File: bench_trsm.c

package info (click to toggle)
libm4rie 20150908-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 2,520 kB
  • sloc: sh: 11,430; ansic: 9,873; makefile: 100
file content (170 lines) | stat: -rw-r--r-- 4,681 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#include <m4rie/m4rie.h>
#include "cpucycles.h"
#include "benchmarking.h"

struct elim_params {
  rci_t e; 
  rci_t m;
  rci_t n;
  char const *matrix_type;
  char const *direction;
  char const *algorithm;
  rci_t cutoff;
};

int run_mzed(void *_p, unsigned long long *data, int *data_len) {
  struct elim_params *p = (struct elim_params *)_p;
  *data_len = 2;

  gf2e *ff = gf2e_init(irreducible_polynomials[p->e][1]);

  mzed_t *A = mzed_init(ff,p->m,p->m);
  mzed_randomize(A);

  const int bitmask = (1<<ff->degree)-1;
  for(rci_t i=0; i<p->m; i++) {
    while(mzed_read_elem(A, i, i) == 0) {
      mzed_write_elem(A, i, i, random()&bitmask) ;
    }
  };

  mzed_t *B = mzed_init(ff,p->m,p->n);
  mzed_randomize(B);

  data[0] = walltime(0);
  data[1] = cpucycles();

  if (strcmp(p->direction,"lower_left")==0) {
    if(strcmp(p->algorithm,"naive")==0)
      mzed_trsm_lower_left_naive(A, B);
    else if(strcmp(p->algorithm,"newton-john")==0)
      mzed_trsm_lower_left_newton_john(A, B);
    else
      _mzed_trsm_lower_left(A, B, p->cutoff);
  } else if (strcmp(p->direction,"upper_left")==0) {
    if(strcmp(p->algorithm,"naive")==0)
      mzed_trsm_upper_left_naive(A, B);
    else if(strcmp(p->algorithm,"newton-john")==0)
      mzed_trsm_upper_left_newton_john(A, B);
    else
      _mzed_trsm_upper_left(A, B, p->cutoff);
  } else {
    m4ri_die("unknown direction");
  }

  data[1] = cpucycles() - data[1];
  data[0] = walltime(data[0]);

  mzed_free(A);
  mzed_free(B);
  gf2e_free(ff);
  return 0;
}

int run_mzd_slice(void *_p, unsigned long long *data, int *data_len) {
  struct elim_params *p = (struct elim_params *)_p;
  *data_len = 2;

  gf2e *ff = gf2e_init(irreducible_polynomials[p->e][1]);

  mzd_slice_t *A = mzd_slice_init(ff,p->m,p->m);
  mzd_slice_randomize(A);

  const int bitmask = (1<<ff->degree)-1;
  for(rci_t i=0; i<p->m; i++) {
    while(mzd_slice_read_elem(A, i, i) == 0) {
      mzd_slice_write_elem(A, i, i, random()&bitmask) ;
    }
  };

  mzd_slice_t *B = mzd_slice_init(ff,p->m,p->n);
  mzd_slice_randomize(B);

  data[0] = walltime(0);
  data[1] = cpucycles();

  if (strcmp(p->direction,"lower_left")==0) {
    if(strcmp(p->algorithm,"naive")==0)
      mzd_slice_trsm_lower_left_naive(A, B);
    else if(strcmp(p->algorithm,"newton-john")==0)
      mzd_slice_trsm_lower_left_newton_john(A, B);
    else 
      _mzd_slice_trsm_lower_left(A, B, p->cutoff);
  } else if (strcmp(p->direction,"upper_left")==0) {
    if(strcmp(p->algorithm,"naive")==0)
      mzd_slice_trsm_upper_left_naive(A, B);
    else if(strcmp(p->algorithm,"newton-john")==0)
      mzd_slice_trsm_upper_left_newton_john(A, B);
    else
      _mzd_slice_trsm_upper_left(A, B, p->cutoff);
  } else {
    m4ri_die("unknown direction");
  }
  data[1] = cpucycles() - data[1];
  data[0] = walltime(data[0]);

  mzd_slice_free(A);
  mzd_slice_free(B);
  gf2e_free(ff);
  return 0;
}

void print_help() {
  printf("bench_trsm:\n\n");
  printf("REQUIRED\n");
  printf("  e -- integer between 2 and 10\n");
  printf("  m -- integer > 0, dimension of U or L\n");
  printf("  n -- integer > 0\n");
  printf("  matrix_type - mzed_t\n");
  printf("              - mzd_slice_t\n");
  printf("  direction - lower_left\n");
  printf("            - upper_left\n");
  printf("  algorithm -- default\n");
  printf("               naive\n");
  printf("  c -- cutoff (for 'default')\n");
  printf("\n");
  bench_print_global_options(stdout);
}

int main(int argc, char **argv) {
  global_options(&argc, &argv);

  if (argc < 6) {
    print_help();
    m4ri_die("");
  }

  struct elim_params params;

  params.e = atoi(argv[1]);
  params.m = atoi(argv[2]);
  params.n = atoi(argv[3]);
  params.matrix_type = argv[4];
  params.direction = argv[5];
  if (strcmp(params.direction,"lower_left") != 0 && strcmp(params.direction,"upper_left") != 0)
    m4ri_die("not implemented.");

  if (argc >= 7)
    params.algorithm = argv[6];
  else
    params.algorithm = (char*)"default";
  if (argc >= 8)
    params.cutoff = atoi(argv[7]);
  else
    params.cutoff = MZED_TRSM_CUTOFF;

  srandom(17);
  unsigned long long data[2];

  if (strcmp(params.matrix_type,"mzed_t") == 0)
    run_bench(run_mzed, (void*)&params, data, 2);
  else if(strcmp(params.matrix_type,"mzd_slice_t") == 0)
    run_bench(run_mzd_slice, (void*)&params, data, 2);
  else
    m4ri_die("unknown type '%s'",params.matrix_type);
  double cc_per_op = ((double)data[1])/ ( powl((double)params.m,__M4RIE_OMEGA-1) * params.n );

  printf("e: %2d, m: %5d, n: %5d, cutoff: %4d, cpu cycles: %10llu, cc/(mmn^0.807): %.5lf, wall time: %lf\n", params.e, params.m, params.n, params.cutoff, data[1], cc_per_op, data[0] / 1000000.0);
}