1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
|
/**
* \file test_elimination.c
* \brief Test code for elimination routines
*
* \author Martin Albrecht <martinralbrecht@googlemail.com>
*/
/******************************************************************************
*
* M4RIE: Linear Algebra over GF(2^e)
*
* Copyright (C) 2010-2012 Martin Albrecht <martinralbrecht@googlemail.com>
*
* Distributed under the terms of the GNU General Public License (GEL)
* version 2 or higher.
*
* This code is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* The full text of the GPL is available at:
*
* http://www.gnu.org/licenses/
******************************************************************************/
#include "testing.h"
int test_equality(gf2e *ff, rci_t m, rci_t n) {
int fail_ret = 0;
mzed_t *A0 = random_mzed_t(ff, m, n);
mzed_t *A1 = mzed_copy(NULL, A0);
mzed_t *A2 = mzed_copy(NULL, A0);
mzed_t *A3 = mzed_copy(NULL, A0);
mzed_set_canary(A1);
mzed_set_canary(A2);
mzed_set_canary(A3);
const rci_t r0 = mzed_echelonize_newton_john(A0,1);
const rci_t r1 = mzed_echelonize_naive(A1,1);
const rci_t r2 = mzed_echelonize(A2,1);
const rci_t r3 = mzed_echelonize_ple(A3,1);
m4rie_check( r0 == r1);
m4rie_check( mzed_cmp(A0, A1) == 0);
m4rie_check( r1 == r2);
m4rie_check( mzed_cmp(A1, A2) == 0);
m4rie_check( r2 == r3);
m4rie_check( mzed_cmp(A2, A3) == 0);
m4rie_check( r3 == r0);
m4rie_check( mzed_cmp(A3, A0) == 0);
m4rie_check( mzed_canary_is_alive(A0) );
m4rie_check( mzed_canary_is_alive(A1) );
m4rie_check( mzed_canary_is_alive(A2) );
m4rie_check( mzed_canary_is_alive(A3) );
mzed_free(A0);
mzed_free(A1);
mzed_free(A2);
mzed_free(A3);
return fail_ret;
}
int test_batch(gf2e *ff, rci_t m, rci_t n) {
int fail_ret = 0;
printf("elim: k: %2d, minpoly: 0x%05x m: %5d, n: %5d ",(int)ff->degree, (unsigned int)ff->minpoly, (int)m, (int)n);
if(m == n) {
m4rie_check( test_equality(ff, m, n) == 0); printf("."); fflush(0);
printf(" ");
} else {
m4rie_check( test_equality(ff, m, n) == 0); printf("."); fflush(0);
m4rie_check( test_equality(ff, n, m) == 0); printf("."); fflush(0);
}
if (fail_ret == 0)
printf(" passed\n");
else
printf(" FAILED\n");
return fail_ret;
}
int main(int argc, char **argv) {
srandom(17);
int runlong = parse_parameters(argc, argv);
gf2e *ff;
int fail_ret = 0;
for(int k=2; k<=16; k++) {
ff = gf2e_init(irreducible_polynomials[k][1]);
fail_ret += test_batch(ff, 2, 5);
fail_ret += test_batch(ff, 5, 10);
fail_ret += test_batch(ff, 1, 1);
fail_ret += test_batch(ff, 1, 2);
fail_ret += test_batch(ff, 11, 12);
fail_ret += test_batch(ff, 21, 22);
fail_ret += test_batch(ff, 13, 2);
fail_ret += test_batch(ff, 32, 33);
fail_ret += test_batch(ff, 63, 64);
if (k <= 12 || runlong) {
fail_ret += test_batch(ff, 127, 128);
fail_ret += test_batch(ff, 200, 20);
}
fail_ret += test_batch(ff, 1, 1);
fail_ret += test_batch(ff, 1, 3);
fail_ret += test_batch(ff, 11, 13);
fail_ret += test_batch(ff, 21, 23);
fail_ret += test_batch(ff, 13, 90);
fail_ret += test_batch(ff, 32, 34);
fail_ret += test_batch(ff, 63, 65);
if (k <= 12 || runlong) {
fail_ret += test_batch(ff, 127, 129);
fail_ret += test_batch(ff, 200, 112);
fail_ret += test_batch(ff, 10, 200);
}
gf2e_free(ff);
}
return fail_ret;
}
|