File: to_fp80-mbi.t

package info (click to toggle)
libmath-bigint-perl 2.005003-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,144 kB
  • sloc: perl: 14,389; pascal: 6,476; makefile: 2
file content (175 lines) | stat: -rw-r--r-- 3,908 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# -*- mode: perl; -*-

use strict;
use warnings;

use Test::More tests => 11;

use Math::BigInt;
use Math::BigFloat;

my $b =  2;             # base
my $p = 64;             # precision in bits
my $w = 15;             # width of exponent

$b = Math::BigInt -> new($b);
$p = Math::BigInt -> new($p);

my $emax = 2 ** ($w - 1) - 1;
my $emin = 1 - $emax;

my $format = 'fp80';

#my $binv = Math::BigFloat -> new("0.5");

my $data =
  [

   {
    dsc => "positive zero",
    bin => "0"
         . ("0" x $w)
         . ("0" x $p),
    asc => "+0",
    obj => Math::BigInt -> new("0"),
   },

   {
    dsc => "one",
    bin => "0"
         . "0" . ("1" x ($w - 1))
         . "1" . "0" x ($p - 1),
    asc => "1",
    obj => Math::BigInt -> new("1"),
   },

   {
    dsc => "largest normal number",
    bin => "0"
         . ("1" x ($w - 1)) . "0"
         . "1" x $p,
    asc => "$b ** $emax * ($b - $b ** (" . (1 - $p) . "))",
    #obj => $b ** $emax * ($b - $binv ** ($p - 1)),
    obj => $b ** ($emax + 1) - $b ** ($emax + 1 - $p),
   },

   {
    dsc => "minus one",
    bin => "1"
         . "0" . ("1" x ($w - 1))
         . "1" . "0" x ($p - 1),
    asc => "-1",
    obj => Math::BigInt -> new("-1"),
   },

   {
    dsc => "two",
    bin => "0"
         . "1" . ("0" x ($w - 1))
         . "1" . ("0" x ($p - 1)),
    asc => "2",
    obj => Math::BigInt -> new("2"),
   },

   {
    dsc => "minus two",
    bin => "1"
         . "1" . ("0" x ($w - 1))
         . "1" . ("0" x ($p - 1)),
    asc => "-2",
    obj => Math::BigInt -> new("-2"),
   },

   {
    dsc => "positive infinity",
    bin => "0"
         . ("1" x $w)
         . ("0" x $p),
    asc => "+inf",
    obj => Math::BigInt -> new("inf"),
   },

   {
    dsc => "negative infinity",
    bin =>  "1"
         . ("1" x $w)
         . ("0" x $p),
    asc => "-inf",
    obj => Math::BigInt -> new("-inf"),
   },

   {
    dsc => "NaN",
    bin => "1"
         . ("1" x $w)
         . ("1" x $p),
    asc => "NaN",
    obj => Math::BigInt -> new("NaN"),
   },

  ];

for my $entry (@$data) {
    my $bin   = $entry -> {bin};
    my $bytes = pack "B*", $bin;
    my $hex   = unpack "H*", $bytes;
    my $str   = join "", map "\\x$_", unpack "(a2)*", $hex;

    note("\n",
         "     format : ", $format, "\n",
         "description : ", $entry -> {dsc}, "\n",
         "      value : ", $entry -> {asc}, "\n",
         "     binary : ", join(" ", unpack "(a8)*", $bin), "\n",
         "hexadecimal : ", join(" ", unpack "(a2)*", $hex), "\n",
         "      bytes : ", $str, "\n",
         "\n");

    my $x = $entry -> {obj};

    my $test = qq|Math::BigInt -> new("$x") -> to_fp80()|;

    my $got_bytes = $x -> to_fp80();
    my $got_hex = unpack "H*", $got_bytes;
    $got_hex =~ s/(..)/\\x$1/g;

    my $expected_hex = $hex;
    $expected_hex =~ s/(..)/\\x$1/g;

    is($got_hex, $expected_hex);
}

note("\nRounding close to the largest normal number.\n\n");

{
    # largest normal number: 2 ** 16383 * (2 - 2 ** (-63))
    my $lo = Math::BigFloat -> from_fp80("7ffeffffffffffffffff");

    # 2 ** 16383 * 2 = 2 ** 16384
    my $hi = Math::BigFloat -> new("2") -> bpow("16384");

    # compute an average weighted towards the smaller of the two
    my $x1 = 0.75 * $lo + 0.25 * $hi;

    note "";
    note "lo ≈ ", $lo -> bnstr(40);
    note "hi ≈ ", $hi -> bnstr(40);
    note "x1 ≈ ", $x1 -> bnstr(40);
    note "";

    # this must round down to the largest normal number
    my $got1 = unpack "H*", $x1 -> to_fp80();
    is($got1, "7ffeffffffffffffffff");

    # compute an average weighted towards the larger of the two
    my $x3 = 0.25 * $lo + 0.75 * $hi;

    note "";
    note "lo ≈ ", $lo -> bnstr(40);
    note "hi ≈ ", $hi -> bnstr(40);
    note "x3 ≈ ", $x3 -> bnstr(40);
    note "";

    # this must round up to infinity
    my $got3 = unpack "H*", $x3 -> to_fp80();
    is($got3, "7fff0000000000000000");
}