128;
        ++a128;
      } while (a128 < eof);

      a    = (word *)a128;
      b    = (word *)b128;
      wide = ((sizeof(word) * wide) % 16) / sizeof(word);
    }
  }
#endif  // __M4RI_HAVE_SSE2

  if (wide > 0) {
    wi_t n = (wide + 7) / 8;
    switch (wide % 8) {
    case 0: do { *(a++) ^= *(b++);
    case 7:      *(a++) ^= *(b++);
    case 6:      *(a++) ^= *(b++);
    case 5:      *(a++) ^= *(b++);
    case 4:      *(a++) ^= *(b++);
    case 3:      *(a++) ^= *(b++);
    case 2:      *(a++) ^= *(b++);
    case 1:      *(a++) ^= *(b++);
    } while (--n > 0);
    }
  }

  *a ^= *b & A->high_bitmask;

  __M4RI_DD_MZD(A);
}

/**
 * \brief c_row[c_startblock:] = a_row[a_startblock:] + b_row[b_startblock:] for offset 0
 *
 * Adds a_row of A, starting with a_startblock to the end, to
 * b_row of B, starting with b_startblock to the end. This gets stored
 * in C, in c_row, starting with c_startblock.
 *
 * \param C destination matrix
 * \param c_row destination row for matrix C
 * \param c_startblock starting block to work on in matrix C
 * \param A source matrix
 * \param a_row source row for matrix A
 * \param a_startblock starting block to work on in matrix A
 * \param B source matrix
 * \param b_row source row for matrix B
 * \param b_startblock starting block to work on in matrix B
 *
 */

static inline void mzd_combine_even(mzd_t *C,       rci_t const c_row, wi_t const c_startblock,
                                    mzd_t const *A, rci_t const a_row, wi_t const a_startblock, 
                                    mzd_t const *B, rci_t const b_row, wi_t const b_startblock) {

  wi_t wide = A->width - a_startblock - 1;
  word *a   = A->rows[a_row] + a_startblock;
  word *b   = B->rows[b_row] + b_startblock;
  word *c   = C->rows[c_row] + c_startblock;

#if __M4RI_HAVE_SSE2
  if (wide > 2) {
    /** check alignments **/
    if (__M4RI_ALIGNMENT(a, 16)) {
      *c++ = *b++ ^ *a++;
      wide--;
    }

    if ((__M4RI_ALIGNMENT(b, 16) | __M4RI_ALIGNMENT(c, 16)) == 0) {
      __m128i *a128      = (__m128i *)a;
      __m128i *b128      = (__m128i *)b;
      __m128i *c128      = (__m128i *)c;
      const __m128i *eof = (__m128i *)((unsigned long)(a + wide) & ~0xFUL);

      do {
        *c128 = _mm_xor_si128(*a128, *b128);
        ++c128;
        ++b128;
        ++a128;
      } while (a128 < eof);

      a    = (word *)a128;
      b    = (word *)b128;
      c    = (word *)c128;
      wide = ((sizeof(word) * wide) % 16) / sizeof(word);
    }
  }
#endif  // __M4RI_HAVE_SSE2

  if (wide > 0) {
    wi_t n = (wide + 7) / 8;
    switch (wide % 8) {
    case 0: do { *(c++) = *(a++) ^ *(b++);
    case 7:      *(c++) = *(a++) ^ *(b++);
    case 6:      *(c++) = *(a++) ^ *(b++);
    case 5:      *(c++) = *(a++) ^ *(b++);
    case 4:      *(c++) = *(a++) ^ *(b++);
    case 3:      *(c++) = *(a++) ^ *(b++);
    case 2:      *(c++) = *(a++) ^ *(b++);
    case 1:      *(c++) = *(a++) ^ *(b++);
    } while (--n > 0);
    }
  }
  *c ^= ((*a ^ *b ^ *c) & C->high_bitmask);

  __M4RI_DD_MZD(C);
}

/**
 * \brief row3[col3:] = row1[col1:] + row2[col2:]
 *
 * Adds row1 of SC1, starting with startblock1 to the end, to
 * row2 of SC2, starting with startblock2 to the end. This gets stored
 * in DST, in row3, starting with startblock3.
 *
 * \param C destination matrix
 * \param c_row destination row for matrix dst
 * \param c_startblock starting block to work on in matrix dst
 * \param A source matrix
 * \param a_row source row for matrix sc1
 * \param a_startblock starting block to work on in matrix sc1
 * \param B source matrix
 * \param b_row source row for matrix sc2
 * \param b_startblock starting block to work on in matrix sc2
 *
 */
static inline void mzd_combine(mzd_t *C,       rci_t const c_row, wi_t const c_startblock,
                               mzd_t const *A, rci_t const a_row, wi_t const a_startblock, 
                               mzd_t const *B, rci_t const b_row, wi_t const b_startblock) {

  if ((C == A) & (a_row == c_row) & (a_startblock == c_startblock)) {
    mzd_combine_even_in_place(C, c_row, c_startblock, B, b_row, b_startblock);
  } else {
    mzd_combine_even(C, c_row, c_startblock, A, a_row, a_startblock, B, b_row, b_startblock);
  }
  return;
}

/**
 * \brief Get n bits starting a position (x,y) from the matrix M.
 *
 * This function is in principle the same as mzd_read_bits,
 * but it explicitely returns an 'int' and is used as
 * index into an array (Gray code).
 */

static inline int mzd_read_bits_int(mzd_t const *M, rci_t const x, rci_t const y, int const n) {
  return __M4RI_CONVERT_TO_INT(mzd_read_bits(M, x, y, n));
}

/**
 * \brief Zero test for matrix.
 *
 * \param A Input matrix.
 *
 */
int mzd_is_zero(mzd_t const *A);

/**
 * \brief Clear the given row, but only begins at the column coloffset.
 *
 * \param M Matrix
 * \param row Index of row
 * \param coloffset Column offset
 */

void mzd_row_clear_offset(mzd_t *M, rci_t const row, rci_t const coloffset);

/**
 * \brief Find the next nonzero entry in M starting at start_row and start_col.
 *
 * This function walks down rows in the inner loop and columns in the
 * outer loop. If a nonzero entry is found this function returns 1 and
 * zero otherwise.
 *
 * If and only if a nonzero entry is found r and c are updated.
 *
 * \param M Matrix
 * \param start_row Index of row where to start search
 * \param start_col Index of column where to start search
 * \param r Row index updated if pivot is found
 * \param c Column index updated if pivot is found
 */

int mzd_find_pivot(mzd_t const *M, rci_t start_row, rci_t start_col, rci_t *r, rci_t *c);

/**
 * \brief Return the number of nonzero entries divided by nrows *
 * ncols
 *
 * If res = 0 then 100 samples per row are made, if res > 0 the
 * function takes res sized steps within each row (res = 1 uses every
 * word).
 *
 * \param A Matrix
 * \param res Resolution of sampling (in words)
 */

double mzd_density(mzd_t const *A, wi_t res);

/**
 * \brief Return the number of nonzero entries divided by nrows *
 * ncols considering only the submatrix starting at (r,c).
 *
 * If res = 0 then 100 samples per row are made, if res > 0 the
 * function takes res sized steps within each row (res = 1 uses every
 * word).
 *
 * \param A Matrix
 * \param res Resolution of sampling (in words)
 * \param r Row to start counting
 * \param c Column to start counting
 */

double _mzd_density(mzd_t const *A, wi_t res, rci_t r, rci_t c);

/**
 * \brief Return the first row with all zero entries.
 *
 * If no such row can be found returns nrows.
 *
 * \param A Matrix
 */

rci_t mzd_first_zero_row(mzd_t const *A);

/**
 * \brief Return hash value for matrix.
 *
 * \param A Matrix
 */

static inline word mzd_hash(mzd_t const *A) {
  word hash = 0;
  for (rci_t r = 0; r < A->nrows; ++r) {
    hash ^= rotate_word(calculate_hash(A->rows[r], A->width), r % m4ri_radix);
  }
  return hash;
}

/**
 * Return upper triangular submatrix of A
 *
 * \param U Output matrix, if NULL a new matrix will be returned
 * \param A Source matrix
 *
 * \return U
 */

mzd_t *mzd_extract_u(mzd_t *U, mzd_t const *A);

/**
 * Return lower triangular submatrix of A
 *
 * \param L Output matrix, if NULL a new matrix will be returned
 * \param A Source matrix
 *
 * \return L
 */

mzd_t *mzd_extract_l(mzd_t *L, mzd_t const *A);

#endif  // M4RI_MZD