| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 
 | # This file was automatically generated by SWIG (http://www.swig.org).
# Version 2.0.12
#
# Do not make changes to this file unless you know what you are doing--modify
# the SWIG interface file instead.
package Math::GSL::Eigen;
use base qw(Exporter);
use base qw(DynaLoader);
package Math::GSL::Eigenc;
bootstrap Math::GSL::Eigen;
package Math::GSL::Eigen;
@EXPORT = qw();
# ---------- BASE METHODS -------------
package Math::GSL::Eigen;
sub TIEHASH {
    my ($classname,$obj) = @_;
    return bless $obj, $classname;
}
sub CLEAR { }
sub FIRSTKEY { }
sub NEXTKEY { }
sub FETCH {
    my ($self,$field) = @_;
    my $member_func = "swig_${field}_get";
    $self->$member_func();
}
sub STORE {
    my ($self,$field,$newval) = @_;
    my $member_func = "swig_${field}_set";
    $self->$member_func($newval);
}
sub this {
    my $ptr = shift;
    return tied(%$ptr);
}
# ------- FUNCTION WRAPPERS --------
package Math::GSL::Eigen;
*gsl_error = *Math::GSL::Eigenc::gsl_error;
*gsl_stream_printf = *Math::GSL::Eigenc::gsl_stream_printf;
*gsl_strerror = *Math::GSL::Eigenc::gsl_strerror;
*gsl_set_error_handler = *Math::GSL::Eigenc::gsl_set_error_handler;
*gsl_set_error_handler_off = *Math::GSL::Eigenc::gsl_set_error_handler_off;
*gsl_set_stream_handler = *Math::GSL::Eigenc::gsl_set_stream_handler;
*gsl_set_stream = *Math::GSL::Eigenc::gsl_set_stream;
*gsl_eigen_symm_alloc = *Math::GSL::Eigenc::gsl_eigen_symm_alloc;
*gsl_eigen_symm_free = *Math::GSL::Eigenc::gsl_eigen_symm_free;
*gsl_eigen_symm = *Math::GSL::Eigenc::gsl_eigen_symm;
*gsl_eigen_symmv_alloc = *Math::GSL::Eigenc::gsl_eigen_symmv_alloc;
*gsl_eigen_symmv_free = *Math::GSL::Eigenc::gsl_eigen_symmv_free;
*gsl_eigen_symmv = *Math::GSL::Eigenc::gsl_eigen_symmv;
*gsl_eigen_herm_alloc = *Math::GSL::Eigenc::gsl_eigen_herm_alloc;
*gsl_eigen_herm_free = *Math::GSL::Eigenc::gsl_eigen_herm_free;
*gsl_eigen_herm = *Math::GSL::Eigenc::gsl_eigen_herm;
*gsl_eigen_hermv_alloc = *Math::GSL::Eigenc::gsl_eigen_hermv_alloc;
*gsl_eigen_hermv_free = *Math::GSL::Eigenc::gsl_eigen_hermv_free;
*gsl_eigen_hermv = *Math::GSL::Eigenc::gsl_eigen_hermv;
*gsl_eigen_francis_alloc = *Math::GSL::Eigenc::gsl_eigen_francis_alloc;
*gsl_eigen_francis_free = *Math::GSL::Eigenc::gsl_eigen_francis_free;
*gsl_eigen_francis_T = *Math::GSL::Eigenc::gsl_eigen_francis_T;
*gsl_eigen_francis = *Math::GSL::Eigenc::gsl_eigen_francis;
*gsl_eigen_francis_Z = *Math::GSL::Eigenc::gsl_eigen_francis_Z;
*gsl_eigen_nonsymm_alloc = *Math::GSL::Eigenc::gsl_eigen_nonsymm_alloc;
*gsl_eigen_nonsymm_free = *Math::GSL::Eigenc::gsl_eigen_nonsymm_free;
*gsl_eigen_nonsymm_params = *Math::GSL::Eigenc::gsl_eigen_nonsymm_params;
*gsl_eigen_nonsymm = *Math::GSL::Eigenc::gsl_eigen_nonsymm;
*gsl_eigen_nonsymm_Z = *Math::GSL::Eigenc::gsl_eigen_nonsymm_Z;
*gsl_eigen_nonsymmv_alloc = *Math::GSL::Eigenc::gsl_eigen_nonsymmv_alloc;
*gsl_eigen_nonsymmv_free = *Math::GSL::Eigenc::gsl_eigen_nonsymmv_free;
*gsl_eigen_nonsymmv_params = *Math::GSL::Eigenc::gsl_eigen_nonsymmv_params;
*gsl_eigen_nonsymmv = *Math::GSL::Eigenc::gsl_eigen_nonsymmv;
*gsl_eigen_nonsymmv_Z = *Math::GSL::Eigenc::gsl_eigen_nonsymmv_Z;
*gsl_eigen_gensymm_alloc = *Math::GSL::Eigenc::gsl_eigen_gensymm_alloc;
*gsl_eigen_gensymm_free = *Math::GSL::Eigenc::gsl_eigen_gensymm_free;
*gsl_eigen_gensymm = *Math::GSL::Eigenc::gsl_eigen_gensymm;
*gsl_eigen_gensymm_standardize = *Math::GSL::Eigenc::gsl_eigen_gensymm_standardize;
*gsl_eigen_gensymmv_alloc = *Math::GSL::Eigenc::gsl_eigen_gensymmv_alloc;
*gsl_eigen_gensymmv_free = *Math::GSL::Eigenc::gsl_eigen_gensymmv_free;
*gsl_eigen_gensymmv = *Math::GSL::Eigenc::gsl_eigen_gensymmv;
*gsl_eigen_genherm_alloc = *Math::GSL::Eigenc::gsl_eigen_genherm_alloc;
*gsl_eigen_genherm_free = *Math::GSL::Eigenc::gsl_eigen_genherm_free;
*gsl_eigen_genherm = *Math::GSL::Eigenc::gsl_eigen_genherm;
*gsl_eigen_genherm_standardize = *Math::GSL::Eigenc::gsl_eigen_genherm_standardize;
*gsl_eigen_genhermv_alloc = *Math::GSL::Eigenc::gsl_eigen_genhermv_alloc;
*gsl_eigen_genhermv_free = *Math::GSL::Eigenc::gsl_eigen_genhermv_free;
*gsl_eigen_genhermv = *Math::GSL::Eigenc::gsl_eigen_genhermv;
*gsl_eigen_gen_alloc = *Math::GSL::Eigenc::gsl_eigen_gen_alloc;
*gsl_eigen_gen_free = *Math::GSL::Eigenc::gsl_eigen_gen_free;
*gsl_eigen_gen_params = *Math::GSL::Eigenc::gsl_eigen_gen_params;
*gsl_eigen_gen = *Math::GSL::Eigenc::gsl_eigen_gen;
*gsl_eigen_gen_QZ = *Math::GSL::Eigenc::gsl_eigen_gen_QZ;
*gsl_eigen_genv_alloc = *Math::GSL::Eigenc::gsl_eigen_genv_alloc;
*gsl_eigen_genv_free = *Math::GSL::Eigenc::gsl_eigen_genv_free;
*gsl_eigen_genv = *Math::GSL::Eigenc::gsl_eigen_genv;
*gsl_eigen_genv_QZ = *Math::GSL::Eigenc::gsl_eigen_genv_QZ;
*gsl_eigen_symmv_sort = *Math::GSL::Eigenc::gsl_eigen_symmv_sort;
*gsl_eigen_hermv_sort = *Math::GSL::Eigenc::gsl_eigen_hermv_sort;
*gsl_eigen_nonsymmv_sort = *Math::GSL::Eigenc::gsl_eigen_nonsymmv_sort;
*gsl_eigen_gensymmv_sort = *Math::GSL::Eigenc::gsl_eigen_gensymmv_sort;
*gsl_eigen_genhermv_sort = *Math::GSL::Eigenc::gsl_eigen_genhermv_sort;
*gsl_eigen_genv_sort = *Math::GSL::Eigenc::gsl_eigen_genv_sort;
*gsl_schur_gen_eigvals = *Math::GSL::Eigenc::gsl_schur_gen_eigvals;
*gsl_schur_solve_equation = *Math::GSL::Eigenc::gsl_schur_solve_equation;
*gsl_schur_solve_equation_z = *Math::GSL::Eigenc::gsl_schur_solve_equation_z;
*gsl_eigen_jacobi = *Math::GSL::Eigenc::gsl_eigen_jacobi;
*gsl_eigen_invert_jacobi = *Math::GSL::Eigenc::gsl_eigen_invert_jacobi;
############# Class : Math::GSL::Eigen::gsl_eigen_symm_workspace ##############
package Math::GSL::Eigen::gsl_eigen_symm_workspace;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::Eigen );
%OWNER = ();
%ITERATORS = ();
*swig_size_get = *Math::GSL::Eigenc::gsl_eigen_symm_workspace_size_get;
*swig_size_set = *Math::GSL::Eigenc::gsl_eigen_symm_workspace_size_set;
*swig_d_get = *Math::GSL::Eigenc::gsl_eigen_symm_workspace_d_get;
*swig_d_set = *Math::GSL::Eigenc::gsl_eigen_symm_workspace_d_set;
*swig_sd_get = *Math::GSL::Eigenc::gsl_eigen_symm_workspace_sd_get;
*swig_sd_set = *Math::GSL::Eigenc::gsl_eigen_symm_workspace_sd_set;
sub new {
    my $pkg = shift;
    my $self = Math::GSL::Eigenc::new_gsl_eigen_symm_workspace(@_);
    bless $self, $pkg if defined($self);
}
sub DESTROY {
    return unless $_[0]->isa('HASH');
    my $self = tied(%{$_[0]});
    return unless defined $self;
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
        Math::GSL::Eigenc::delete_gsl_eigen_symm_workspace($self);
        delete $OWNER{$self};
    }
}
sub DISOWN {
    my $self = shift;
    my $ptr = tied(%$self);
    delete $OWNER{$ptr};
}
sub ACQUIRE {
    my $self = shift;
    my $ptr = tied(%$self);
    $OWNER{$ptr} = 1;
}
############# Class : Math::GSL::Eigen::gsl_eigen_symmv_workspace ##############
package Math::GSL::Eigen::gsl_eigen_symmv_workspace;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::Eigen );
%OWNER = ();
%ITERATORS = ();
*swig_size_get = *Math::GSL::Eigenc::gsl_eigen_symmv_workspace_size_get;
*swig_size_set = *Math::GSL::Eigenc::gsl_eigen_symmv_workspace_size_set;
*swig_d_get = *Math::GSL::Eigenc::gsl_eigen_symmv_workspace_d_get;
*swig_d_set = *Math::GSL::Eigenc::gsl_eigen_symmv_workspace_d_set;
*swig_sd_get = *Math::GSL::Eigenc::gsl_eigen_symmv_workspace_sd_get;
*swig_sd_set = *Math::GSL::Eigenc::gsl_eigen_symmv_workspace_sd_set;
*swig_gc_get = *Math::GSL::Eigenc::gsl_eigen_symmv_workspace_gc_get;
*swig_gc_set = *Math::GSL::Eigenc::gsl_eigen_symmv_workspace_gc_set;
*swig_gs_get = *Math::GSL::Eigenc::gsl_eigen_symmv_workspace_gs_get;
*swig_gs_set = *Math::GSL::Eigenc::gsl_eigen_symmv_workspace_gs_set;
sub new {
    my $pkg = shift;
    my $self = Math::GSL::Eigenc::new_gsl_eigen_symmv_workspace(@_);
    bless $self, $pkg if defined($self);
}
sub DESTROY {
    return unless $_[0]->isa('HASH');
    my $self = tied(%{$_[0]});
    return unless defined $self;
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
        Math::GSL::Eigenc::delete_gsl_eigen_symmv_workspace($self);
        delete $OWNER{$self};
    }
}
sub DISOWN {
    my $self = shift;
    my $ptr = tied(%$self);
    delete $OWNER{$ptr};
}
sub ACQUIRE {
    my $self = shift;
    my $ptr = tied(%$self);
    $OWNER{$ptr} = 1;
}
############# Class : Math::GSL::Eigen::gsl_eigen_herm_workspace ##############
package Math::GSL::Eigen::gsl_eigen_herm_workspace;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::Eigen );
%OWNER = ();
%ITERATORS = ();
*swig_size_get = *Math::GSL::Eigenc::gsl_eigen_herm_workspace_size_get;
*swig_size_set = *Math::GSL::Eigenc::gsl_eigen_herm_workspace_size_set;
*swig_d_get = *Math::GSL::Eigenc::gsl_eigen_herm_workspace_d_get;
*swig_d_set = *Math::GSL::Eigenc::gsl_eigen_herm_workspace_d_set;
*swig_sd_get = *Math::GSL::Eigenc::gsl_eigen_herm_workspace_sd_get;
*swig_sd_set = *Math::GSL::Eigenc::gsl_eigen_herm_workspace_sd_set;
*swig_tau_get = *Math::GSL::Eigenc::gsl_eigen_herm_workspace_tau_get;
*swig_tau_set = *Math::GSL::Eigenc::gsl_eigen_herm_workspace_tau_set;
sub new {
    my $pkg = shift;
    my $self = Math::GSL::Eigenc::new_gsl_eigen_herm_workspace(@_);
    bless $self, $pkg if defined($self);
}
sub DESTROY {
    return unless $_[0]->isa('HASH');
    my $self = tied(%{$_[0]});
    return unless defined $self;
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
        Math::GSL::Eigenc::delete_gsl_eigen_herm_workspace($self);
        delete $OWNER{$self};
    }
}
sub DISOWN {
    my $self = shift;
    my $ptr = tied(%$self);
    delete $OWNER{$ptr};
}
sub ACQUIRE {
    my $self = shift;
    my $ptr = tied(%$self);
    $OWNER{$ptr} = 1;
}
############# Class : Math::GSL::Eigen::gsl_eigen_hermv_workspace ##############
package Math::GSL::Eigen::gsl_eigen_hermv_workspace;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::Eigen );
%OWNER = ();
%ITERATORS = ();
*swig_size_get = *Math::GSL::Eigenc::gsl_eigen_hermv_workspace_size_get;
*swig_size_set = *Math::GSL::Eigenc::gsl_eigen_hermv_workspace_size_set;
*swig_d_get = *Math::GSL::Eigenc::gsl_eigen_hermv_workspace_d_get;
*swig_d_set = *Math::GSL::Eigenc::gsl_eigen_hermv_workspace_d_set;
*swig_sd_get = *Math::GSL::Eigenc::gsl_eigen_hermv_workspace_sd_get;
*swig_sd_set = *Math::GSL::Eigenc::gsl_eigen_hermv_workspace_sd_set;
*swig_tau_get = *Math::GSL::Eigenc::gsl_eigen_hermv_workspace_tau_get;
*swig_tau_set = *Math::GSL::Eigenc::gsl_eigen_hermv_workspace_tau_set;
*swig_gc_get = *Math::GSL::Eigenc::gsl_eigen_hermv_workspace_gc_get;
*swig_gc_set = *Math::GSL::Eigenc::gsl_eigen_hermv_workspace_gc_set;
*swig_gs_get = *Math::GSL::Eigenc::gsl_eigen_hermv_workspace_gs_get;
*swig_gs_set = *Math::GSL::Eigenc::gsl_eigen_hermv_workspace_gs_set;
sub new {
    my $pkg = shift;
    my $self = Math::GSL::Eigenc::new_gsl_eigen_hermv_workspace(@_);
    bless $self, $pkg if defined($self);
}
sub DESTROY {
    return unless $_[0]->isa('HASH');
    my $self = tied(%{$_[0]});
    return unless defined $self;
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
        Math::GSL::Eigenc::delete_gsl_eigen_hermv_workspace($self);
        delete $OWNER{$self};
    }
}
sub DISOWN {
    my $self = shift;
    my $ptr = tied(%$self);
    delete $OWNER{$ptr};
}
sub ACQUIRE {
    my $self = shift;
    my $ptr = tied(%$self);
    $OWNER{$ptr} = 1;
}
############# Class : Math::GSL::Eigen::gsl_eigen_francis_workspace ##############
package Math::GSL::Eigen::gsl_eigen_francis_workspace;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::Eigen );
%OWNER = ();
%ITERATORS = ();
*swig_size_get = *Math::GSL::Eigenc::gsl_eigen_francis_workspace_size_get;
*swig_size_set = *Math::GSL::Eigenc::gsl_eigen_francis_workspace_size_set;
*swig_max_iterations_get = *Math::GSL::Eigenc::gsl_eigen_francis_workspace_max_iterations_get;
*swig_max_iterations_set = *Math::GSL::Eigenc::gsl_eigen_francis_workspace_max_iterations_set;
*swig_n_iter_get = *Math::GSL::Eigenc::gsl_eigen_francis_workspace_n_iter_get;
*swig_n_iter_set = *Math::GSL::Eigenc::gsl_eigen_francis_workspace_n_iter_set;
*swig_n_evals_get = *Math::GSL::Eigenc::gsl_eigen_francis_workspace_n_evals_get;
*swig_n_evals_set = *Math::GSL::Eigenc::gsl_eigen_francis_workspace_n_evals_set;
*swig_compute_t_get = *Math::GSL::Eigenc::gsl_eigen_francis_workspace_compute_t_get;
*swig_compute_t_set = *Math::GSL::Eigenc::gsl_eigen_francis_workspace_compute_t_set;
*swig_H_get = *Math::GSL::Eigenc::gsl_eigen_francis_workspace_H_get;
*swig_H_set = *Math::GSL::Eigenc::gsl_eigen_francis_workspace_H_set;
*swig_Z_get = *Math::GSL::Eigenc::gsl_eigen_francis_workspace_Z_get;
*swig_Z_set = *Math::GSL::Eigenc::gsl_eigen_francis_workspace_Z_set;
sub new {
    my $pkg = shift;
    my $self = Math::GSL::Eigenc::new_gsl_eigen_francis_workspace(@_);
    bless $self, $pkg if defined($self);
}
sub DESTROY {
    return unless $_[0]->isa('HASH');
    my $self = tied(%{$_[0]});
    return unless defined $self;
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
        Math::GSL::Eigenc::delete_gsl_eigen_francis_workspace($self);
        delete $OWNER{$self};
    }
}
sub DISOWN {
    my $self = shift;
    my $ptr = tied(%$self);
    delete $OWNER{$ptr};
}
sub ACQUIRE {
    my $self = shift;
    my $ptr = tied(%$self);
    $OWNER{$ptr} = 1;
}
############# Class : Math::GSL::Eigen::gsl_eigen_nonsymm_workspace ##############
package Math::GSL::Eigen::gsl_eigen_nonsymm_workspace;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::Eigen );
%OWNER = ();
%ITERATORS = ();
*swig_size_get = *Math::GSL::Eigenc::gsl_eigen_nonsymm_workspace_size_get;
*swig_size_set = *Math::GSL::Eigenc::gsl_eigen_nonsymm_workspace_size_set;
*swig_diag_get = *Math::GSL::Eigenc::gsl_eigen_nonsymm_workspace_diag_get;
*swig_diag_set = *Math::GSL::Eigenc::gsl_eigen_nonsymm_workspace_diag_set;
*swig_tau_get = *Math::GSL::Eigenc::gsl_eigen_nonsymm_workspace_tau_get;
*swig_tau_set = *Math::GSL::Eigenc::gsl_eigen_nonsymm_workspace_tau_set;
*swig_Z_get = *Math::GSL::Eigenc::gsl_eigen_nonsymm_workspace_Z_get;
*swig_Z_set = *Math::GSL::Eigenc::gsl_eigen_nonsymm_workspace_Z_set;
*swig_do_balance_get = *Math::GSL::Eigenc::gsl_eigen_nonsymm_workspace_do_balance_get;
*swig_do_balance_set = *Math::GSL::Eigenc::gsl_eigen_nonsymm_workspace_do_balance_set;
*swig_n_evals_get = *Math::GSL::Eigenc::gsl_eigen_nonsymm_workspace_n_evals_get;
*swig_n_evals_set = *Math::GSL::Eigenc::gsl_eigen_nonsymm_workspace_n_evals_set;
*swig_francis_workspace_p_get = *Math::GSL::Eigenc::gsl_eigen_nonsymm_workspace_francis_workspace_p_get;
*swig_francis_workspace_p_set = *Math::GSL::Eigenc::gsl_eigen_nonsymm_workspace_francis_workspace_p_set;
sub new {
    my $pkg = shift;
    my $self = Math::GSL::Eigenc::new_gsl_eigen_nonsymm_workspace(@_);
    bless $self, $pkg if defined($self);
}
sub DESTROY {
    return unless $_[0]->isa('HASH');
    my $self = tied(%{$_[0]});
    return unless defined $self;
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
        Math::GSL::Eigenc::delete_gsl_eigen_nonsymm_workspace($self);
        delete $OWNER{$self};
    }
}
sub DISOWN {
    my $self = shift;
    my $ptr = tied(%$self);
    delete $OWNER{$ptr};
}
sub ACQUIRE {
    my $self = shift;
    my $ptr = tied(%$self);
    $OWNER{$ptr} = 1;
}
############# Class : Math::GSL::Eigen::gsl_eigen_nonsymmv_workspace ##############
package Math::GSL::Eigen::gsl_eigen_nonsymmv_workspace;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::Eigen );
%OWNER = ();
%ITERATORS = ();
*swig_size_get = *Math::GSL::Eigenc::gsl_eigen_nonsymmv_workspace_size_get;
*swig_size_set = *Math::GSL::Eigenc::gsl_eigen_nonsymmv_workspace_size_set;
*swig_work_get = *Math::GSL::Eigenc::gsl_eigen_nonsymmv_workspace_work_get;
*swig_work_set = *Math::GSL::Eigenc::gsl_eigen_nonsymmv_workspace_work_set;
*swig_work2_get = *Math::GSL::Eigenc::gsl_eigen_nonsymmv_workspace_work2_get;
*swig_work2_set = *Math::GSL::Eigenc::gsl_eigen_nonsymmv_workspace_work2_set;
*swig_work3_get = *Math::GSL::Eigenc::gsl_eigen_nonsymmv_workspace_work3_get;
*swig_work3_set = *Math::GSL::Eigenc::gsl_eigen_nonsymmv_workspace_work3_set;
*swig_Z_get = *Math::GSL::Eigenc::gsl_eigen_nonsymmv_workspace_Z_get;
*swig_Z_set = *Math::GSL::Eigenc::gsl_eigen_nonsymmv_workspace_Z_set;
*swig_nonsymm_workspace_p_get = *Math::GSL::Eigenc::gsl_eigen_nonsymmv_workspace_nonsymm_workspace_p_get;
*swig_nonsymm_workspace_p_set = *Math::GSL::Eigenc::gsl_eigen_nonsymmv_workspace_nonsymm_workspace_p_set;
sub new {
    my $pkg = shift;
    my $self = Math::GSL::Eigenc::new_gsl_eigen_nonsymmv_workspace(@_);
    bless $self, $pkg if defined($self);
}
sub DESTROY {
    return unless $_[0]->isa('HASH');
    my $self = tied(%{$_[0]});
    return unless defined $self;
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
        Math::GSL::Eigenc::delete_gsl_eigen_nonsymmv_workspace($self);
        delete $OWNER{$self};
    }
}
sub DISOWN {
    my $self = shift;
    my $ptr = tied(%$self);
    delete $OWNER{$ptr};
}
sub ACQUIRE {
    my $self = shift;
    my $ptr = tied(%$self);
    $OWNER{$ptr} = 1;
}
############# Class : Math::GSL::Eigen::gsl_eigen_gensymm_workspace ##############
package Math::GSL::Eigen::gsl_eigen_gensymm_workspace;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::Eigen );
%OWNER = ();
%ITERATORS = ();
*swig_size_get = *Math::GSL::Eigenc::gsl_eigen_gensymm_workspace_size_get;
*swig_size_set = *Math::GSL::Eigenc::gsl_eigen_gensymm_workspace_size_set;
*swig_symm_workspace_p_get = *Math::GSL::Eigenc::gsl_eigen_gensymm_workspace_symm_workspace_p_get;
*swig_symm_workspace_p_set = *Math::GSL::Eigenc::gsl_eigen_gensymm_workspace_symm_workspace_p_set;
sub new {
    my $pkg = shift;
    my $self = Math::GSL::Eigenc::new_gsl_eigen_gensymm_workspace(@_);
    bless $self, $pkg if defined($self);
}
sub DESTROY {
    return unless $_[0]->isa('HASH');
    my $self = tied(%{$_[0]});
    return unless defined $self;
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
        Math::GSL::Eigenc::delete_gsl_eigen_gensymm_workspace($self);
        delete $OWNER{$self};
    }
}
sub DISOWN {
    my $self = shift;
    my $ptr = tied(%$self);
    delete $OWNER{$ptr};
}
sub ACQUIRE {
    my $self = shift;
    my $ptr = tied(%$self);
    $OWNER{$ptr} = 1;
}
############# Class : Math::GSL::Eigen::gsl_eigen_gensymmv_workspace ##############
package Math::GSL::Eigen::gsl_eigen_gensymmv_workspace;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::Eigen );
%OWNER = ();
%ITERATORS = ();
*swig_size_get = *Math::GSL::Eigenc::gsl_eigen_gensymmv_workspace_size_get;
*swig_size_set = *Math::GSL::Eigenc::gsl_eigen_gensymmv_workspace_size_set;
*swig_symmv_workspace_p_get = *Math::GSL::Eigenc::gsl_eigen_gensymmv_workspace_symmv_workspace_p_get;
*swig_symmv_workspace_p_set = *Math::GSL::Eigenc::gsl_eigen_gensymmv_workspace_symmv_workspace_p_set;
sub new {
    my $pkg = shift;
    my $self = Math::GSL::Eigenc::new_gsl_eigen_gensymmv_workspace(@_);
    bless $self, $pkg if defined($self);
}
sub DESTROY {
    return unless $_[0]->isa('HASH');
    my $self = tied(%{$_[0]});
    return unless defined $self;
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
        Math::GSL::Eigenc::delete_gsl_eigen_gensymmv_workspace($self);
        delete $OWNER{$self};
    }
}
sub DISOWN {
    my $self = shift;
    my $ptr = tied(%$self);
    delete $OWNER{$ptr};
}
sub ACQUIRE {
    my $self = shift;
    my $ptr = tied(%$self);
    $OWNER{$ptr} = 1;
}
############# Class : Math::GSL::Eigen::gsl_eigen_genherm_workspace ##############
package Math::GSL::Eigen::gsl_eigen_genherm_workspace;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::Eigen );
%OWNER = ();
%ITERATORS = ();
*swig_size_get = *Math::GSL::Eigenc::gsl_eigen_genherm_workspace_size_get;
*swig_size_set = *Math::GSL::Eigenc::gsl_eigen_genherm_workspace_size_set;
*swig_herm_workspace_p_get = *Math::GSL::Eigenc::gsl_eigen_genherm_workspace_herm_workspace_p_get;
*swig_herm_workspace_p_set = *Math::GSL::Eigenc::gsl_eigen_genherm_workspace_herm_workspace_p_set;
sub new {
    my $pkg = shift;
    my $self = Math::GSL::Eigenc::new_gsl_eigen_genherm_workspace(@_);
    bless $self, $pkg if defined($self);
}
sub DESTROY {
    return unless $_[0]->isa('HASH');
    my $self = tied(%{$_[0]});
    return unless defined $self;
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
        Math::GSL::Eigenc::delete_gsl_eigen_genherm_workspace($self);
        delete $OWNER{$self};
    }
}
sub DISOWN {
    my $self = shift;
    my $ptr = tied(%$self);
    delete $OWNER{$ptr};
}
sub ACQUIRE {
    my $self = shift;
    my $ptr = tied(%$self);
    $OWNER{$ptr} = 1;
}
############# Class : Math::GSL::Eigen::gsl_eigen_genhermv_workspace ##############
package Math::GSL::Eigen::gsl_eigen_genhermv_workspace;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::Eigen );
%OWNER = ();
%ITERATORS = ();
*swig_size_get = *Math::GSL::Eigenc::gsl_eigen_genhermv_workspace_size_get;
*swig_size_set = *Math::GSL::Eigenc::gsl_eigen_genhermv_workspace_size_set;
*swig_hermv_workspace_p_get = *Math::GSL::Eigenc::gsl_eigen_genhermv_workspace_hermv_workspace_p_get;
*swig_hermv_workspace_p_set = *Math::GSL::Eigenc::gsl_eigen_genhermv_workspace_hermv_workspace_p_set;
sub new {
    my $pkg = shift;
    my $self = Math::GSL::Eigenc::new_gsl_eigen_genhermv_workspace(@_);
    bless $self, $pkg if defined($self);
}
sub DESTROY {
    return unless $_[0]->isa('HASH');
    my $self = tied(%{$_[0]});
    return unless defined $self;
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
        Math::GSL::Eigenc::delete_gsl_eigen_genhermv_workspace($self);
        delete $OWNER{$self};
    }
}
sub DISOWN {
    my $self = shift;
    my $ptr = tied(%$self);
    delete $OWNER{$ptr};
}
sub ACQUIRE {
    my $self = shift;
    my $ptr = tied(%$self);
    $OWNER{$ptr} = 1;
}
############# Class : Math::GSL::Eigen::gsl_eigen_gen_workspace ##############
package Math::GSL::Eigen::gsl_eigen_gen_workspace;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::Eigen );
%OWNER = ();
%ITERATORS = ();
*swig_size_get = *Math::GSL::Eigenc::gsl_eigen_gen_workspace_size_get;
*swig_size_set = *Math::GSL::Eigenc::gsl_eigen_gen_workspace_size_set;
*swig_work_get = *Math::GSL::Eigenc::gsl_eigen_gen_workspace_work_get;
*swig_work_set = *Math::GSL::Eigenc::gsl_eigen_gen_workspace_work_set;
*swig_n_evals_get = *Math::GSL::Eigenc::gsl_eigen_gen_workspace_n_evals_get;
*swig_n_evals_set = *Math::GSL::Eigenc::gsl_eigen_gen_workspace_n_evals_set;
*swig_max_iterations_get = *Math::GSL::Eigenc::gsl_eigen_gen_workspace_max_iterations_get;
*swig_max_iterations_set = *Math::GSL::Eigenc::gsl_eigen_gen_workspace_max_iterations_set;
*swig_n_iter_get = *Math::GSL::Eigenc::gsl_eigen_gen_workspace_n_iter_get;
*swig_n_iter_set = *Math::GSL::Eigenc::gsl_eigen_gen_workspace_n_iter_set;
*swig_eshift_get = *Math::GSL::Eigenc::gsl_eigen_gen_workspace_eshift_get;
*swig_eshift_set = *Math::GSL::Eigenc::gsl_eigen_gen_workspace_eshift_set;
*swig_needtop_get = *Math::GSL::Eigenc::gsl_eigen_gen_workspace_needtop_get;
*swig_needtop_set = *Math::GSL::Eigenc::gsl_eigen_gen_workspace_needtop_set;
*swig_atol_get = *Math::GSL::Eigenc::gsl_eigen_gen_workspace_atol_get;
*swig_atol_set = *Math::GSL::Eigenc::gsl_eigen_gen_workspace_atol_set;
*swig_btol_get = *Math::GSL::Eigenc::gsl_eigen_gen_workspace_btol_get;
*swig_btol_set = *Math::GSL::Eigenc::gsl_eigen_gen_workspace_btol_set;
*swig_ascale_get = *Math::GSL::Eigenc::gsl_eigen_gen_workspace_ascale_get;
*swig_ascale_set = *Math::GSL::Eigenc::gsl_eigen_gen_workspace_ascale_set;
*swig_bscale_get = *Math::GSL::Eigenc::gsl_eigen_gen_workspace_bscale_get;
*swig_bscale_set = *Math::GSL::Eigenc::gsl_eigen_gen_workspace_bscale_set;
*swig_H_get = *Math::GSL::Eigenc::gsl_eigen_gen_workspace_H_get;
*swig_H_set = *Math::GSL::Eigenc::gsl_eigen_gen_workspace_H_set;
*swig_R_get = *Math::GSL::Eigenc::gsl_eigen_gen_workspace_R_get;
*swig_R_set = *Math::GSL::Eigenc::gsl_eigen_gen_workspace_R_set;
*swig_compute_s_get = *Math::GSL::Eigenc::gsl_eigen_gen_workspace_compute_s_get;
*swig_compute_s_set = *Math::GSL::Eigenc::gsl_eigen_gen_workspace_compute_s_set;
*swig_compute_t_get = *Math::GSL::Eigenc::gsl_eigen_gen_workspace_compute_t_get;
*swig_compute_t_set = *Math::GSL::Eigenc::gsl_eigen_gen_workspace_compute_t_set;
*swig_Q_get = *Math::GSL::Eigenc::gsl_eigen_gen_workspace_Q_get;
*swig_Q_set = *Math::GSL::Eigenc::gsl_eigen_gen_workspace_Q_set;
*swig_Z_get = *Math::GSL::Eigenc::gsl_eigen_gen_workspace_Z_get;
*swig_Z_set = *Math::GSL::Eigenc::gsl_eigen_gen_workspace_Z_set;
sub new {
    my $pkg = shift;
    my $self = Math::GSL::Eigenc::new_gsl_eigen_gen_workspace(@_);
    bless $self, $pkg if defined($self);
}
sub DESTROY {
    return unless $_[0]->isa('HASH');
    my $self = tied(%{$_[0]});
    return unless defined $self;
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
        Math::GSL::Eigenc::delete_gsl_eigen_gen_workspace($self);
        delete $OWNER{$self};
    }
}
sub DISOWN {
    my $self = shift;
    my $ptr = tied(%$self);
    delete $OWNER{$ptr};
}
sub ACQUIRE {
    my $self = shift;
    my $ptr = tied(%$self);
    $OWNER{$ptr} = 1;
}
############# Class : Math::GSL::Eigen::gsl_eigen_genv_workspace ##############
package Math::GSL::Eigen::gsl_eigen_genv_workspace;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::Eigen );
%OWNER = ();
%ITERATORS = ();
*swig_size_get = *Math::GSL::Eigenc::gsl_eigen_genv_workspace_size_get;
*swig_size_set = *Math::GSL::Eigenc::gsl_eigen_genv_workspace_size_set;
*swig_work1_get = *Math::GSL::Eigenc::gsl_eigen_genv_workspace_work1_get;
*swig_work1_set = *Math::GSL::Eigenc::gsl_eigen_genv_workspace_work1_set;
*swig_work2_get = *Math::GSL::Eigenc::gsl_eigen_genv_workspace_work2_get;
*swig_work2_set = *Math::GSL::Eigenc::gsl_eigen_genv_workspace_work2_set;
*swig_work3_get = *Math::GSL::Eigenc::gsl_eigen_genv_workspace_work3_get;
*swig_work3_set = *Math::GSL::Eigenc::gsl_eigen_genv_workspace_work3_set;
*swig_work4_get = *Math::GSL::Eigenc::gsl_eigen_genv_workspace_work4_get;
*swig_work4_set = *Math::GSL::Eigenc::gsl_eigen_genv_workspace_work4_set;
*swig_work5_get = *Math::GSL::Eigenc::gsl_eigen_genv_workspace_work5_get;
*swig_work5_set = *Math::GSL::Eigenc::gsl_eigen_genv_workspace_work5_set;
*swig_work6_get = *Math::GSL::Eigenc::gsl_eigen_genv_workspace_work6_get;
*swig_work6_set = *Math::GSL::Eigenc::gsl_eigen_genv_workspace_work6_set;
*swig_Q_get = *Math::GSL::Eigenc::gsl_eigen_genv_workspace_Q_get;
*swig_Q_set = *Math::GSL::Eigenc::gsl_eigen_genv_workspace_Q_set;
*swig_Z_get = *Math::GSL::Eigenc::gsl_eigen_genv_workspace_Z_get;
*swig_Z_set = *Math::GSL::Eigenc::gsl_eigen_genv_workspace_Z_set;
*swig_gen_workspace_p_get = *Math::GSL::Eigenc::gsl_eigen_genv_workspace_gen_workspace_p_get;
*swig_gen_workspace_p_set = *Math::GSL::Eigenc::gsl_eigen_genv_workspace_gen_workspace_p_set;
sub new {
    my $pkg = shift;
    my $self = Math::GSL::Eigenc::new_gsl_eigen_genv_workspace(@_);
    bless $self, $pkg if defined($self);
}
sub DESTROY {
    return unless $_[0]->isa('HASH');
    my $self = tied(%{$_[0]});
    return unless defined $self;
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
        Math::GSL::Eigenc::delete_gsl_eigen_genv_workspace($self);
        delete $OWNER{$self};
    }
}
sub DISOWN {
    my $self = shift;
    my $ptr = tied(%$self);
    delete $OWNER{$ptr};
}
sub ACQUIRE {
    my $self = shift;
    my $ptr = tied(%$self);
    $OWNER{$ptr} = 1;
}
############# Class : Math::GSL::Eigen::gsl_complex_long_double ##############
package Math::GSL::Eigen::gsl_complex_long_double;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::Eigen );
%OWNER = ();
%ITERATORS = ();
*swig_dat_get = *Math::GSL::Eigenc::gsl_complex_long_double_dat_get;
*swig_dat_set = *Math::GSL::Eigenc::gsl_complex_long_double_dat_set;
sub new {
    my $pkg = shift;
    my $self = Math::GSL::Eigenc::new_gsl_complex_long_double(@_);
    bless $self, $pkg if defined($self);
}
sub DESTROY {
    return unless $_[0]->isa('HASH');
    my $self = tied(%{$_[0]});
    return unless defined $self;
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
        Math::GSL::Eigenc::delete_gsl_complex_long_double($self);
        delete $OWNER{$self};
    }
}
sub DISOWN {
    my $self = shift;
    my $ptr = tied(%$self);
    delete $OWNER{$ptr};
}
sub ACQUIRE {
    my $self = shift;
    my $ptr = tied(%$self);
    $OWNER{$ptr} = 1;
}
############# Class : Math::GSL::Eigen::gsl_complex ##############
package Math::GSL::Eigen::gsl_complex;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::Eigen );
%OWNER = ();
%ITERATORS = ();
*swig_dat_get = *Math::GSL::Eigenc::gsl_complex_dat_get;
*swig_dat_set = *Math::GSL::Eigenc::gsl_complex_dat_set;
sub new {
    my $pkg = shift;
    my $self = Math::GSL::Eigenc::new_gsl_complex(@_);
    bless $self, $pkg if defined($self);
}
sub DESTROY {
    return unless $_[0]->isa('HASH');
    my $self = tied(%{$_[0]});
    return unless defined $self;
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
        Math::GSL::Eigenc::delete_gsl_complex($self);
        delete $OWNER{$self};
    }
}
sub DISOWN {
    my $self = shift;
    my $ptr = tied(%$self);
    delete $OWNER{$ptr};
}
sub ACQUIRE {
    my $self = shift;
    my $ptr = tied(%$self);
    $OWNER{$ptr} = 1;
}
############# Class : Math::GSL::Eigen::gsl_complex_float ##############
package Math::GSL::Eigen::gsl_complex_float;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::Eigen );
%OWNER = ();
%ITERATORS = ();
*swig_dat_get = *Math::GSL::Eigenc::gsl_complex_float_dat_get;
*swig_dat_set = *Math::GSL::Eigenc::gsl_complex_float_dat_set;
sub new {
    my $pkg = shift;
    my $self = Math::GSL::Eigenc::new_gsl_complex_float(@_);
    bless $self, $pkg if defined($self);
}
sub DESTROY {
    return unless $_[0]->isa('HASH');
    my $self = tied(%{$_[0]});
    return unless defined $self;
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
        Math::GSL::Eigenc::delete_gsl_complex_float($self);
        delete $OWNER{$self};
    }
}
sub DISOWN {
    my $self = shift;
    my $ptr = tied(%$self);
    delete $OWNER{$ptr};
}
sub ACQUIRE {
    my $self = shift;
    my $ptr = tied(%$self);
    $OWNER{$ptr} = 1;
}
# ------- VARIABLE STUBS --------
package Math::GSL::Eigen;
*GSL_MAJOR_VERSION = *Math::GSL::Eigenc::GSL_MAJOR_VERSION;
*GSL_MINOR_VERSION = *Math::GSL::Eigenc::GSL_MINOR_VERSION;
*GSL_POSZERO = *Math::GSL::Eigenc::GSL_POSZERO;
*GSL_NEGZERO = *Math::GSL::Eigenc::GSL_NEGZERO;
*GSL_SUCCESS = *Math::GSL::Eigenc::GSL_SUCCESS;
*GSL_FAILURE = *Math::GSL::Eigenc::GSL_FAILURE;
*GSL_CONTINUE = *Math::GSL::Eigenc::GSL_CONTINUE;
*GSL_EDOM = *Math::GSL::Eigenc::GSL_EDOM;
*GSL_ERANGE = *Math::GSL::Eigenc::GSL_ERANGE;
*GSL_EFAULT = *Math::GSL::Eigenc::GSL_EFAULT;
*GSL_EINVAL = *Math::GSL::Eigenc::GSL_EINVAL;
*GSL_EFAILED = *Math::GSL::Eigenc::GSL_EFAILED;
*GSL_EFACTOR = *Math::GSL::Eigenc::GSL_EFACTOR;
*GSL_ESANITY = *Math::GSL::Eigenc::GSL_ESANITY;
*GSL_ENOMEM = *Math::GSL::Eigenc::GSL_ENOMEM;
*GSL_EBADFUNC = *Math::GSL::Eigenc::GSL_EBADFUNC;
*GSL_ERUNAWAY = *Math::GSL::Eigenc::GSL_ERUNAWAY;
*GSL_EMAXITER = *Math::GSL::Eigenc::GSL_EMAXITER;
*GSL_EZERODIV = *Math::GSL::Eigenc::GSL_EZERODIV;
*GSL_EBADTOL = *Math::GSL::Eigenc::GSL_EBADTOL;
*GSL_ETOL = *Math::GSL::Eigenc::GSL_ETOL;
*GSL_EUNDRFLW = *Math::GSL::Eigenc::GSL_EUNDRFLW;
*GSL_EOVRFLW = *Math::GSL::Eigenc::GSL_EOVRFLW;
*GSL_ELOSS = *Math::GSL::Eigenc::GSL_ELOSS;
*GSL_EROUND = *Math::GSL::Eigenc::GSL_EROUND;
*GSL_EBADLEN = *Math::GSL::Eigenc::GSL_EBADLEN;
*GSL_ENOTSQR = *Math::GSL::Eigenc::GSL_ENOTSQR;
*GSL_ESING = *Math::GSL::Eigenc::GSL_ESING;
*GSL_EDIVERGE = *Math::GSL::Eigenc::GSL_EDIVERGE;
*GSL_EUNSUP = *Math::GSL::Eigenc::GSL_EUNSUP;
*GSL_EUNIMPL = *Math::GSL::Eigenc::GSL_EUNIMPL;
*GSL_ECACHE = *Math::GSL::Eigenc::GSL_ECACHE;
*GSL_ETABLE = *Math::GSL::Eigenc::GSL_ETABLE;
*GSL_ENOPROG = *Math::GSL::Eigenc::GSL_ENOPROG;
*GSL_ENOPROGJ = *Math::GSL::Eigenc::GSL_ENOPROGJ;
*GSL_ETOLF = *Math::GSL::Eigenc::GSL_ETOLF;
*GSL_ETOLX = *Math::GSL::Eigenc::GSL_ETOLX;
*GSL_ETOLG = *Math::GSL::Eigenc::GSL_ETOLG;
*GSL_EOF = *Math::GSL::Eigenc::GSL_EOF;
*GSL_EIGEN_SORT_VAL_ASC = *Math::GSL::Eigenc::GSL_EIGEN_SORT_VAL_ASC;
*GSL_EIGEN_SORT_VAL_DESC = *Math::GSL::Eigenc::GSL_EIGEN_SORT_VAL_DESC;
*GSL_EIGEN_SORT_ABS_ASC = *Math::GSL::Eigenc::GSL_EIGEN_SORT_ABS_ASC;
*GSL_EIGEN_SORT_ABS_DESC = *Math::GSL::Eigenc::GSL_EIGEN_SORT_ABS_DESC;
@EXPORT_OK = qw/
                gsl_eigen_symm_alloc gsl_eigen_symm_free
                gsl_eigen_symm gsl_eigen_symmv_alloc gsl_eigen_symmv_free gsl_eigen_symmv
                gsl_eigen_herm_alloc gsl_eigen_herm_free gsl_eigen_herm gsl_eigen_hermv_alloc
                gsl_eigen_hermv_free gsl_eigen_hermv gsl_eigen_francis_alloc gsl_eigen_francis_free
                gsl_eigen_francis_T gsl_eigen_francis gsl_eigen_francis_Z gsl_eigen_nonsymm_alloc
                gsl_eigen_nonsymm_free gsl_eigen_nonsymm_params gsl_eigen_nonsymm
                gsl_eigen_nonsymm_Z gsl_eigen_nonsymmv_alloc gsl_eigen_nonsymmv_free
                gsl_eigen_nonsymmv gsl_eigen_nonsymmv_Z gsl_eigen_gensymm_alloc
                gsl_eigen_gensymm_free gsl_eigen_gensymm gsl_eigen_gensymm_standardize
                gsl_eigen_gensymmv_alloc gsl_eigen_gensymmv_free gsl_eigen_gensymmv
                gsl_eigen_genherm_alloc gsl_eigen_genherm_free gsl_eigen_genherm
                gsl_eigen_genherm_standardize gsl_eigen_genhermv_alloc gsl_eigen_genhermv_free
                gsl_eigen_genhermv gsl_eigen_gen_alloc gsl_eigen_gen_free
                gsl_eigen_gen_params gsl_eigen_gen gsl_eigen_gen_QZ
                gsl_eigen_genv_alloc gsl_eigen_genv_free gsl_eigen_genv
                gsl_eigen_genv_QZ gsl_eigen_symmv_sort gsl_eigen_hermv_sort
                gsl_eigen_nonsymmv_sort gsl_eigen_gensymmv_sort gsl_eigen_genhermv_sort
                gsl_eigen_genv_sort gsl_schur_gen_eigvals gsl_schur_solve_equation
                gsl_schur_solve_equation_z gsl_eigen_jacobi gsl_eigen_invert_jacobi
                $GSL_EIGEN_SORT_VAL_ASC $GSL_EIGEN_SORT_VAL_DESC
                $GSL_EIGEN_SORT_ABS_ASC $GSL_EIGEN_SORT_ABS_DESC
            /;
%EXPORT_TAGS = ( all => [ @EXPORT_OK ] );
__END__
=encoding utf8
=head1 NAME
Math::GSL::Eigen - Functions for computing eigenvalues and eigenvectors of matrices
=head1 SYNOPSIS
use Math::GSL::Eigen qw/:all/;
=head1 DESCRIPTION
Here is a list of all the functions included in this module :
=over
=item gsl_eigen_symm_alloc($n) - This function returns a workspace for computing eigenvalues of n-by-n real symmetric matrices.
=item gsl_eigen_symm_free($w) - This function frees the memory associated with the workspace $w.
=item gsl_eigen_symm($A, $eval, $w) - This function computes the eigenvalues of the real symmetric matrix $A. Additional workspace of the appropriate size must be provided in $w. The diagonal and lower triangular part of $A are destroyed during the computation, but the strict upper triangular part is not referenced. The eigenvalues are stored in the vector $eval and are unordered.
=item gsl_eigen_symmv_alloc($n) - This function returns a workspace for computing eigenvalues and eigenvectors of n-by-n real symmetric matrices.
=item gsl_eigen_symmv_free($w) - This function frees the memory associated with the workspace $w.
=item gsl_eigen_symmv($A, $eval, $evec, $w) - This function computes the eigenvalues and eigenvectors of the real symmetric matrix $A. Additional workspace of the appropriate size must be provided in $w. The diagonal and lower triangular part of $A are destroyed during the computation, but the strict upper triangular part is not referenced. The eigenvalues are stored in the vector $eval and are unordered. The corresponding eigenvectors are stored in the columns of the matrix $evec.
=item gsl_eigen_herm_alloc($n) - This function returns a workspace for computing eigenvalues of n-by-n complex hermitian matrices.
=item gsl_eigen_herm_free($w) - This function frees the memory associated with the workspace $w.
=item gsl_eigen_herm($A, $eval, $w) - This function computes the eigenvalues of the complex hermitian matrix $A. Additional workspace of the appropriate size must be provided in $w. The diagonal and lower triangular part of $A are destroyed during the computation, but the strict upper triangular part is not referenced. The imaginary parts of the diagonal are assumed to be zero and are not referenced. The eigenvalues are stored in the vector $eval and are unordered.
=item gsl_eigen_hermv_alloc($n) - This function returns a workspace for computing eigenvalues and eigenvectors of n-by-n complex hermitian matrices.
=item gsl_eigen_hermv_free($w) - This function frees the memory associated with the workspace $w.
=item gsl_eigen_hermv($A, $eval, $evec, $w) - This function computes the eigenvalues and eigenvectors of the complex hermitian matrix $A. Additional workspace of the appropriate size must be provided in $w. The diagonal and lower triangular part of $A are destroyed during the computation, but the strict upper triangular part is not referenced. The imaginary parts of the diagonal are assumed to be zero and are not referenced. The eigenvalues are stored in the vector $eval and are unordered. The corresponding complex eigenvectors are stored in the columns of the matrix $evec.
=item gsl_eigen_francis_alloc($n) -
=item gsl_eigen_francis_free($w) - This function frees the memory associated with the workspace $w.
=item gsl_eigen_francis_T
=item gsl_eigen_francis
=item gsl_eigen_francis_Z
=item gsl_eigen_nonsymm_alloc($n) - This function returns a workspace for computing eigenvalues of n-by-n real nonsymmetric matrices.
=item gsl_eigen_nonsymm_free($w) - This function frees the memory associated with the workspace $w.
=item gsl_eigen_nonsymm_params($compute_t, $balance, $w) - This function sets some parameters which determine how the eigenvalue problem is solved in subsequent calls to gsl_eigen_nonsymm. If $compute_t is set to 1, the full Schur form T will be computed by gsl_eigen_nonsymm. If it is set to 0, T will not be computed (this is the default setting). If balance is set to 1, a balancing transformation is applied to the matrix prior to computing eigenvalues. This transformation is designed to make the rows and columns of the matrix have comparable norms, and can result in more accurate eigenvalues for matrices whose entries vary widely in magnitude.
=item gsl_eigen_nonsymm($A, $eval, $w) - This function computes the eigenvalues of the real nonsymmetric matrix $A and stores them in the vector $eval. If T is desired, it is stored in the upper portion of $A on output. Otherwise, on output, the diagonal of $A will contain the 1-by-1 real eigenvalues and 2-by-2 complex conjugate eigenvalue systems, and the rest of $A is destroyed. In rare cases, this function may fail to find all eigenvalues. If this happens, an error code is returned (1) and the number of converged eigenvalues is stored in $w->{n_evals}. The converged eigenvalues are stored in the beginning of $eval.
=item gsl_eigen_nonsymm_Z($A, $eval, $Z, $w) - This function is identical to gsl_eigen_nonsymm except it also computes the Schur vectors and stores them into the $Z matrix.
=item gsl_eigen_nonsymmv_alloc($n) - This function allocates a workspace for computing eigenvalues and eigenvectors of n-by-n real nonsymmetric matrices.
=item gsl_eigen_nonsymmv_free($w) - This function frees the memory associated with the workspace $w.
=item gsl_eigen_nonsymmv($A, $eval, $evec, $w) - This function computes eigenvalues and right eigenvectors of the n-by-n real nonsymmetric matrix $A. It first calls gsl_eigen_nonsymm to compute the eigenvalues, Schur form T, and Schur vectors. Then it finds eigenvectors of T and backtransforms them using the Schur vectors. The Schur vectors are destroyed in the process, but can be saved by using gsl_eigen_nonsymmv_Z. The computed eigenvectors are normalized to have unit magnitude. On output, the upper portion of $A contains the Schur form T. If gsl_eigen_nonsymm fails, no eigenvectors are computed, and an error code is returned (1). $eval is a complex vector and $evec is a complex matrix.
=item gsl_eigen_nonsymmv_Z($A, $eval, $evec, $Z, $w) - This function is identical to gsl_eigen_nonsymmv except it also saves the Schur vectors into the $Z matrix.
=item gsl_eigen_gensymm_alloc($n) - This function allocates a workspace for computing eigenvalues of n-by-n real generalized symmetric-definite eigensystems.
=item gsl_eigen_gensymm_free($w) - This function frees the memory associated with the workspace $w.
=item gsl_eigen_gensymm($A, $B, $eval, $w) - This function computes the eigenvalues of the real generalized symmetric-definite matrix pair ($A, $B), and stores them in the vector $eval. On output, $B contains its Cholesky decomposition and $A is destroyed.
=item gsl_eigen_gensymm_standardize
=item gsl_eigen_gensymmv_alloc($n) - This function allocates a workspace for computing eigenvalues and eigenvectors of n-by-n real generalized symmetric-definite eigensystems.
=item gsl_eigen_gensymmv_free($w) - This function frees the memory associated with the workspace $w.
=item gsl_eigen_gensymmv($A, $B, $eval, $evec, $w) - This function computes the eigenvalues and eigenvectors of the real generalized symmetric-definite matrix pair ($A, $B), and stores them in $eval vector and $evec matrix respectively. The computed eigenvectors are normalized to have unit magnitude. On output, $B contains its Cholesky decomposition and A is destroyed.
=item gsl_eigen_genherm_alloc($n) - This function allocates a workspace for computing eigenvalues of n-by-n complex generalized hermitian-definite eigensystems.
=item gsl_eigen_genherm_free($w) - This function frees the memory associated with the workspace $w.
=item gsl_eigen_genherm($A, $B, $eval, $w) - This function computes the eigenvalues of the complex generalized hermitian-definite matrix pair ($A, $B), and stores them in the $eval vector. On output, $B contains its Cholesky decomposition and $A is destroyed.
=item gsl_eigen_genherm_standardize
=item gsl_eigen_genhermv_alloc($n) - This function allocates a workspace for computing eigenvalues and eigenvectors of n-by-n complex generalized hermitian-definite eigensystems.
=item gsl_eigen_genhermv_free($w) - This function frees the memory associated with the workspace $w.
=item gsl_eigen_genhermv($A, $B, $eval, $evec, $w) - This function computes the eigenvalues and eigenvectors of the complex generalized hermitian-definite matrix pair ($A, $B), and stores them in $eval vector and $evec matrix respectively. The computed eigenvectors are normalized to have unit magnitude. On output, $B contains its Cholesky decomposition and $A is destroyed.
=item gsl_eigen_gen_alloc($n) - This function allocates a workspace for computing eigenvalues of n-by-n real generalized nonsymmetric eigensystems.
=item gsl_eigen_gen_free($w) - This function frees the memory associated with the workspace $w.
=item gsl_eigen_gen_params($compute_s, $compute_t, $balance, $w) - This function sets some parameters which determine how the eigenvalue problem is solved in subsequent calls to gsl_eigen_gen. If $compute_s is set to 1, the full Schur form S will be computed by gsl_eigen_gen. If it is set to 0, S will not be computed (this is the default setting). S is a quasi upper triangular matrix with 1-by-1 and 2-by-2 blocks on its diagonal. 1-by-1 blocks correspond to real eigenvalues, and 2-by-2 blocks correspond to complex eigenvalues. If $compute_t is set to 1, the full Schur form T will be computed by gsl_eigen_gen. If it is set to 0, T will not be computed (this is the default setting). T is an upper triangular matrix with non-negative elements on its diagonal. Any 2-by-2 blocks in S will correspond to a 2-by-2 diagonal block in T. The $balance parameter is currently ignored, since generalized balancing is not yet implemented.
=item gsl_eigen_gen($A, $B, $alpha, $beta, $w) - This function computes the eigenvalues of the real generalized nonsymmetric matrix pair ($A, $B), and stores them as pairs in ($alpha, $beta), where $alpha is complex and $beta is real, both are vectors. The elements of $beta are normalized to be non-negative. If S is desired, it is stored in $A on output. If T is desired, it is stored in $B on output. The ordering of eigenvalues in ($alpha, $beta) follows the ordering of the diagonal blocks in the Schur forms S and T. In rare cases, this function may fail to find all eigenvalues. If this occurs, an error code is returned (1).
=item gsl_eigen_gen_QZ($A, $B, $alpha, $beta, $Q, $Z, $w) - This function is identical to gsl_eigen_gen except it also computes the left and right Schur vectors and stores them into $Q matrix and $Z matrix respectively.
=item gsl_eigen_genv_alloc($n) - This function allocates a workspace for computing eigenvalues and eigenvectors of n-by-n real generalized nonsymmetric eigensystems.
=item gsl_eigen_genv_free($w) - This function frees the memory associated with the workspace $w.
=item gsl_eigen_genv($A, $B, $alpha, $beta, $evec, $w) - This function computes eigenvalues and right eigenvectors of the n-by-n real generalized nonsymmetric matrix pair ($A, $B). The eigenvalues are stored in ($alpha, $beta) where $alpha is a complex vector and $beta a real vector and the eigenvectors are stored in $evec complex matrix. It first calls gsl_eigen_gen to compute the eigenvalues, Schur forms, and Schur vectors. Then it finds eigenvectors of the Schur forms and backtransforms them using the Schur vectors. The Schur vectors are destroyed in the process, but can be saved by using gsl_eigen_genv_QZ. The computed eigenvectors are normalized to have unit magnitude. On output, ($A, $B) contains the generalized Schur form (S, T). If gsl_eigen_gen fails, no eigenvectors are computed, and an error code is returned (1).
=item gsl_eigen_genv_QZ($A, $B, $alpha, $beta, $evec, $Q, $Z, $w) - This function is identical to gsl_eigen_genv except it also computes the left and right Schur vectors and stores them into $Q and $Z matrices respectively.
=item gsl_eigen_symmv_sort($eval, $evec, $sort_type) - This function simultaneously sorts the eigenvalues stored in the vector $eval and the corresponding real eigenvectors stored in the columns of the matrix $evec according to the value of the parameter $sort_type which is one of the constant included in this module.
=item gsl_eigen_hermv_sort($eval, $evec, $sort_type) - This function simultaneously sorts the eigenvalues stored in the vector $eval and the corresponding real eigenvectors stored in the columns of the matrix $evec according to the value of the parameter $sort_type which is one of the constant included in this module.
=item gsl_eigen_nonsymmv_sort($eval, $evec, $sort_type) - This function simultaneously sorts the eigenvalues stored in the vector $eval and the corresponding complex eigenvectors stored in the columns of the complex matrix $evec into ascending or descending order according to the value of the parameter $sort_type. Only $GSL_EIGEN_SORT_ABS_ASC and $GSL_EIGEN_SORT_ABS_DESC are supported due to the eigenvalues being complex.
=item gsl_eigen_gensymmv_sort($eval, $evec, $sort_type) - This function simultaneously sorts the eigenvalues stored in the vector $eval and the corresponding real eigenvectors stored in the columns of the matrix $evec according to the value of the parameter $sort_type which is one of the constant included in this module.
=item gsl_eigen_genhermv_sort($eval, $evec, $sort_type) - This function simultaneously sorts the eigenvalues stored in the vector $eval and the corresponding real eigenvectors stored in the columns of the matrix $evec according to the value of the parameter $sort_type which is one of the constant included in this module.
=item gsl_eigen_genv_sort($eval, $evec, $sort_type) - This function simultaneously sorts the eigenvalues stored in the vector $eval and the corresponding complex eigenvectors stored in the columns of the complex matrix $evec into ascending or descending order according to the value of the parameter $sort_type. Only $GSL_EIGEN_SORT_ABS_ASC and $GSL_EIGEN_SORT_ABS_DESC are supported due to the eigenvalues being complex.
=item gsl_schur_gen_eigvals
=item gsl_schur_solve_equation
=item gsl_schur_solve_equation_z
=item gsl_eigen_jacobi
=item gsl_eigen_invert_jacobi
=back
This module also includes these constants :
=over
=item $GSL_EIGEN_SORT_VAL_ASC - ascending order in numerical value
=item $GSL_EIGEN_SORT_VAL_DESC - descending order in numerical value
=item $GSL_EIGEN_SORT_ABS_ASC - ascending order in magnitude
=item $GSL_EIGEN_SORT_ABS_DESC - descending order in magnitude
=back
For more information on the functions, we refer you to the GSL offcial documentation:
L<http://www.gnu.org/software/gsl/manual/html_node/>
=head1 EXAMPLES
This example shows how to use the gsl_eigen_symmv functions to find the eigenvalues and eigenvectors of a matrix.
 use Math::GSL::Vector qw/:all/;
 use Math::GSL::Matrix qw/:all/;
 use Math::GSL::Eigen qw/:all/;
 my $w = gsl_eigen_symmv_alloc(2);
 my $m = gsl_matrix_alloc(2,2);
 gsl_matrix_set($m, 0, 0, 2);
 gsl_matrix_set($m, 0, 1, 1);
 gsl_matrix_set($m, 1, 0, 1);
 gsl_matrix_set($m, 1, 1, 2);
 my $eval = gsl_vector_alloc(2);
 my $evec = gsl_matrix_alloc(2,2);
 gsl_eigen_symmv($m, $eval, $evec, $w);
 gsl_eigen_gensymmv_sort($eval, $evec, $GSL_EIGEN_SORT_ABS_ASC);
 print "The first eigenvalue is : " . gsl_vector_get($eval, 0) . "\n";
 print "The second eigenvalue is : " . gsl_vector_get($eval, 1) . "\n";
 my $x = gsl_matrix_get($evec, 0, 0);
 my $y = gsl_matrix_get($evec, 0, 1);
 print "The first eigenvector is [$x, $y] \n";
 $x = gsl_matrix_get($evec, 1, 0);
 $y = gsl_matrix_get($evec, 1, 1);
 print "The second eigenvector is [$x, $y] \n";
=head1 AUTHORS
Jonathan "Duke" Leto <jonathan@leto.net> and Thierry Moisan <thierry.moisan@gmail.com>
=head1 COPYRIGHT AND LICENSE
Copyright (C) 2008-2011 Jonathan "Duke" Leto and Thierry Moisan
This program is free software; you can redistribute it and/or modify it
under the same terms as Perl itself.
=cut
1;
 |