1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
|
#include <m4rie/m4rie.h>
#include "cpucycles.h"
#include "benchmarking.h"
struct elim_params {
rci_t k;
rci_t m;
rci_t n;
rci_t r;
char const *algorithm;
char type;
};
int run_mzed(void *_p, unsigned long long *data, int *data_len) {
struct elim_params *p = (struct elim_params *)_p;
*data_len = 2;
gf2e *ff = gf2e_init(irreducible_polynomials[p->k][1]);
mzed_t *A = mzed_init(ff,p->m,p->n);
mzed_randomize(A);
data[0] = walltime(0);
data[1] = cpucycles();
if(strcmp(p->algorithm,"newton-john")==0)
p->r= mzed_echelonize_newton_john(A, 1);
else if(strcmp(p->algorithm,"naive")==0)
p->r = mzed_echelonize_naive(A, 1);
else if(strcmp(p->algorithm,"ple")==0)
p->r = mzed_echelonize_ple(A, 1);
else if(strcmp(p->algorithm,"default")==0)
p->r = mzed_echelonize(A, 1);
else
m4ri_die("uknown algorithm '%s'\n.",p->algorithm);
data[1] = cpucycles() - data[1];
data[0] = walltime(data[0]);
mzed_free(A);
gf2e_free(ff);
return 0;
}
int run_mzd_slice(void *_p, unsigned long long *data, int *data_len) {
struct elim_params *p = (struct elim_params *)_p;
*data_len = 2;
gf2e *ff = gf2e_init(irreducible_polynomials[p->k][1]);
mzd_slice_t *A = mzd_slice_init(ff,p->m,p->n);
mzd_slice_randomize(A);
data[0] = walltime(0);
data[1] = cpucycles();
if(strcmp(p->algorithm,"newton-john")==0) {
mzed_t *B = mzed_cling(NULL, A);
p->r= mzed_echelonize_newton_john(B, 1);
mzed_slice(A, B);
mzed_free(B);
} else if(strcmp(p->algorithm,"naive")==0) {
mzed_t *B = mzed_cling(NULL, A);
p->r = mzed_echelonize_naive(B, 1);
mzed_slice(A, B);
mzed_free(B);
} else if(strcmp(p->algorithm,"ple")==0) {
p->r = mzd_slice_echelonize_ple(A, 1);
} else if(strcmp(p->algorithm,"default")==0) {
p->r = mzd_slice_echelonize(A, 1);
} else {
m4ri_die("uknown algorithm '%s'\n.",p->algorithm);
}
data[1] = cpucycles() - data[1];
data[0] = walltime(data[0]);
mzd_slice_free(A);
gf2e_free(ff);
return 0;
}
void print_help() {
printf("bench_elimination:\n\n");
printf("REQUIRED\n");
printf(" e -- integer between 2 and 10\n");
printf(" m -- integer > 0, number of rows\n");
printf(" n -- integer > 0, number of columns\n");
printf(" algorithm -- default -- let M4RIE decide\n");
printf(" naive -- cubic Gaussian elimination\n");
printf(" newton-john -- Newton-John tables\n");
printf(" ple -- PLE based\n");
printf(" type -- mzed_t or mzd_slice_t (default: mzed_t)\n");
printf("\n");
bench_print_global_options(stdout);
}
int main(int argc, char **argv) {
global_options(&argc, &argv);
if (argc < 4) {
print_help();
m4ri_die("");
}
struct elim_params params;
params.k = atoi(argv[1]);
params.m = atoi(argv[2]);
params.n = atoi(argv[3]);
if (argc >= 5)
params.algorithm = argv[4];
else
params.algorithm = (char*)"default";
if (argc >= 6) {
if (strcmp("mzed_t",argv[5]) == 0)
params.type = 0;
else if (strcmp("mzd_slice_t",argv[5]) == 0)
params.type = 1;
else
m4ri_die("unknown type '%s'\n",argv[5]);
} else {
params.type = 0;
}
srandom(17);
unsigned long long data[2];
if (params.type == 0)
run_bench(run_mzed, (void*)¶ms, data, 2);
else
run_bench(run_mzd_slice, (void*)¶ms, data, 2);
double cc_per_op = ((double)data[1])/ ((double)params.m * (double)params.n * powl((double)params.r,__M4RIE_OMEGA-2) );
printf("e: %2d, m: %5d, n: %5d, type: %d, algo: %10s, cpu cycles: %10llu, cc/(mnr^0.807): %.5lf, wall time: %lf\n", params.k, params.m, params.n, params.type, params.algorithm, data[1], cc_per_op, data[0] / 1000000.0);
}
|