1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
|
# This library file contains Amoeba n-D Minimisation routine for Perl
# $Id: Amoeba.pm,v 1.2 1995/12/24 12:37:46 willijar Exp $
# $Id: Amoeba.pm,v 1.2 1995/12/24 12:37:46 willijar Exp $
package Math::Amoeba;
use strict;
use warnings;
our $VERSION = 0.05;
use Carp;
use constant TINY => 1e-16;
use Exporter;
our @ISA=qw(Exporter);
our @EXPORT_OK=qw(ConstructVertices EvaluateVertices Amoeba MinimiseND);
=head1 NAME
Math::Amoeba - Multidimensional Function Minimisation
=head1 SYNOPSIS
use Math::Amoeba qw(ConstructVertices EvaluateVertices Amoeba MinimiseND);
my ($vertice,$y)=MinimiseND(\@guess,\@scales,\&func,$tol,$itmax,$verbose);
my @vertices=ConstructVertices(\@vector,\@offsets);
my @y=EvaluateVertices(\@vertices,\&func);
my ($vertice,$y)=Amoeba(\@vertices,\@y,\&func,$tol,$itmax,$verbose);
=head1 DESCRIPTION
This is an implimenation of the Downhill Simpex Method in
Multidimensions (Nelder and Mead) for finding the (local) minimum of a
function. Doing this in Perl makes it easy for that function to
actually be the output of another program such as a simulator.
Arrays and the function are passed by reference to the routines.
=over
=item C<MinimiseND>
The simplest use is the B<MinimiseND> function. This takes a reference
to an array of guess values for the parameters at the function
minimum, a reference to an array of scales for these parameters
(sensible ranges around the guess in which to look), a reference to
the function, a convergence tolerence for the minimum, the maximum
number of iterations to be taken and the verbose flag (default ON).
It returns an array consisting of a reference to the function parameters
at the minimum and the value there.
=item C<Amoeba>
The B<Amoeba> function is the actual implimentation of the Downhill
Simpex Method in Multidimensions. It takes a reference to an array of
references to arrays which are the initial n+1 vertices (where n is
the number of function parameters), a reference to the function
valuation at these vertices, a reference to the function, a
convergence tolerence for the minimum, the maximum number of
iterations to be taken and the verbose flag (default ON).
It returns an array consisting of a reference to the function parameters
at the minimum and the value there.
=item C<ConstructVertices>
The B<ConstructVertices> is used by B<MinimiseND> to construct the
initial vertices for B<Amoeba> as the initial guess plus the parameter
scale parameters as vectors along the parameter axis.
=item C<EvaluateVertices>
The B<EvaluateVertices> takes these set of vertices, calling the
function for each one and returning the vector of results.
=back
=head1 EXAMPLE
use Math::Amoeba qw(MinimiseND);
sub afunc {
my ($a,$b)=@_;
print "$a\t$b\n";
return ($a-7)**2+($b+3)**2;
}
my @guess=(1,1);
my @scale=(1,1);
($p,$y)=MinimiseND(\@guess,\@scale,\&afunc,1e-7,100);
print "(",join(',',@{$p}),")=$y\n";
produces the output
(6.99978191653352,-2.99981241563247)=1.00000008274829
=head1 LICENSE
PERL
=cut
my ($ALPHA,$BETA,$GAMMA)=(1.0,0.5,2.0);
sub MinimiseND {
my ($guesses,$scales,$func,$tol,$itmax, $verbose)=@_;
my @p=ConstructVertices($guesses,$scales);
my @y=EvaluateVertices(\@p,$func);
return Amoeba(\@p,\@y,$func,$tol,$itmax, $verbose);
}
sub ConstructVertices {
# given 2 vector references constructs an amoeba
# returning the vertices
my ($vector,$ofs)=@_;
my $n=$#{$vector};
my @vector=@{$vector};
my (@p,@y,$i);
$p[0]=[]; @{$p[0]}=@{$vector};
for($i=0; $i<=$n; $i++) {
my $v=[]; @{$v}=@{$vector};
$v->[$i]+=$ofs->[$i];
$p[$i+1]=$v;
}
return @p;
}
sub EvaluateVertices {
# evaluates functions for all vertices of the amoeba
my ($p,$func)=@_;
my ($i,@y);
for($i=0; $i<=$#{$p}; $i++) {
$y[$i]=&$func(@{$p->[$i]});
}
return @y;
}
sub Amoeba {
my ($p,$y,$func,$ftol,$itmax, $verbose)=@_;
my $n=$#{$p}; # no points
# Default parameters
$verbose = (defined($verbose)) ? $verbose : 1;
if (!$itmax) { $itmax=200; }
if (!$ftol) { $ftol=1e-6; }
# Member variables
my ($i,$j);
my $iter=0;
my ($ilo, $inhi, $ihi);
my ($pbar, $pr, $pe, $pc, $ypr, $ype, $ypc);
# To control the recalculation of centroid
my $recalc = 1;
my $ihi_o;
# Loop until any of stopping conditions hit
while (1)
{
($ilo, $inhi, $ihi) = _FindMarkers($y);
# Stopping conditions
my $rtol = 2*abs($y->[$ihi]-$y->[$ilo])/(abs($y->[$ihi])+abs($y->[$ilo])+TINY);
if ($rtol<$ftol) { last; }
if ($iter++>$itmax) {
carp "Amoeba exceeded maximum iterations\n" if ($verbose);
last;
}
# Determine the Centroid
if ($recalc) {
$pbar = _CalcCentroid($p, $ihi);
} else {
_AdjustCentroid($pbar, $p, $ihi_o, $ihi);
}
# Reset the re-calculation flag, and remember the current highest
$recalc = 0;
# Determine the reflection point, evaluate its value
$pr = _CalcReflection($pbar, $p->[$ihi], $ALPHA);
$ypr = &$func(@$pr);
# if it gives a better value than best point, try an
# additional extrapolation by a factor gamma, accept best
if ($ypr < $y->[$ilo]) {
$pe = _CalcReflection($pbar, $pr, -$GAMMA);
$ype=&$func(@$pe);
if ($ype < $y->[$ilo]) {
$p->[$ihi] = $pe; $y->[$ihi] = $ype;
}
else {
$p->[$ihi] = $pr; $y->[$ihi] = $ypr;
}
}
# if reflected point worse than 2nd highest
elsif ($ypr >= $y->[$inhi]) {
# if it is better than highest, replace it
if ($ypr < $y->[$ihi] ) {
$p->[$ihi] = $pr; $y->[$ihi] = $ypr;
}
# look for an intermediate lower point by performing a
# contraction of the simplex along one dimension
$pc = _CalcReflection($pbar, $p->[$ihi], -$BETA);
$ypc = &$func(@$pc);
# if contraction gives an improvement, accept it
if ($ypc < $y->[$ihi]) {
$p->[$ihi] = $pc; $y->[$ihi] = $ypc;
}
# otherwise cant seem to remove high point
# so contract around lo (best) point
else {
for($i=0; $i<=$n; $i++) {
if ($i!=$ilo) {
$p->[$i] = _CalcReflection($p->[$ilo], $p->[$i], -$BETA);
$y->[$i] = &$func(@{$p->[$i]});
}
}
$recalc = 1;
}
}
# if reflected point is in-between lowest and 2nd highest
else {
$p->[$ihi] = $pr; $y->[$ihi] = $ypr;
}
# Remember the replacing position and its value
$ihi_o = $ihi;
}
return ($p->[$ilo],$y->[$ilo]);
}
# Helper function - find the lowest, 2nd highest and highest position
sub _FindMarkers
{
my $y = shift;
my ($ilo, $inhi, $ihi);
my ($i, $n);
$n = @$y - 1;
$ilo=0;
if ($y->[0]>$y->[1]) {
$ihi=0; $inhi=1;
}
else {
$ihi=1; $inhi=0;
}
for($i = 0; $i <= $n; $i++) {
if ($y->[$i] < $y->[$ilo]) { $ilo = $i; }
if ($y->[$i] > $y->[$ihi]) { $inhi = $ihi; $ihi = $i; }
elsif ($y->[$i] > $y->[$inhi] && $ihi != $i) { $inhi = $i; }
}
return ($ilo, $inhi, $ihi);
}
# Determine the centroid (except the highest point)
sub _CalcCentroid
{
my ($p, $ihi) = @_;
my ($i, $j, $n);
$n = @$p - 1;
my $pbar = [];
for($j=0; $j<$n; $j++) {
for($i=0; $i<=$n; $i++) {
if ($i!=$ihi) {
$pbar->[$j] += $p->[$i][$j];
}
}
$pbar->[$j] /= $n;
}
return $pbar;
}
# Adjust the centroid only
sub _AdjustCentroid
{
my ($pbar, $p, $ihi_o, $ihi) = @_;
my ($j, $n);
$n = @$pbar;
if ($ihi_o != $ihi) {
for($j=0; $j<$n; $j++) {
$pbar->[$j] += ($p->[$ihi_o][$j] - $p->[$ihi][$j]) / $n;
}
}
}
# Determine the reflection point
sub _CalcReflection
{
my ($p1, $p2, $scale) = @_;
my $j;
my $n = @$p1;
my $pr = [];
for($j=0; $j<$n; $j++) {
$pr->[$j] = $p1->[$j] + $scale*($p1->[$j]-$p2->[$j]);
}
return $pr;
}
return 1;
__END__
=head1 HISTORY
See "REAME".
=head1 BUGS
Let me know.
=head1 AUTHOR
John A.R. Williams <J.A.R.Williams@aston.ac.uk>
Tom Chau <tom@cpan.org>
=head1 SEE ALSO
"Numerical Recipies: The Art of Scientific Computing"
W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling.
Cambridge University Press. ISBN 0 521 30811 9.
=head1 COPYRIGHT
Copyright (c) 1995 John A.R. Williams. All rights reserved.
This program is free software; you can redistribute it and/or
modify it under the same terms as Perl itself.
Since 2005, this module was co-developed with Tom.
|