1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
#include <m4rie/m4rie.h>
#include "cpucycles.h"
#include "benchmarking.h"
struct smallops_params {
rci_t k;
rci_t m;
rci_t n;
char const *algorithm;
};
int run_mzed_add(void *_p, unsigned long long *data, int *data_len) {
struct smallops_params *p = (struct smallops_params *)_p;
*data_len = 2;
gf2e *ff = gf2e_init(irreducible_polynomials[p->k][1]);
mzed_t *A = mzed_init(ff,p->m,p->n);
mzed_randomize(A);
mzed_t *B = mzed_init(ff,p->m,p->n);
mzed_randomize(B);
mzed_t *C = mzed_init(ff,p->m,p->n);
data[0] = walltime(0);
data[1] = cpucycles();
mzed_add(C, A, B);
data[1] = cpucycles() - data[1];
data[0] = walltime(data[0]);
mzed_free(A);
mzed_free(B);
mzed_free(C);
gf2e_free(ff);
return 0;
}
int run_mzed_slice(void *_p, unsigned long long *data, int *data_len) {
struct smallops_params *p = (struct smallops_params *)_p;
*data_len = 2;
gf2e *ff = gf2e_init(irreducible_polynomials[p->k][1]);
mzed_t *A = mzed_init(ff,p->m,p->n);
mzed_randomize(A);
mzd_slice_t *a = mzd_slice_init(ff,p->m,p->n);
data[0] = walltime(0);
data[1] = cpucycles();
mzed_slice(a, A);
data[1] = cpucycles() - data[1];
data[0] = walltime(data[0]);
mzed_free(A);
mzd_slice_free(a);
gf2e_free(ff);
return 0;
}
int run_mzed_cling(void *_p, unsigned long long *data, int *data_len) {
struct smallops_params *p = (struct smallops_params *)_p;
*data_len = 2;
gf2e *ff = gf2e_init(irreducible_polynomials[p->k][1]);
mzd_slice_t *a = mzd_slice_init(ff,p->m,p->n);
mzd_slice_randomize(a);
mzed_t *A = mzed_init(ff, p->m, p->n);
data[0] = walltime(0);
data[1] = cpucycles();
mzed_cling(A, a);
data[1] = cpucycles() - data[1];
data[0] = walltime(data[0]);
mzed_free(A);
mzd_slice_free(a);
gf2e_free(ff);
return 0;
}
void print_help() {
printf("bench_smallops:\n\n");
printf("REQUIRED\n");
printf(" e -- integer between 2 and 10\n");
printf(" m -- integer > 0\n");
printf(" n -- integer > 0\n");
printf(" what -- mze_cling\n");
printf(" mzed_slice\n");
printf(" mzed_add\n");
printf("\n");
bench_print_global_options(stdout);
}
int main(int argc, char **argv) {
global_options(&argc, &argv);
if (argc < 5) {
print_help();
m4ri_die("");
}
struct smallops_params params;
params.k = atoi(argv[1]);
params.m = atoi(argv[2]);
params.n = atoi(argv[3]);
srandom(17);
unsigned long long data[2];
if(strcmp(argv[4],"mzed_slice") == 0) {
run_bench(run_mzed_slice, (void*)¶ms, data, 2);
} else if(strcmp(argv[4],"mzed_cling") == 0) {
run_bench(run_mzed_cling, (void*)¶ms, data, 2);
} else if(strcmp(argv[4],"mzed_add") == 0) {
run_bench(run_mzed_add, (void*)¶ms, data, 2);
}
double cc_per_op = ((double)data[1])/ ( (double)params.m * (double)params.n );
printf("%s: m: %5d, n: %5d, cpu cycles: %10llu, cc/(mn): %.5lf, wall time: %lf\n", argv[4], params.m, params.n, data[1], cc_per_op, data[0] / 1000000.0);
}
|