1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
|
/*
* benchmarking.c
*
* Benchmark engine.
*
* Copyright (C) 2011 Carlo Wood <carlo@alinoe.com>
* RSA-1024 0x624ACAD5 1997-01-26 Sign & Encrypt
* Fingerprint16 = 32 EC A7 B6 AC DB 65 A6 F6 F6 55 DD 1C DC FF 61
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* Example usage:
*
* ./bench_elimination -s 0 -m 4 -c 90 -a 0.005 -d -t 30 -n 1000 1000 1000
*
* would run at most 30 seconds (-t) or 1000 times (-n), whichever comes
* first, or stop after the real average of wall time (-s 0) falls with 90%
* certainty (-c) in a range that is +/- 0.005 times the observed mean (-a: accuracry),
* but no sooner than that at least 4 (-m: minimum) measurements have been
* done. It would also print (-d: dump) each measurement (0:microseconds 1:cpuclocks).
*
* Example output.
*
* 2416 6441500
* 2376 6335490
* 2360 6294450
* 2361 6295280
* 2371 6321440
* 2350 6266740
* 2362 6298700
* 2386 6362520
* 2344 6249890
* 2347 6260450
* 2346 6254590
* Total running time: 0.103 seconds.
* Virtual time (s): Sample size: 11; mean: 0.002365; standard deviation: 0.000021
* Virtual time (s): 90% confidence interval: +/- 0.000012 (0.5%): [0.002354..0.002377]
*
* The last three lines can be suppressed by passing the option -q (quiet).
*/
#include "config.h"
#ifdef HAVE_LIBPAPI
#define _GNU_SOURCE
#include <sys/types.h> // papi.h needs caddr_t
#include <papi.h>
#include <errno.h>
#endif
#include <stdio.h>
#include <ctype.h>
#include <math.h>
#include <stdlib.h>
#include <time.h>
#include <sys/time.h>
#include <ctype.h>
#include "benchmarking.h"
#include "m4ri/m4ri.h"
enum { C80, C90, C95, C98, C99 };
/*
* Command line option decoding
*/
int bench_quiet = 0; // Set if -q is used.
int bench_dump = 0; // Set if -d is used.
int bench_minimum = 2; // Minimum number of measurements. Set with -m <minimum>.
int bench_maximum = 1000; // Maximum number of measurements. Set with -n <maximum>.
unsigned long long bench_maxtime = 60000000; // Maximum number of microseconds to run. Set with -t <maxtime>, in seconds (floating point).
double bench_accuracy = 0.01; // The +/- range (where 1.0 is 100%) within that we want the real population mean to be with the given confidence. Set with -a <bench_accuracy>
int bench_confidence_index = C99; // The confidence that the real mean is within the given (or found) range.
int bench_stats = 1; // The counter used for statistics (0 = realtime, 1 = cpuclocks). Set with -s <counter>.
int bench_dump_counter = -1; // The counter to dump (see bench_stats). Set with -d <counter>. If not given all counters are dumped.
char const* progname; // Set to argv[0].
/*
* Command line option used by bench_packedmatrix.c
*/
uint64_t bench_count = 0; // Can be set by -x <count>, otherwise a reasonable default is being used.
#ifdef HAVE_LIBPAPI
int bench_disregard_L2_misses = 0; // Set if -2 is used.
/*
* PAPI events being counted.
*/
int papi_events[32] = {
PAPI_TOT_CYC, /* Total cycles. This must always be the first entry. */
};
int papi_array_len = 1;
int bench_PAPI_L2_TCM_index;
char* papi_event_name(int event)
{
// PAPI needs to be initialized before calling PAPI_event_code_to_name.
if (PAPI_is_initialized() == PAPI_NOT_INITED)
{
int res = PAPI_library_init(PAPI_VER_CURRENT);
if (res != PAPI_OK && res != PAPI_VER_CURRENT)
{
fprintf(stderr, "%s: PAPI_library_init: error code %d %s\n", progname, res, PAPI_strerror(res));
m4ri_die("PAPI failed to initialize.\n");
}
}
static char buf[PAPI_MAX_STR_LEN];
int res = PAPI_event_code_to_name(event, buf);
if (res)
snprintf(buf, PAPI_MAX_STR_LEN, "<unknown PAPI event code %d>", event);
return buf;
}
int papi_add_event(char const* event_name)
{
// PAPI needs to be initialized before calling PAPI_event_name_to_code.
if (PAPI_is_initialized() == PAPI_NOT_INITED)
{
int res = PAPI_library_init(PAPI_VER_CURRENT);
if (res != PAPI_OK && res != PAPI_VER_CURRENT)
{
fprintf(stderr, "%s: PAPI_library_init: error code %d %s\n", progname, res, PAPI_strerror(res));
m4ri_die("PAPI failed to initialize.\n");
}
}
int event;
int res = PAPI_event_name_to_code((char*)event_name, &event);
if (res != PAPI_OK)
{
if (res == PAPI_ENOEVNT)
fprintf(stderr, "%s: %s: No such event.\n", progname, event_name);
else
fprintf(stderr, "%s: PAPI_event_name_to_code(\"%s\"): %s\n", progname, event_name, PAPI_strerror(res));
return res;
}
int found = 0;
for (int nv = 0; nv < papi_array_len; ++nv)
{
if (papi_events[nv] == event)
{
found = 1;
break;
}
}
if (!found)
papi_events[papi_array_len++] = event;
return 0;
}
void papi_add_events(char* event_names)
{
char* tmpptr;
char* name = strtok_r(event_names, ", ", &tmpptr);
while (name)
{
papi_add_event(name);
name = strtok_r(NULL, ", ", &tmpptr);
}
}
#endif // HAVE_LIBPAPI
int global_options(int* argcp, char*** argvp)
{
int result = 0;
progname = (*argvp)[0];
while((*argcp) > 1)
{
if ((*argvp)[1][0] != '-' || (*argvp)[1][1] == '\0' || (*argvp)[1][2] != '\0')
return result;
switch((*argvp)[1][1])
{
case 'd':
bench_dump = 1;
if (isdigit((*argvp)[2][0]))
{
++*argvp;
--*argcp;
bench_dump_counter = atoi((*argvp)[1]);
}
break;
case 'q':
bench_quiet = 1;
break;
#ifdef HAVE_LIBPAPI
case '2':
{
bench_disregard_L2_misses = 1;
if (papi_add_event("PAPI_L2_TCM"))
{
fprintf(stderr, "%s: Ignoring -2: Level 2 cache misses cannot be detected with the current set of PAPI events (-p).\n", progname);
bench_disregard_L2_misses = 0;
}
for (int nv = 0; nv < papi_array_len; ++nv)
{
if (papi_events[nv] == PAPI_L2_TCM)
{
bench_PAPI_L2_TCM_index = nv + 1; // +1 for in data[] inserted virtual time at index 0.
break;
}
}
break;
}
case 'p':
{
++*argvp;
--*argcp;
papi_add_events((*argvp)[1]);
break;
}
#endif
case 'm':
++*argvp;
--*argcp;
bench_minimum = atoi((*argvp)[1]);
break;
case 'n':
++*argvp;
--*argcp;
bench_maximum = atoi((*argvp)[1]);
break;
case 't':
++*argvp;
--*argcp;
bench_maxtime = 1000000 * strtod((*argvp)[1], NULL);
break;
case 'a':
++*argvp;
--*argcp;
bench_accuracy = strtod((*argvp)[1], NULL);
break;
case 'c':
{
++*argvp;
--*argcp;
int confidence = atoi((*argvp)[1]);
switch (confidence)
{
case 80:
bench_confidence_index = C80;
break;
case 90:
bench_confidence_index = C90;
break;
case 95:
bench_confidence_index = C95;
break;
case 98:
bench_confidence_index = C98;
break;
case 99:
bench_confidence_index = C99;
break;
default:
m4ri_die("The only possible confidence percentages are 80, 90, 95, 98 and 99%\n");
break;
}
break;
}
case 'x':
++*argvp;
--*argcp;
bench_count = atoll((*argvp)[1]);
break;
case 's':
++*argvp;
--*argcp;
bench_stats = atoi((*argvp)[1]);
break;
default:
return -1;
}
++result;
++*argvp;
--*argcp;
}
return result;
}
void bench_print_global_options(FILE* out)
{
fprintf(out, "OPTIONS\n");
fprintf(out, " -m <minimum> Do at least <minimum> number of measurements. Default 2.\n");
fprintf(out, " -n <maximum> Do at most <maximum> number of measurements. Default 1000.\n");
fprintf(out, " -t <max-time> Stop after <max-time> seconds. Default 60.0 seconds.\n");
fprintf(out, " -a <accuracy> Stop after <accuracy> has been reached. Default 0.01 (= 1%%).\n");
fprintf(out, " -c <confidence> Stop when accuracy has been reached with this confidence. Default 99 (%%).\n");
fprintf(out, " -s <counter> Counter to perform statistic over (0: realtime, 1: cpuclocks. Default: 1).\n");
fprintf(out, " -x <loop-count> Call function <loop-count> times in the inner most loop (calls per measurement).\n");
fprintf(out, " -d [<counter>] Dump measurements. Dump all or only <counter> when given.\n");
fprintf(out, " -q Quiet. Suppress printing of statistics.\n");
#ifdef HAVE_LIBPAPI
fprintf(out, " -2 Disregard measurements with any level 2 cache misses.\n");
fprintf(out, " -p <PAPI-event>[,<PAPI-event>,...]\n");
fprintf(out, " Count and report the given events. The list is comma or space separated,\n");
fprintf(out, " for example -p \"PAPI_TOT_INS PAPI_L1_DCM\".\n");
fprintf(out, " Run `papi_event_chooser PRESET PAPI_TOT_CYC [PAPI_*]` for more events.\n");
#endif
}
/*
* vector implementation
*
* vector_create: Create vector of size s.
* vector_destruct: Destruct vector.
* vector_resize: Resize internal allocation.
* vector_size: Return number of elements.
* vector_pushback: Add one element at the end.
* vector_get: Get element at position index.
*/
struct vector_st {
size_t alloc_size;
size_t size;
double* data;
};
typedef struct vector_st* vector;
vector vector_create(size_t s)
{
vector v = (vector)malloc(sizeof(struct vector_st));
v->alloc_size = s;
v->data = s ? (double*)malloc(sizeof(double) * s) : NULL;
v->size = 0;
return v;
}
void vector_destruct(vector v)
{
free(v->data);
free(v);
}
void vector_resize(vector v, size_t s)
{
v->data = (double*)realloc(v->data, sizeof(double) * s);
v->alloc_size = s;
if (v->size > v->alloc_size)
v->size = v->alloc_size;
}
static inline size_t vector_size(vector v)
{
return v->size;
}
void vector_pushback(vector v, double d)
{
if (++(v->size) > v->alloc_size)
vector_resize(v, v->alloc_size * 2);
v->data[v->size - 1] = d;
}
static inline double vector_get(vector v, int index)
{
return v->data[index];
}
/*
* Normal distribution
*
* normal_calculate: Calculate the mean and standard deviation of the data in vector v.
*
* Returns -1 on failure (not enough data points), 0 otherwise.
*/
struct normal_st {
int size;
double mean;
double sigma;
};
typedef struct normal_st normal;
int normal_calculate(vector v, normal* dist, double multiplier)
{
dist->size = vector_size(v);
if (dist->size < 2)
return -1;
// Calculate the sum of all data.
double sum = 0;
for (int i = 0; i < dist->size; ++i)
sum += vector_get(v, i) * multiplier;
dist->mean = sum / dist->size;
// Calculate the sum of the square of all differences with mean.
sum = 0;
for (int i = 0; i < dist->size; ++i)
{
double delta = vector_get(v, i) * multiplier - dist->mean;
sum += delta * delta;
}
dist->sigma = sqrt(sum / (dist->size - 1));
return 0;
}
/*
* T-Table
*/
static float student_t[5][34] = {
{ 3.078, 1.886, 1.638, 1.533,
1.476, 1.440, 1.415, 1.397, 1.383,
1.372, 1.363, 1.356, 1.350, 1.345,
1.341, 1.337, 1.333, 1.330, 1.328,
1.325, 1.323, 1.321, 1.319, 1.318,
1.316, 1.315, 1.314, 1.313, 1.311,
1.310, 1.303, 1.296, 1.289, 1.282 },
{ 6.314, 2.920, 2.353, 2.132,
2.015, 1.943, 1.895, 1.860, 1.833,
1.812, 1.796, 1.782, 1.771, 1.761,
1.753, 1.746, 1.740, 1.734, 1.729,
1.725, 1.721, 1.717, 1.714, 1.711,
1.708, 1.706, 1.703, 1.701, 1.699,
1.697, 1.684, 1.671, 1.658, 1.645 },
{ 12.706, 4.303, 3.182, 2.776,
2.571, 2.447, 2.365, 2.306, 2.262,
2.228, 2.201, 2.179, 2.160, 2.145,
2.131, 2.120, 2.110, 2.101, 2.093,
2.086, 2.080, 2.074, 2.069, 2.064,
2.060, 2.056, 2.052, 2.048, 2.045,
2.042, 2.021, 2.000, 1.980, 1.960 },
{ 31.821, 6.965, 4.541, 3.747,
3.365, 3.143, 2.998, 2.896, 2.821,
2.764, 2.718, 2.681, 2.650, 2.624,
2.602, 2.583, 2.567, 2.552, 2.539,
2.528, 2.518, 2.508, 2.500, 2.492,
2.485, 2.479, 2.473, 2.467, 2.462,
2.457, 2.423, 2.390, 2.358, 2.326 },
{ 63.657, 9.925, 5.841, 4.604,
4.032, 3.707, 3.499, 3.355, 3.250,
3.169, 3.106, 3.055, 3.012, 2.977,
2.947, 2.921, 2.898, 2.878, 2.861,
2.845, 2.831, 2.819, 2.807, 2.797,
2.787, 2.779, 2.771, 2.763, 2.756,
2.750, 2.704, 2.660, 2.617, 2.576 } };
static float student_t_certainty[5] = { 0.2, 0.1, 0.05, 0.02, 0.01 }; // Two-tails.
static float t_table(int confidence_index, int freedoms)
{
if (freedoms <= 30)
return student_t[confidence_index][freedoms - 1];
double a, b, y1, y2, y3;
long x1, x2;
long x3 = 0;
int i;
if (freedoms <= 60)
{
i = 29;
x1 = 30;
x2 = 40;
x3 = 60;
}
else if (freedoms <= 120)
{
i = 30;
x1 = 40;
x2 = 60;
x3 = 120;
}
else
{
i = 31;
x1 = 60;
x2 = 120;
/* x3 = infinity */
}
y1 = student_t[confidence_index][i];
y2 = student_t[confidence_index][i + 1];
y3 = student_t[confidence_index][i + 2];
if (freedoms <= 120)
{
double c, d;
d = (x1 * x1 * (x3 - x2) + x2 * x2 * (x1 - x3) + x3 * x3 * (x2 - x1));
a = - (x1 * (y3 - y2) + x2 * (y1 - y3) + x3 * (y2 - y1)) / d;
b = (x1 * x1 * (y3 - y2) + x2 * x2 * (y1 - y3) + x3 * x3 * (y2 - y1)) / d;
c = y2 - a * x2 * x2 - b * x2;
return (a * freedoms * freedoms + b * freedoms + c);
}
double ln1, ln2;
ln1 = log(y2 - y3);
ln2 = log(y1 - y3);
a = - ( ln1 - ln2) / (x1 - x2);
b = (x1 * ln1 - x2 * ln2) / (x1 - x2);
return (y3 + exp(a * freedoms + b));
}
/*
* walltime
*/
unsigned long long walltime(unsigned long long t0)
{
static time_t base_sec;
struct timeval tp;
gettimeofday(&tp, NULL);
if (__M4RI_UNLIKELY(base_sec == 0))
base_sec = tp.tv_sec;
return (tp.tv_sec - base_sec) * 1000000 + tp.tv_usec - t0;
}
/*
* Printing doubles.
*/
int bench_precision(double sigma)
{
if (sigma < 1E-10)
return 12;
int log_sigma = log10(sigma);
if (log_sigma >= 2)
return 0;
return 2 - log_sigma;
}
void print_double(double d, int precision)
{
switch(precision)
{
case 0:
printf("%.0f", d);
break;
case 1:
printf("%.1f", d);
break;
case 2:
printf("%.2f", d);
break;
case 3:
printf("%.3f", d);
break;
case 4:
printf("%.4f", d);
break;
case 5:
printf("%.5f", d);
break;
case 6:
printf("%.6f", d);
break;
case 7:
printf("%.7f", d);
break;
case 8:
printf("%.8f", d);
break;
case 9:
printf("%.9f", d);
break;
case 10:
printf("%.10f", d);
break;
case 11:
printf("%.11f", d);
break;
case 12:
printf("%.12f", d);
break;
}
}
/*
* run_bench
*
* Benchmark main loop.
*/
int run_bench(
int (*f)(void* params, unsigned long long* data, int *data_len),
void* params,
unsigned long long* data,
int data_len)
{
double const CONFIDENCE = 1.0 - student_t_certainty[bench_confidence_index];
unsigned long long data_sum[32];
memset(data_sum, 0, sizeof(data_sum));
data_len = MIN(data_len, sizeof(data_sum) / sizeof(unsigned long long));
vector stats_data = vector_create(128);
normal stats;
#ifdef HAVE_LIBPAPI
int total_calls = 0;
#endif
if (!bench_count)
bench_count = 1;
unsigned long long start_walltime = walltime(0);
for (int n = 1; n <= bench_maximum; ++n)
{
if (!bench_quiet && !bench_dump)
{
printf(".");
fflush(stdout);
}
do
{
int res = f(params, data, &data_len);
if (res < 0)
m4ri_die("benchmark function failed with exit code: %d\n", res);
#ifdef HAVE_LIBPAPI
++total_calls;
#endif
}
#ifdef HAVE_LIBPAPI
while(bench_disregard_L2_misses && data[bench_PAPI_L2_TCM_index]);
#else
while(0);
#endif
if (bench_dump)
{
if (bench_dump_counter >= 0 && bench_dump_counter < data_len)
printf("%llu", data[bench_dump_counter]);
else
{
printf("%llu", data[0]);
for (int nv = 1; nv < data_len; ++nv)
printf(" %llu", data[nv]);
}
printf("\n");
fflush(stdout);
}
vector_pushback(stats_data, data[bench_stats]);
for (int nv = 0; nv < data_len; ++nv)
data_sum[nv] += data[nv];
if (n >= bench_minimum && normal_calculate(stats_data, &stats, (bench_stats == 0) ? 0.000001 : (1.0 / bench_count)) == 0)
{
double standard_error = stats.sigma / sqrt(stats.size);
double critical_value = t_table(bench_confidence_index, stats.size - 1);
// Stop when the real mean lays with CONFIDENCE in the range [mean * (1 - bench_accuracy), mean * (1 + bench_accuracy)].
// or when we're already running bench_maxtime seconds.
if (standard_error * critical_value / stats.mean <= bench_accuracy ||
walltime(start_walltime) > bench_maxtime)
break;
}
}
for (int nv = 0; nv < data_len; ++nv)
data[nv] = (data_sum[nv] + stats.size / 2) / stats.size;
if (!bench_quiet)
{
if (!bench_quiet && !bench_dump)
printf("\n");
printf("Total running time: %6.3f seconds.\n", walltime(start_walltime) / 1000000.0);
#ifdef HAVE_LIBPAPI
if (bench_disregard_L2_misses)
printf("Samples disregarded because of level 2 cache misses: %d\n", total_calls - stats.size);
#endif
int precision = bench_precision(stats.sigma);
#ifdef HAVE_LIBPAPI
if (bench_stats)
printf("%s: ", papi_event_name(papi_events[bench_stats - 1]));
else
printf("Virtual time (s): ");
#endif
printf("Sample size: %d; mean: ", stats.size);
print_double(stats.mean, precision);
printf("; standard deviation: ");
print_double(stats.sigma, precision);
printf("\n");
#ifdef HAVE_LIBPAPI
if (bench_stats)
printf("%s: ", papi_event_name(papi_events[bench_stats - 1]));
else
printf("Virtual time (s): ");
#endif
double standard_error = stats.sigma / sqrt(stats.size);
double critical_value = t_table(bench_confidence_index, stats.size - 1);
double accuracy = standard_error * critical_value;
printf("%2.0f%% confidence interval: +/- ", CONFIDENCE * 100);
print_double(accuracy, precision);
printf(" (%.1f%%): [", accuracy / stats.mean * 100);
print_double(stats.mean - accuracy, precision);
printf("..");
print_double(stats.mean + accuracy, precision);
printf("]\n");
}
vector_destruct(stats_data);
return data_len;
}
/*
* Randomize
*/
// The same as m4ri_random_word. Duplicated here because it's
// not available in older revisions that we want to benchmark against.
word bench_random_word() {
// random() only returns 31 bits, so we need three calls.
word a0 = random();
word a1 = random();
word a2 = random();
word v = a0 ^ (a1 << 24) ^ a2 << 48;
#ifdef BENCH_RANDOM_REVERSE
v = ((v >> 1) & 0x5555555555555555ULL) | ((v & 0x5555555555555555ULL) << 1);
v = ((v >> 2) & 0x3333333333333333ULL) | ((v & 0x3333333333333333ULL) << 2);
v = ((v >> 4) & 0x0F0F0F0F0F0F0F0FULL) | ((v & 0x0F0F0F0F0F0F0F0FULL) << 4);
v = ((v >> 8) & 0x00FF00FF00FF00FFULL) | ((v & 0x00FF00FF00FF00FFULL) << 8);
v = ((v >> 16) & 0x0000FFFF0000FFFFULL) | ((v & 0x0000FFFF0000FFFFULL) << 16);
v = (v >> 32) | (v << 32);
#endif
return v;
}
/*
* Random number generator
*/
static uint64_t bench_random_M;
static uint64_t bench_random_modulo;
void bench_random_init(uint64_t modulo)
{
// Set bench_random_M to the largest multiple of modulo, minus one, that fits in an uint64_t.
// A modulo of zero is interpreted as 2^64, and thus returns 0xffffffffffffffff.
bench_random_M = modulo ? -modulo / modulo * modulo - 1 : -1;
bench_random_M += modulo;
bench_random_modulo = modulo;
}
// Returns a uniformly distributed random number in the range [0, bench_random_modulo>.
uint64_t bench_random()
{
for(;;)
{
word R = bench_random_word();
if (R <= bench_random_M)
return R % bench_random_modulo;
}
}
|