1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
|
# This is a rather minimalistic library, whose purpose is to test inheritance
# from its parent class.
package Math::BigInt::Lib::Minimal;
use 5.006001;
use strict;
use warnings;
use Carp;
use Math::BigInt::Lib;
our @ISA = ('Math::BigInt::Lib');
my $BASE_LEN = 5;
my $BASE = 0 + ("1" . ("0" x $BASE_LEN));
my $MAX_VAL = $BASE - 1;
sub _new {
my ($class, $str) = @_;
croak "Invalid input string '$str'" unless $str =~ /^([1-9]\d*|0)\z/;
my $n = length $str;
my $p = int($n / $BASE_LEN);
my $q = $n % $BASE_LEN;
my $format = $] < 5.008 ? "a$BASE_LEN" x $p
: "(a$BASE_LEN)*";
$format = "a$q" . $format if $q > 0;
my $self = [ reverse(map { 0 + $_ } unpack($format, $str)) ];
return bless $self, $class;
}
##############################################################################
# convert to string
sub _str {
my ($class, $x) = @_;
my $idx = $#$x; # index of last element
# Handle first one differently, since it should not have any leading zeros.
my $str = int($x->[$idx]);
if ($idx > 0) {
my $z = '0' x ($BASE_LEN - 1);
while (--$idx >= 0) {
$str .= substr($z . $x->[$idx], -$BASE_LEN);
}
}
$str;
}
##############################################################################
# actual math code
sub _add {
# (ref to int_num_array, ref to int_num_array)
#
# Routine to add two base 1eX numbers stolen from Knuth Vol 2 Algorithm A
# pg 231. There are separate routines to add and sub as per Knuth pg 233.
# This routine modifies array x, but not y.
my ($c, $x, $y) = @_;
# $x + 0 => $x
return $x if @$y == 1 && $y->[0] == 0;
# 0 + $y => $y->copy
if (@$x == 1 && $x->[0] == 0) {
@$x = @$y;
return $x;
}
# For each in Y, add Y to X and carry. If after that, something is left in
# X, foreach in X add carry to X and then return X, carry. Trades one
# "$j++" for having to shift arrays.
my $i;
my $car = 0;
my $j = 0;
for $i (@$y) {
$x->[$j] -= $BASE if $car = (($x->[$j] += $i + $car) >= $BASE) ? 1 : 0;
$j++;
}
while ($car != 0) {
$x->[$j] -= $BASE if $car = (($x->[$j] += $car) >= $BASE) ? 1 : 0;
$j++;
}
$x;
}
sub _sub {
# (ref to int_num_array, ref to int_num_array, swap)
#
# Subtract base 1eX numbers -- stolen from Knuth Vol 2 pg 232, $x > $y
# subtract Y from X by modifying x in place
my ($c, $sx, $sy, $s) = @_;
my $car = 0;
my $i;
my $j = 0;
if (!$s) {
for $i (@$sx) {
last unless defined $sy->[$j] || $car;
$i += $BASE if $car = (($i -= ($sy->[$j] || 0) + $car) < 0);
$j++;
}
# might leave leading zeros, so fix that
return __strip_zeros($sx);
}
for $i (@$sx) {
# We can't do an early out if $x < $y, since we need to copy the high
# chunks from $y. Found by Bob Mathews.
#last unless defined $sy->[$j] || $car;
$sy->[$j] += $BASE
if $car = ($sy->[$j] = $i - ($sy->[$j] || 0) - $car) < 0;
$j++;
}
# might leave leading zeros, so fix that
__strip_zeros($sy);
}
# The following _mul function is an exact copy of _mul_use_div_64 in
# Math::BigInt::Calc.
sub _mul {
# (ref to int_num_array, ref to int_num_array)
# multiply two numbers in internal representation
# modifies first arg, second need not be different from first
# works for 64 bit integer with "use integer"
my ($c, $xv, $yv) = @_;
use integer;
if (@$yv == 1) {
# shortcut for two small numbers, also handles $x == 0
if (@$xv == 1) {
# shortcut for two very short numbers (improved by Nathan Zook)
# works also if xv and yv are the same reference, and handles also $x == 0
if (($xv->[0] *= $yv->[0]) >= $BASE) {
$xv->[0] =
$xv->[0] - ($xv->[1] = $xv->[0] / $BASE) * $BASE;
}
return $xv;
}
# $x * 0 => 0
if ($yv->[0] == 0) {
@$xv = (0);
return $xv;
}
# multiply a large number a by a single element one, so speed up
my $y = $yv->[0];
my $car = 0;
foreach my $i (@$xv) {
#$i = $i * $y + $car; $car = $i / $BASE; $i -= $car * $BASE;
$i = $i * $y + $car;
$i -= ($car = $i / $BASE) * $BASE;
}
push @$xv, $car if $car != 0;
return $xv;
}
# shortcut for result $x == 0 => result = 0
return $xv if ( ((@$xv == 1) && ($xv->[0] == 0)) );
# since multiplying $x with $x fails, make copy in this case
$yv = $c->_copy($xv) if $xv == $yv; # same references?
my @prod = ();
my ($prod, $car, $cty, $xi, $yi);
for $xi (@$xv) {
$car = 0;
$cty = 0;
# looping through this if $xi == 0 is silly - so optimize it away!
$xi = (shift @prod || 0), next if $xi == 0;
for $yi (@$yv) {
$prod = $xi * $yi + ($prod[$cty] || 0) + $car;
$prod[$cty++] = $prod - ($car = $prod / $BASE) * $BASE;
}
$prod[$cty] += $car if $car; # need really to check for 0?
$xi = shift @prod || 0; # || 0 makes v5.005_3 happy
}
push @$xv, @prod;
$xv;
}
# The following _div function is an exact copy of _div_use_div_64 in
# Math::BigInt::Calc.
sub _div {
# ref to array, ref to array, modify first array and return remainder if
# in list context
# This version works on 64 bit integers
my ($c, $x, $yorg) = @_;
use integer;
# the general div algorithm here is about O(N*N) and thus quite slow, so
# we first check for some special cases and use shortcuts to handle them.
# This works, because we store the numbers in a chunked format where each
# element contains 5..7 digits (depending on system).
# if both numbers have only one element:
if (@$x == 1 && @$yorg == 1) {
# shortcut, $yorg and $x are two small numbers
if (wantarray) {
my $rem = [ $x->[0] % $yorg->[0] ];
bless $rem, $c;
$x->[0] = int($x->[0] / $yorg->[0]);
return ($x, $rem);
} else {
$x->[0] = int($x->[0] / $yorg->[0]);
return $x;
}
}
# if x has more than one, but y has only one element:
if (@$yorg == 1) {
my $rem;
$rem = $c->_mod($c->_copy($x), $yorg) if wantarray;
# shortcut, $y is < $BASE
my $j = @$x;
my $r = 0;
my $y = $yorg->[0];
my $b;
while ($j-- > 0) {
$b = $r * $BASE + $x->[$j];
$x->[$j] = int($b/$y);
$r = $b % $y;
}
pop @$x if @$x > 1 && $x->[-1] == 0; # splice up a leading zero
return ($x, $rem) if wantarray;
return $x;
}
# now x and y have more than one element
# check whether y has more elements than x, if yet, the result will be 0
if (@$yorg > @$x) {
my $rem;
$rem = $c->_copy($x) if wantarray; # make copy
@$x = 0; # set to 0
return ($x, $rem) if wantarray; # including remainder?
return $x; # only x, which is [0] now
}
# check whether the numbers have the same number of elements, in that case
# the result will fit into one element and can be computed efficiently
if (@$yorg == @$x) {
my $rem;
# if $yorg has more digits than $x (it's leading element is longer than
# the one from $x), the result will also be 0:
if (length(int($yorg->[-1])) > length(int($x->[-1]))) {
$rem = $c->_copy($x) if wantarray; # make copy
@$x = 0; # set to 0
return ($x, $rem) if wantarray; # including remainder?
return $x;
}
# now calculate $x / $yorg
if (length(int($yorg->[-1])) == length(int($x->[-1]))) {
# same length, so make full compare
my $a = 0;
my $j = @$x - 1;
# manual way (abort if unequal, good for early ne)
while ($j >= 0) {
last if ($a = $x->[$j] - $yorg->[$j]);
$j--;
}
# $a contains the result of the compare between X and Y
# a < 0: x < y, a == 0: x == y, a > 0: x > y
if ($a <= 0) {
$rem = $c->_zero(); # a = 0 => x == y => rem 0
$rem = $c->_copy($x) if $a != 0; # a < 0 => x < y => rem = x
@$x = 0; # if $a < 0
$x->[0] = 1 if $a == 0; # $x == $y
return ($x, $rem) if wantarray; # including remainder?
return $x;
}
# $x >= $y, so proceed normally
}
}
# all other cases:
my $y = $c->_copy($yorg); # always make copy to preserve
my ($car, $bar, $prd, $dd, $xi, $yi, @q, $v2, $v1, @d, $tmp, $q, $u2, $u1, $u0);
$car = $bar = $prd = 0;
if (($dd = int($BASE / ($y->[-1] + 1))) != 1) {
for $xi (@$x) {
$xi = $xi * $dd + $car;
$xi -= ($car = int($xi / $BASE)) * $BASE;
}
push(@$x, $car);
$car = 0;
for $yi (@$y) {
$yi = $yi * $dd + $car;
$yi -= ($car = int($yi / $BASE)) * $BASE;
}
} else {
push(@$x, 0);
}
# @q will accumulate the final result, $q contains the current computed
# part of the final result
@q = ();
($v2, $v1) = @$y[-2, -1];
$v2 = 0 unless $v2;
while ($#$x > $#$y) {
($u2, $u1, $u0) = @$x[-3..-1];
$u2 = 0 unless $u2;
#warn "oups v1 is 0, u0: $u0 $y->[-2] $y->[-1] l ",scalar @$y,"\n"
# if $v1 == 0;
$q = (($u0 == $v1) ? $MAX_VAL : int(($u0 * $BASE + $u1) / $v1));
--$q while ($v2 * $q > ($u0 * $BASE +$ u1- $q*$v1) * $BASE + $u2);
if ($q) {
($car, $bar) = (0, 0);
for ($yi = 0, $xi = $#$x - $#$y - 1; $yi <= $#$y; ++$yi, ++$xi) {
$prd = $q * $y->[$yi] + $car;
$prd -= ($car = int($prd / $BASE)) * $BASE;
$x->[$xi] += $BASE if ($bar = (($x->[$xi] -= $prd + $bar) < 0));
}
if ($x->[-1] < $car + $bar) {
$car = 0;
--$q;
for ($yi = 0, $xi = $#$x - $#$y - 1; $yi <= $#$y; ++$yi, ++$xi) {
$x->[$xi] -= $BASE
if ($car = (($x->[$xi] += $y->[$yi] + $car) >= $BASE));
}
}
}
pop(@$x);
unshift(@q, $q);
}
if (wantarray) {
my $d = bless [], $c;
if ($dd != 1) {
$car = 0;
for $xi (reverse @$x) {
$prd = $car * $BASE + $xi;
$car = $prd - ($tmp = int($prd / $dd)) * $dd;
unshift(@$d, $tmp);
}
} else {
@$d = @$x;
}
@$x = @q;
__strip_zeros($x);
__strip_zeros($d);
return ($x, $d);
}
@$x = @q;
__strip_zeros($x);
$x;
}
# The following _mod function is an exact copy of _mod in Math::BigInt::Calc.
sub _mod {
# if possible, use mod shortcut
my ($c, $x, $yo) = @_;
# slow way since $y too big
if (@$yo > 1) {
my ($xo, $rem) = $c->_div($x, $yo);
@$x = @$rem;
return $x;
}
my $y = $yo->[0];
# if both are single element arrays
if (@$x == 1) {
$x->[0] %= $y;
return $x;
}
# if @$x has more than one element, but @$y is a single element
my $b = $BASE % $y;
if ($b == 0) {
# when BASE % Y == 0 then (B * BASE) % Y == 0
# (B * BASE) % $y + A % Y => A % Y
# so need to consider only last element: O(1)
$x->[0] %= $y;
} elsif ($b == 1) {
# else need to go through all elements in @$x: O(N), but loop is a bit
# simplified
my $r = 0;
foreach (@$x) {
$r = ($r + $_) % $y; # not much faster, but heh...
#$r += $_ % $y; $r %= $y;
}
$r = 0 if $r == $y;
$x->[0] = $r;
} else {
# else need to go through all elements in @$x: O(N)
my $r = 0;
my $bm = 1;
foreach (@$x) {
$r = ($_ * $bm + $r) % $y;
$bm = ($bm * $b) % $y;
#$r += ($_ % $y) * $bm;
#$bm *= $b;
#$bm %= $y;
#$r %= $y;
}
$r = 0 if $r == $y;
$x->[0] = $r;
}
@$x = $x->[0]; # keep one element of @$x
return $x;
}
sub __strip_zeros {
# Internal normalization function that strips leading zeros from the array.
# Args: ref to array
my $x = shift;
push @$x, 0 if @$x == 0; # div might return empty results, so fix it
return $x if @$x == 1; # early out
#print "strip: cnt $cnt i $i\n";
# '0', '3', '4', '0', '0',
# 0 1 2 3 4
# cnt = 5, i = 4
# i = 4
# i = 3
# => fcnt = cnt - i (5-2 => 3, cnt => 5-1 = 4, throw away from 4th pos)
# >= 1: skip first part (this can be zero)
my $i = $#$x;
while ($i > 0) {
last if $x->[$i] != 0;
$i--;
}
$i++;
splice(@$x, $i) if $i < @$x;
$x;
}
###############################################################################
# check routine to test internal state for corruptions
sub _check {
# used by the test suite
my ($class, $x) = @_;
return "Undefined" unless defined $x;
return "$x is not a reference" unless ref($x);
return "Not an '$class'" unless ref($x) eq $class;
for (my $i = 0 ; $i <= $#$x ; ++ $i) {
my $e = $x -> [$i];
return "Element at index $i is undefined"
unless defined $e;
return "Element at index $i is a '" . ref($e) .
"', which is not a scalar"
unless ref($e) eq "";
return "Element at index $i is '$e', which does not look like an" .
" normal integer"
#unless $e =~ /^([1-9]\d*|0)\z/;
unless $e =~ /^\d+\z/;
return "Element at index $i is '$e', which is negative"
if $e < 0;
return "Element at index $i is '$e', which is not smaller than" .
" the base '$BASE'"
if $e >= $BASE;
return "Element at index $i (last element) is zero"
if $#$x > 0 && $i == $#$x && $e == 0;
}
return 0;
}
1;
|