File: Expression.pm

package info (click to toggle)
libmath-calculus-expression-perl 0.2.2.ds-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 160 kB
  • sloc: perl: 1,221; sh: 51; makefile: 2
file content (1198 lines) | stat: -rw-r--r-- 35,086 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
# ########################################################################################
# A CALCULUS EXPRESSION OBJECT
# Common algebra routines module by Jonathan Worthington.
# Copyright (C) Jonathan Worthington 2004-2005
# This module may be used and distributed under the same terms as Perl.
# ########################################################################################

package Math::Calculus::Expression;
use strict;
our $VERSION = '0.2.2';

=head1 NAME

Math::Calculus::Expression - Algebraic Calculus Tools Expression Class

=head1 SYNOPSIS

  use Math::Calculus::Expression;

  # Create an expression object.
  my $exp = Math::Calculus::Expression->new;
  
  # Set a variable and expression.
  $exp->addVariable('x');
  $exp->setExpression('x^(2+1) + 6*5*x') or die $exp->getError;
  
  # Simplify
  $exp->simplify or die $exp->getError;;
  
  # Print the result.
  print $exp->getExpression; # Prints x^3 + 30*x
  

=head1 DESCRIPTION

This module can take an algebraic expression, parse it into a tree structure, simplify
the tree, substitute variables and named constants for other variables or constants
(which may be numeric), numerically evaluate the tree and turn the tree back into an
output of the same form as the input.

It supports a wide range of expressions including the +, -, *, / and ^ (raise to
power) operators, bracketed expressions to enable correct precedence and the functions
ln, exp, sin, cos, tan, sec, cosec, cot, sinh, cosh, tanh, sech, cosech, coth, asin,
acos, atan, asinh, acosh and atanh.

=head1 EXPORT

None by default.

=head1 METHODS

=cut

# Constructor
# ###########

=over

=item new

  $exp = Math::Calculus::Expression->new;

Creates a new instance of the expression object, which can hold an individual
expression and perform basic operations on it.

=cut

sub new {
	# Get invocant.
	my $invocant = shift;
	
	# Create object.
	my $self = {
		traceback	=> '',
		error		=> '',
		expression	=> 0,
		variables	=> [],
	};
	return bless $self, $invocant;
}


# Add variable.
# #############

=item addVariable

  $exp->addVariable('x');

Sets a certain named value in the expression as being a variable. A named value must be
an alphabetic chracter.

=cut

sub addVariable {
	# Get invocant and parameters.
	my ($self, $var) = @_;
	
	# Provided the variable is just one character and we don't already have it...
	unless (length($var) != 1 || grep { $_ eq $var } @{$self->{'variables'}}) {
		$self->{'variables'}->[@{$self->{'variables'}}] = $var;
		$self->{'error'} = '';
		return 1;
	} else {
		$self->{'error'} = 'Invalid variable or variable already added.';
		return undef;
	}
}


# Set Expression
# ##############

=item setExpression

  $exp->setExpression('x^2 + 5*x);

Takes an expression in human-readable form and stores it internally as a tree structure,
checking it is a valid expression that the module can understand in the process. Note that
the module is strict about syntax. For example, note above that you must write 5*x and not
just 5x. Whitespace is allowed in the expression, but does not have any effect on precedence.
If you require control of precedence, use brackets; bracketed expressions will always be
evaluated first, as you would normally expect. The module follows the BODMAS precedence
convention. Returns undef on failure and a true value on success.

=cut

sub setExpression {
	# Get invocant and parameters.
	my ($self, $expr) = @_;
	
	# Clear up the expression.
	$expr =~ s/\s//g;
	1 while $expr =~ s/--/+/g
	     || $expr =~ s/\+-|-\+/-/g
	     || $expr =~ s/([+\-*\/\^])\+/$1/g
	     || $expr =~ s/^\+//g;
	
	# Build expression tree.
	$self->{'error'} = $self->{'traceback'} = undef;
	$self->{'expression'} = $self->buildTree($expr);
	
	# Return depending on whether there was an error.
	if ($self->{'error'}) {
		return undef;
	} else {
		return 1;
	}
}


# Get Expression
# ##############

=item getExpression

  $expr = $exp->getExpression;

Returns a textaul, human readable representation of the expression that is being stored.

=cut

sub getExpression {
	# Get invocant.
	my $self = shift;
	
	# Walk expression tree and generate something to display.
	$self->{'error'} = '';
	my $text = $self->prettyPrint($self->{'expression'});
	
	# If there was an error, return nothing.
	if ($self->{'error'}) {
		return undef;
	} else {
		return $text;
	}
}


# Simplify.
# #########

=item simplify

  $exp->simplify;

Attempts to simplify the expression that is stored internally.

=cut

sub simplify {
	# Get invocant.
	my ($self) = @_;
	
	# Clear error.
	$self->{'error'} = undef;
	
	# Simplify.
	eval {
		$self->{'expression'} = $self->recSimplify($self->{'expression'}, undef);
	};
	
	# We may have boiled it all down to a numerical constant...
	my $const = $self->numericEvaluation($self->{'expression'});
	if (defined($const)) {
		$self->{'expression'} = $const;
	}
	
	# Return an appropriate value (or lack thereof...).
	if ($self->{'error'}) {
		return undef;
	} else {
		return 1;
	}
}


# Evaluate.
# #########

=item evaluate

  $exp->evaluate(x => 0.5, a => 4);

This method takes a hash mapping any variables and named constants (represented
by letters) in the expression to numerical values, and attempts to evaluate the
expression and return a numerical value. It fails and returns undef if it finds
letters that have no mapping or an error such as division by zero occurs during
the evaluation.

=cut

sub evaluate {
	# Get invocant.
	my ($self, %mapping) = @_;
	
	# Clear error.
	$self->{'error'} = undef;
	
	# Evaluate.
	my $value = undef;
	eval {
		$value = $self->evaluateTree($self->{'expression'}, %mapping);
	} || ($self->{'error'} ||= $@);
	
	# Return value or undef if we there was an error.
	if ($self->{'error'}) {
		return undef;
	} else {
		return $value;
	}
}


# Same representation?
# ####################

=item sameRepresentation

  $same = $exp->sameRepresentation($exp2);

The sameRepresentation method takes another expression object as its parameter
and returns true if that expression has the same internal representation as the
expression the method is invoked on. Be careful - while it can be said that if
two expressions have the same representation they are equal, it would be wrong
to say that if they have different representations they are not equal. It is
clear to see that "x + 2" and "2 + x" are equal, but their internal representation
may well differ.

=cut

sub sameRepresentation {
	# Get invocant.
	my ($self, $exp2) = @_;
	
	# Clear error.
	$self->{'error'} = undef;
	
	# Compare and return result.
	return $self->isIdentical($self->{'expression'}, $exp2->getExpressionTree);
}


# Clone.
# ######

=item clone

  $expCopy = $exp->clone;

The clone method returns a deep copy of the expression object (deep copy meaning
that if the original is modified the copy will not be affected and vice versa).

=cut

sub clone {
	# Get invocant.
	my ($self) = @_;
	
	# Clear error.
	$self->{'error'} = undef;
	
	# Do a deep copy.
	my $tree = $self->deepCopy($self->{'expression'});
	
	# Create new object with copied tree and return.
	my $clone = {
		traceback	=> $self->{'traceback'},
		error		=> $self->{'error'},
		expression	=> $tree,
		variables	=> [ @{$self->{'variables'}} ]
	};
	return bless $clone, 'Math::Calculus::Expression';
}


# Get traceback.
# ##############

=item getTraceback

  $exp->getTraceback;

When setExpression and differentiate are called, a traceback is generated to describe
what these functions did. If an error occurs, this traceback can be extremely useful
in helping track down the source of the error.

=cut

sub getTraceback {
	return $_[0]->{'traceback'};
}


# Get error.
# ##########

=item getError

  $exp->getError;

When any method other than getTraceback is called, the error message stored is cleared, and
then any errors that occur during the execution of the method are stored. If failure occurs,
call this method to get a textual representation of the error.

=cut

sub getError {
	return $_[0]->{'error'};
}


# Any other methods.
# ##################

=item Other Methods

Any other method call is taken to refer to a subclass of Expression. The first letter of the
name of the method invoked is capitalized, then a module by that name is loaded (if it exists)
and the method is called on it. This works for, for example, the Differentiate module; calling
the differentiate method on an Expression will load the Differentiate module and call the
differentiate method. If a module cannot be loaded or the method cannot be called, then this
module will die.

=cut

sub AUTOLOAD {
	# Grab the params to pass on.
	my ($self, @params) = @_;
	
	# Get the name of the method called; skip if it is destroy.
	my $name = our $AUTOLOAD;
	return undef if $name =~ /::DESTROY$/;
	$name =~ s/^.+::([A-Za-z0-9]+)(_\w+)?$/$1$2/;
	my $modName = ucfirst $1;
	
	# Attempt to load the module and call the method.
	if (wantarray) {
		my @result = eval {
			require "Math/Calculus/$modName.pm";
			bless $self, "Math::Calculus::$modName";
			my $meth = eval('\&Math::Calculus::' . $modName . '::' . $name);
			$meth->($self, @params)
		};
		die $@ if $@;
		return @result;
	} else {
		my $result = eval {
			require "Math/Calculus/$modName.pm";
			bless $self, "Math::Calculus::$modName";
			my $meth = eval('\&Math::Calculus::' . $modName . '::' . $name);
			$meth->($self, @params)
		};
		die $@ if $@;
		return $result;
	}
}

=back

=head1 SEE ALSO

The author of this module has a website at L<http://www.jwcs.net/~jonathan/>, which has
the latest news about the module and a web-based frontend to allow you to try out this
module and, more specifically, its subclasses.

=head1 AUTHOR

Jonathan Worthington, E<lt>jonathan@jwcs.netE<gt>

=head1 COPYRIGHT AND LICENSE

Copyright (C) 2004 by Jonathan Worthington

This library is free software; you can redistribute it and/or modify
it under the same terms as Perl itself, either Perl version 5.8.1 or,
at your option, any later version of Perl 5 you may have available.

=cut


# ########################################################################################
# Private Methods
# ########################################################################################


# Get expression tree simply gets the raw expression tree.
# ########################################################################################
sub getExpressionTree { return $_[0]->{'expression'}; }


# Build tree recursively explores the passed expression and generates a tree for it.
# The trees take a structure of an operation (which is +, -, *, /, ^, sin, cos, tan,
# sec, cosec, cot, sinh, cosh, tanh, sech, cosech, coth, asin, acos, atan, asinh,
# acosh, atanh, exp or ln) and two operands, which are either constants or references
# to other trees.
# ########################################################################################
sub buildTree {
	# Get invocant and expression.
	my ($self, $expr) = @_;
	
	# Store what we're parsing in the traceback.
	$self->{'traceback'} .= "Parsing $expr\n";
	
	# Clear any brackets around the entire expression.
	my $bracketsRemoved = 1;
	while ($bracketsRemoved && substr($expr, 0, 1) eq '(') {
		# See if there are any brackets to remove.
		my $bracketDepth = 0;
		my $bracketDepthHitZero = 0;
		my $count = 0;
		foreach my $char (split //, $expr) {
			if ($char eq '(') {
				$bracketDepth ++;
			} elsif ($char eq ')') {
				$bracketDepth --;
			}
			if ($bracketDepth == 0 && $count > 0 && $count + 1 < length($expr)) {
				$bracketDepthHitZero = 1;
			}
			$count++;
		}
		
		# If so, remove them.
		if ($bracketDepthHitZero == 0) {
			$expr =~ s/^\((.+)\)$/$1/;
		} else {
			$bracketsRemoved = 0;
		}
	}
	
	# If it's a constant or single variable...
	if ($expr =~ /^ (\-? ( (\d+(\.\d+)?) | [A-Za-z] )) $/x) {
		# No tree to build; just return the expression.
		return $1;
	
	# Otherwise it could be a function.
	} elsif ($expr =~ /^ (\-?) (a?sinh?|a?cosh?|a?tanh?|sech?|cosech?|coth?|ln|exp) \((.+)\) $/x &&
	         $self->isProperlyNested($3)) {
		# Return single operand parse tree.
		return {
			operation	=> "$1$2",
			operand1	=> $self->buildTree($3),
			operand2	=> undef
		};
	} else {
		# Otherwise full analysis needed. Analyse expressiona and try to find a split point.
		my $error = undef;
		my $bestSplitOp = '';
		my $splitOpPos = 0;
		my $bracketDepth = 0;
		
		# Cycle through all characters.
		my $curChar = 1;
		my $lastCharOp = 1;
		foreach my $char (split //, $expr) {
			# Maintain bracket depth.
			if ($char eq '(') {
				$bracketDepth ++;
			} elsif ($char eq ')') {
				$bracketDepth --;
			
			# Do we have a split point?
			} elsif ($curChar > 1 && $bracketDepth == 0 && $char =~ /[\^*\/+\-]/ &&
      	                    ($self->higherPrecedence($bestSplitOp, $char) || !$bestSplitOp)
			         && !$lastCharOp) {
				$splitOpPos = $curChar;
				$bestSplitOp = $char;
			}
			
			# If bracket depth is negative, we've got an error.
			if ($bracketDepth < 0)
			{
				$error = "Brackets not properly nested.";
			}
			
			# Maintain flag for if this character was an operator.
			$lastCharOp = $char =~ /[\^*\/+\-]/ ? 1 : 0;
			
			# Increment character counter.
			$curChar ++;
		}
		
		# Split failure error.	
		if (!$error && !$bestSplitOp) {
			$error = 'Could not split expression ' . $expr;
		}
		
		# If there wasn't an error, split, get operand and parse each subexpression.
		unless ($error) {
			my $operand1 = substr($expr, 0, $splitOpPos - 1);
			my $operand2 = substr($expr, $splitOpPos);
			if ($operand2 ne '') {
				return {
					operation	=> $bestSplitOp,
					operand1	=> $self->buildTree($operand1),
					operand2	=> $self->buildTree($operand2)
				};
			} else {
				$error = 'Could not split expression ' . $expr;
			}
		}
		
		# If we've got an error, store it and return failure.
		if ($error) {
			$self->{'error'} = $error;
			return undef;
		}
 	}
	
	# If we get here, something weird happened.
	$self->{'error'} = "Unknown error parsing $expr.";
	return undef;
}


# Pretty print takes an expression tree and returns a text representation for it.
# #######################################################################################
sub prettyPrint {
	# Get invocant and tree.
	my ($self, $tree, $lastOp) = @_;
	
	# See if the tree actually is a tree. If not, it's a value and just return it.
	unless (ref $tree) {
		return $tree;
	} else {
		# See how many operands we take.
		my $curOp = $tree->{'operation'};
		if ($curOp =~ /^[\^\/*\-+]$/) {
			# Dual operand. Look at last op to see if we need brackets.
			my $brackets = ($curOp eq '^' && $lastOp =~ /[\/*+\-]/ ||
			                $curOp =~ /[\/*]/ && $lastOp =~ /[*+\-]/ ||
			                $curOp =~ /[+\-]/ && $lastOp =~ /[+\-]/ ||
                                  !(defined($lastOp)) || $lastOp eq '(')
					   ? 0 : 1;
			
			# Pretty-print each operand, adding spaces around + and - ops.
			my $pretty = '';
			$pretty .= '(' if $brackets;
			$pretty .= $self->prettyPrint($tree->{'operand1'}, $curOp);
			$pretty .= ($curOp =~ /[+\-]/ ? ' ' : '') . $curOp . ($curOp =~ /[+\-]/ ? ' ' : '');
			$pretty .= $self->prettyPrint($tree->{'operand2'}, $curOp);
			$pretty .= ')' if $brackets;
			return $pretty;
		} else {
			# Single operand, e.g. function.
			return $curOp . '(' . $self->prettyPrint($tree->{'operand1'}, '(') . ')';
		}
	}
}


# recSimplify recursively walks a tree and simplifies the branches, then the current
# node.
# ########################################################################################
sub recSimplify {
	# Get invocant, variable and tree.
	my ($self, $tree) = @_;
	
	# If it's just a node, return it. We can't do a great deal with nodes.
	return $tree unless ref $tree;
	
	# Pull out left and right branches for neatness.
	my ($left, $right) = ($tree->{'operand1'}, $tree->{'operand2'});
	
	## RECURSIVELY SIMPLIFTY TREES
	$left = $self->recSimplify($left);
	$right = $self->recSimplify($right);
	
	## CONSTANT EVALUATION
	
	# Get any available numeric evaluations of the left and right branches.
	my $leftval = $self->numericEvaluation($left);
	my $rightval = $self->numericEvaluation($right);
	
	# If they have a numeric evaluation, assign them to the actual values.
	$left = $leftval if defined($leftval);
	$right = $rightval if defined($rightval);
	
	## SHIFTING NEGATIVES
	## These simplifications are not "the final word", indeed dealing with them
	## allows further simplifications to take place. So we modify the tree "in
	## place".
	
	# x - (-y) = x + y
	if ($tree->{'operation'} eq '-') {
		if (!(ref $right) && $right =~ /^-(.+)$/) {
			$tree->{'operation'} = '+';
			$right = $1;
		} elsif (ref $right && $right->{'operation'} =~ /^-(.+)$/) {
			$tree->{'operation'} = '+';
			$right->{'operation'} = $1;
		}
	}
	
	# x + (-y) = x - y
	elsif ($tree->{'operation'} eq '+') {
		if (!(ref $right) && $right =~ /^-(.+)$/) {
			$tree->{'operation'} = '-';
			$right = $1;
		} elsif (ref $right && $right->{'operation'} =~ /^-(.+)$/) {
			$tree->{'operation'} = '-';
			$right->{'operation'} = $1;
		}
	}
	
	# x - -y*z = x + y*z
	if ($tree->{'operation'} eq '-' && ref $right && $right->{'operation'} eq '*') {
		if (!(ref $right->{'operand1'}) && $right->{'operand1'} =~ /^-(.+)$/) {
			$tree->{'operation'} = '+';
			$right->{'operand1'} = $1;
		} elsif (ref($right->{'operand1'}) && $right->{'operand1'}->{'operation'} =~ /^-(.+)$/) {
			$tree->{'operation'} = '+';
			$right->{'operand1'}->{'operation'} = $1;
		}
	}
	
	# x + -y*z = x - y*z
	elsif ($tree->{'operation'} eq '+' && ref $right && $right->{'operation'} eq '*') {
		if (!(ref $right->{'operand1'}) && $right->{'operand1'} =~ /^-(.+)$/) {
			$tree->{'operation'} = '-';
			$right->{'operand1'} = $1;
		} elsif (ref $right->{'operand1'} && $right->{'operand1'}->{'operation'} =~ /^-(.+)$/) {
			$tree->{'operation'} = '-';
			$right->{'operand1'}->{'operation'} = $1;
		}
	}
	
	## MIGRATE CONSTANTS UP THE TREE
	
	# x * c = c * x
	if ($tree->{'operation'} eq '*' && !ref($right) && $right =~ /^-?\d+(\.\d+)?$/) {
		($left, $right) = ($right, $left);
	
	# x * c * y = c * x * y
	} elsif ($tree->{'operation'} eq '*' && ref $right && $right->{'operation'} eq '*' &&
	    $right->{'operand1'} =~ /^-?\d+(\.\d+)?$/) {
		($left, $right->{'operand1'}) = ($right->{'operand1'}, $left);
	
	# x * y * c = x * c * y
	} elsif ($tree->{'operation'} eq '*' && ref $right && $right->{'operation'} eq '*' &&
	    $right->{'operand2'} =~ /^-?\d+(\.\d+)?$/) {
		($right->{'operand1'}, $right->{'operand2'}) = ($right->{'operand2'}, $right->{'operand1'});
	}
	
	## NULL OPERATORS
	
	# 0 + x = x + 0 = x
	if ($tree->{'operation'} eq '+' && (!(ref $left) && $left eq '0')) {
		return $right;
	}
	if ($tree->{'operation'} eq '+' && (!(ref $right) && $right eq '0')) {
		return $left;
	}
	
	# x - 0 = x
	if ($tree->{'operation'} eq '-' && (!(ref $right) && $right eq '0')) {
		return $left;
	}
	
	# x - 0 + y = x - y
	# x + 0 + y = x + y
	if ($tree->{'operation'} =~ /^[+-]$/ && ref $right && $right->{'operation'} =~ /^[+-]$/ &&
	    !(ref $right->{'operand1'}) && $right->{'operand1'} eq '0') {
		$right = $right->{'operand2'};
	}
	
	# 1 * x = x * 1 = x
	if ($tree->{'operation'} eq '*' && (!(ref $left) && $left eq '1')) {
		return $right;
	}
	if ($tree->{'operation'} eq '*' && (!(ref $right) && $right eq '1')) {
		return $left;
	}
	
	# x / 1 = x
	if ($tree->{'operation'} eq '/' && (!(ref $right) && $right eq '1')) {
		return $left;
	}
	
	# x ^ 1 = x
	if ($tree->{'operation'} eq '^' && (!(ref $right) && $right eq '1')) {
		return $left;
	}
	
	## EFFECTS OF ZERO
	
	# x ^ 0 = 1
	if ($tree->{'operation'} eq '^' && (!(ref $right) && $right eq '0')) {
		return 1;
	}
	
	# 0 * x = x * 0 = 0
	if ($tree->{'operation'} eq '*' && (!(ref $left) && $left eq '0')) {
		return 0;
	}
	if ($tree->{'operation'} eq '*' && (!(ref $right) && $right eq '0')) {
		return 0;
	}
	
	# 0 / x = 0
	if ($tree->{'operation'} eq '/' && (!(ref $left) && $left eq '0')) {
		return 0;
	}
	
	## DIVISION OF AN EXPRESSION BY ITSELF
	
	# x / x = 1
	if ($tree->{'operation'} eq '/' && $self->isIdentical($left, $right)) {
		return 1;
	}
	
	## SUBTRACTION OF AN EXPRESSION FROM ITSELF
	
	# x - x = 0
	if ($tree->{'operation'} eq '-' && $self->isIdentical($left, $right)) {
		return 0;
	}
	
	## DEEP NUMERICAL CONSTANT COMBINATION
	
	# n * (m * x) = (o * x) where o = nm
	if ($tree->{'operation'} eq '*' && ref($right) && $right->{'operation'} eq '*' &&
	    !(ref($left)) && $left =~ /^-?\d+(\.\d+)?$/ && $right->{'operand1'} =~ /^-?\d+(\.\d+)?$/) {
		return {
			operation	=> '*',
			operand1	=> ($left * $right->{'operand1'}),
			operand2	=> $right->{'operand2'}
		};
	
	# n * (x * m) = (o * x) where o = nm
	} elsif ($tree->{'operation'} eq '*' && ref($right) && $right->{'operation'} eq '*' &&
	    !(ref($left)) && $left =~ /^-?\d+(\.\d+)?$/ && $right->{'operand2'} =~ /^-?\d+(\.\d+)?$/) {
		return {
			operation	=> '*',
			operand1	=> ($left * $right->{'operand2'}),
			operand2	=> $right->{'operand1'}
		};
	
	# (m * x) * n = (o * x) where o = nm
	} elsif ($tree->{'operation'} eq '*' && ref($left) && $left->{'operation'} eq '*' &&
	    !(ref($right)) && $right =~ /^-?\d+(\.\d+)?$/ && $left->{'operand1'} =~ /^-?\d+(\.\d+)?$/) {
		return {
			operation	=> '*',
			operand1	=> ($right * $left->{'operand1'}),
			operand2	=> $right->{'operand2'}
		};
	
	# (x * m) * n = (o * x) where o = nm
	} elsif ($tree->{'operation'} eq '*' && ref($left) && $left->{'operation'} eq '*' &&
	    !(ref($right)) && $right =~ /^-?\d+(\.\d+)?$/ && $left->{'operand2'} =~ /^-?\d+(\.\d+)?$/) {
		return {
			operation	=> '*',
			operand1	=> ($right * $left->{'operand2'}),
			operand2	=> $right->{'operand1'}
		};
	}
	
	## NATURAL LOGARITHM AND EXPONENTIATION INVERSTION
	
	# exp(ln(f(x))) = f(x)
	if ($tree->{'operation'} =~ /^-?exp$/ && ref($left) && $left->{'operation'} =~ /^ln$/) {
		if ($tree->{'operation'} =~ /^-/) {
			return {
				operation	=> '*',
				operand1	=> "-1",
				operand2	=> $left->{'operand1'}
			};
		} else {
			return $left->{'operand1'};
		}
	}
	
	# ln(exp(f(x))) = f(x)
	if ($tree->{'operation'} =~ /^-?ln$/ && ref($left) && $left->{'operation'} =~ /^exp$/) {
		if ($tree->{'operation'} =~ /^-/) {
			return {
				operation	=> '*',
				operand1	=> "-1",
				operand2	=> $left->{'operand1'}
			};
		} else {
			return $left->{'operand1'};
		}
	}
	
	## MULTIPLICATION CHAINS BECOME POWERS
	
	# e * e = e^2
	if ($tree->{'operation'} eq '*' && $self->isIdentical($left, $right)) {
		return {
			operation	=> '^',
			operand1	=> $left,
			operand2	=> 2
		};
	}
	
	# -e * e = -(e^2)
	elsif ($tree->{'operation'} eq '*') {
		# Check if left is negative.
		if (ref $left && $left->{'operation'} =~ /^-(.+)$/) {
			$left->{'operation'} = $1;
			if ($self->isIdentical($left, $right)) {
				return {
					operation	=> '-',
					operand1	=> 0,
					operand2	=> {
						operation	=> '^',
						operand1	=> $left,
						operand2	=> 2
					}
				};
			} else {
				$left->{'operation'} = "-$1";
			}	
		} elsif (!(ref $left) && $left =~ /^-(.+)$/) {
			$left = $1;
			if ($self->isIdentical($left, $right)) {
				return {
					operation	=> '-',
					operand1	=> 0,
					operand2	=> {
						operation	=> '^',
						operand1	=> $left,
						operand2	=> 2
					}
				};
			} else {
				$left = "-$1";
			}
		}
	}
	
	## TRIG IDENTITIES
	
	# cos^2 - sin^2 = 1
	if ($tree->{'operation'} eq '-' && ref $left && ref $right &&
	    $left->{'operation'} eq '^' && $right->{'operation'} eq '^' &&
	    (!ref $left->{'operand2'}) && $left->{'operand2'} == 2 &&
	    (!ref $right->{'operand2'}) && $right->{'operand2'} == 2 &&
	    ref $left->{'operand1'} && $left->{'operand1'}->{'operation'} =~ /-?cos$/ &&
	    ref $right->{'operand1'} && $right->{'operand1'}->{'operation'} =~ /-?sin$/ &&
	    $self->isIdentical($left->{'operand1'}->{'operand1'}, $right->{'operand1'}->{'operand1'})) {
		return 1;
	}
	
	## NO SIMPLIFICATION POSSIBLE - BUILD NEW TREE OF SIMPLIFIED SUBTREES
	
	# If we get here, just build and return a new tree, which may have no changes.
	return {
		operation	=> $tree->{'operation'},
		operand1	=> $left,
		operand2	=> $right
	};
}


# Evaluate tree simply subs a list of values in to numerically evaluate the tree.
# ########################################################################################
sub evaluateTree {
	# Get invocant, tree and mappings.
	my $self = shift;
	my $tree = shift;
	my %mapping = @_;
	
	# If we've got a numerical constant, just return it.
	if (!ref($tree) && $tree =~ /^-?\d+(\.\d+)?$/) {
		return $tree;
	
	# If we've got an atom, look it up in the mapping; die if we fail.
	} elsif (!ref($tree)) {
		my $val = $mapping{$tree};
		if (defined($val)) {
			return $val;
		} else {
			die; "No mapping for $tree";
		}
	
	#  +
	} elsif ($tree->{'operation'} eq '+') {
		return $self->evaluateTree($tree->{'operand1'}, %mapping) + $self->evaluateTree($tree->{'operand2'}, %mapping);
	
	#  -
	} elsif ($tree->{'operation'} eq '-') {
		return $self->evaluateTree($tree->{'operand1'}, %mapping) - $self->evaluateTree($tree->{'operand2'}, %mapping);
	
	#  *
	} elsif ($tree->{'operation'} eq '*') {
		return $self->evaluateTree($tree->{'operand1'}, %mapping) * $self->evaluateTree($tree->{'operand2'}, %mapping);
	
	#  /
	} elsif ($tree->{'operation'} eq '/') {
		return $self->evaluateTree($tree->{'operand1'}, %mapping) / $self->evaluateTree($tree->{'operand2'}, %mapping);
	
	#  ^
	} elsif ($tree->{'operation'} eq '^') {
		return $self->evaluateTree($tree->{'operand1'}, %mapping) ** $self->evaluateTree($tree->{'operand2'}, %mapping);
	
	# ln
	} elsif ($tree->{'operation'} =~ /^(-?)ln$/) {
		return ($1 ? -1 : 1) * log($self->evaluateTree($tree->{'operand1'}, %mapping));

	# exp
	} elsif ($tree->{'operation'} =~ /^(-?)exp$/) {
		return ($1 ? -1 : 1) * exp($self->evaluateTree($tree->{'operand1'}, %mapping));		
	
	# sin
	} elsif ($tree->{'operation'} =~ /^(-?)sin$/) {
		return ($1 ? -1 : 1) * sin($self->evaluateTree($tree->{'operand1'}, %mapping));		
	
	# cos
	} elsif ($tree->{'operation'} =~ /^(-?)cos$/) {
		return ($1 ? -1 : 1) * cos($self->evaluateTree($tree->{'operand1'}, %mapping));		
		
	# tan
	} elsif ($tree->{'operation'} =~ /^(-?)tan$/) {
		my $val = $self->evaluateTree($tree->{'operand1'}, %mapping);
		return ($1 ? -1 : 1) * (sin($val) / cos($val));
	
	# sec
	} elsif ($tree->{'operation'} =~ /^(-?)sec$/) {
		my $val = $self->evaluateTree($tree->{'operand1'}, %mapping);
		return ($1 ? -1 : 1) * (1 / cos($val));

	# cosec
	} elsif ($tree->{'operation'} =~ /^(-?)cosec$/) {
		my $val = $self->evaluateTree($tree->{'operand1'}, %mapping);
		return ($1 ? -1 : 1) * (1 / sin($val));
	
	# cot
	} elsif ($tree->{'operation'} =~ /^(-?)cot$/) {
		my $val = $self->evaluateTree($tree->{'operand1'}, %mapping);
		return ($1 ? -1 : 1) * (cos($val) / sin($val));
	
	# asin
	} elsif ($tree->{'operation'} =~ /^(-?)asin$/) {
		my $val = $self->evaluateTree($tree->{'operand1'}, %mapping);
		return ($1 ? -1 : 1) * atan2($val, sqrt(1 - $val * $val));

	# acos
	} elsif ($tree->{'operation'} =~ /^(-?)acos$/) {
		my $val = $self->evaluateTree($tree->{'operand1'}, %mapping);
		return ($1 ? -1 : 1) * atan2(sqrt(1 - $val * $val), $val);
	
	# atan
	} elsif ($tree->{'operation'} =~ /^(-?)atan$/) {
		my $val = $self->evaluateTree($tree->{'operand1'}, %mapping);
		return ($1 ? -1 : 1) * atan2($val, 1);
	
	# sinh
	} elsif ($tree->{'operation'} =~ /^(-?)sinh$/) {
		my $val = $self->evaluateTree($tree->{'operand1'}, %mapping);
		return ($1 ? -1 : 1) * ((exp($val) - exp(-$val)) / 2);
	
	# cosh
	} elsif ($tree->{'operation'} =~ /^(-?)cosh$/) {
		my $val = $self->evaluateTree($tree->{'operand1'}, %mapping);
		return ($1 ? -1 : 1) * ((exp($val) + exp(-$val)) / 2);
	
	# tanh
	} elsif ($tree->{'operation'} =~ /^(-?)tanh$/) {
		my $val = $self->evaluateTree($tree->{'operand1'}, %mapping);
		return ($1 ? -1 : 1) * ((exp($val) - exp(-$val)) / (exp($val) + exp(-$val)));
	
	# sech
	} elsif ($tree->{'operation'} =~ /^(-?)sech$/) {
		my $val = $self->evaluateTree($tree->{'operand1'}, %mapping);
		return ($1 ? -1 : 1) * (2 / (exp($val) + exp(-$val)));

	# cosech
	} elsif ($tree->{'operation'} =~ /^(-?)cosech$/) {
		my $val = $self->evaluateTree($tree->{'operand1'}, %mapping);
		return ($1 ? -1 : 1) * (2 / (exp($val) - exp(-$val)));
	
	# coth
	} elsif ($tree->{'operation'} =~ /^(-?)coth$/) {
		my $val = $self->evaluateTree($tree->{'operand1'}, %mapping);
		return ($1 ? -1 : 1) * ((exp($val) + exp(-$val)) / (exp($val) - exp(-$val)));
	
	# asinh
	} elsif ($tree->{'operation'} =~ /^(-?)asinh$/) {
		my $val = $self->evaluateTree($tree->{'operand1'}, %mapping);
		return ($1 ? -1 : 1) * log($val + sqrt($val * $val + 1));

	# acosh
	} elsif ($tree->{'operation'} =~ /^(-?)acosh$/) {
		my $val = $self->evaluateTree($tree->{'operand1'}, %mapping);
		return ($1 ? -1 : 1) * log($val + sqrt(($val * $val >= 1 ? $val * $val : -($val * $val)) - 1));
	
	# atanh
	} elsif ($tree->{'operation'} =~ /^(-?)atanh$/) {
		my $val = $self->evaluateTree($tree->{'operand1'}, %mapping);
		return ($1 ? -0.5 : 0.5) * (log(1 + $val) + log(1 - $val));
	
	# Otherwise, fail.
	} else {
		die "Cannot evaluate $tree->{'operation'}";
	}
}
	


# higherPrecedence(a, b) returns true if a has higher or equal precedence than b.
# ########################################################################################
sub higherPrecedence {
	# Get invocant and parameters.
	my ($self, $a, $b) = @_;
	
	# Do precedence check.
	if ($a eq '^') {
		return 1;
	} elsif ($a eq '/' && $b =~ /\/|\*|\+|-/) {
		return 1;
	} elsif ($a eq '*' && $b =~ /\*|\+|-/) {
		return 1;
	} elsif ($a eq '+' && $b =~ /\+|-/) {
		return 1;
	} elsif ($a eq '-' && $b eq '-') {
		return 1;
	}
		
	# If we get here, precedence is lower.
	return 0;
}


# isConstant takes a tree and a variable, checks if it's dependent on that variable and
# returns 1 if so and 0 if not.
# ########################################################################################
sub isConstant {
	# Get invocant, variable and tree.
	my ($self, $variable, $tree) = @_;
	
	# If the tree is undefined, we've run off the end of it, which means it was all constant.
	return 1 unless defined($tree);
	
	# If we have a ref...
	if (ref $tree) {
		return ($self->isConstant($variable, $tree->{'operand1'}) && $self->isConstant($variable, $tree->{'operand2'}));
	} else {
		# Atom. But is it the variable?
		return $tree eq $variable || $tree eq "-$variable" ? 0 : 1;
	}
}


# Numeric Evaluation takes a tree and, provided it is constant and all constants are
# numeric, calculates the value of the tree. Returns undef if numeric evaluation is
# not possible.
# ########################################################################################
sub numericEvaluation {
	# Get invocant and tree.
	my ($self, $tree) = @_;
	
	# If the tree is a value...
	unless (ref $tree) {
		# If it's numeric, return it.
		return $tree =~ /^-?\d+(\.\d+)?$/ ? $tree : undef;
	} else {
		# Attempt to numerically evaluate each branch.
		my $leftval = $self->numericEvaluation($tree->{'operand1'});
		my $rightval = $self->numericEvaluation($tree->{'operand2'});
		
		# If it's an addition op and both values are numeric...
		if ($tree->{'operation'} eq '+' && defined($leftval) && defined($rightval)) {
			# Add and return.
			return $leftval + $rightval;
		
		# If it's a subtraction op and both values are numeric...
		} elsif ($tree->{'operation'} eq '-' && defined($leftval) && defined($rightval)) {
			# Subtract and return.
			return $leftval - $rightval;

		# If it's a multiplication op and both values are numeric...
		} elsif ($tree->{'operation'} eq '*' && defined($leftval) && defined($rightval)) {
			# Multiply and return.
			return $leftval * $rightval;
		
		# If it's a power op and both values are numeric...
		} elsif ($tree->{'operation'} eq '^' && defined($leftval) && defined($rightval)) {
			# Multiply and return.
			return $leftval ^ $rightval;
		 
		# Otherwise, we can't do numerical operations. Return undef.
		} else {
			return undef;
		}
	}
}


# isIdentical takes two trees and checks if they are identical. Note that identical might
# not mean equal.
# ########################################################################################
sub isIdentical {
	# Get invocant and trees.
	my ($self, $treeA, $treeB) = @_;
	
	# If both are not references and they are the same...
	if (!ref($treeA) && !ref($treeB) && $treeA eq $treeB) {
		return 1;
	
	# If they are both references and have the same operators...
	} elsif (ref($treeA) && ref($treeB) && $treeA->{'operation'} eq $treeB->{'operation'}) {
		# Recursively compare the subtrees.
		my $leftcomp = $self->isIdentical($treeA->{'operand1'}, $treeB->{'operand1'});
		my $rightcomp = $self->isIdentical($treeA->{'operand2'}, $treeB->{'operand2'});
		return $leftcomp && $rightcomp ? 1 : 0;
	
	# Otherwise, they must not be the same.
	} else {
		return 0;
	}
}


# deepCopy creates a deep copy of an expression tree. You'd never have guessed, huh?
# ########################################################################################
sub deepCopy {
	# Get invocant and what is being copied.
	my ($self, $tree) = @_;
	
	# If it's a reference...
	if (ref $tree) {
		# Copy.
		return {
			operation	=> $tree->{'operation'},
			operand1	=> $self->deepCopy($tree->{'operand1'}),
			operand2	=> $self->deepCopy($tree->{'operand2'}),
		};
	} else {
		# Just a value. Return.
		return $tree;
	}
}


# isProperlyNested checks if the brackets in an expression are properly nested.
# ########################################################################################
sub isProperlyNested {
	# Get invocant and string to check.
	my ($self, $check) = @_;
	
	# Do the check.
	my $valid = 1;
	my $bracketDepth = 0;
	for (split(//, $check)) {
		$bracketDepth++ if /\(/;
		$bracketDepth-- if /\)/;
		return 0 if $bracketDepth < 0;
	}
	return $bracketDepth == 0 ? 1 : 0;
}


1;