| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 
 | # This file was automatically generated by SWIG (http://www.swig.org).
# Version 3.0.4
#
# Do not make changes to this file unless you know what you are doing--modify
# the SWIG interface file instead.
package Math::GSL::Interp;
use base qw(Exporter);
use base qw(DynaLoader);
package Math::GSL::Interpc;
bootstrap Math::GSL::Interp;
package Math::GSL::Interp;
@EXPORT = qw();
# ---------- BASE METHODS -------------
package Math::GSL::Interp;
sub TIEHASH {
    my ($classname,$obj) = @_;
    return bless $obj, $classname;
}
sub CLEAR { }
sub FIRSTKEY { }
sub NEXTKEY { }
sub FETCH {
    my ($self,$field) = @_;
    my $member_func = "swig_${field}_get";
    $self->$member_func();
}
sub STORE {
    my ($self,$field,$newval) = @_;
    my $member_func = "swig_${field}_set";
    $self->$member_func($newval);
}
sub this {
    my $ptr = shift;
    return tied(%$ptr);
}
# ------- FUNCTION WRAPPERS --------
package Math::GSL::Interp;
*gsl_error = *Math::GSL::Interpc::gsl_error;
*gsl_stream_printf = *Math::GSL::Interpc::gsl_stream_printf;
*gsl_strerror = *Math::GSL::Interpc::gsl_strerror;
*gsl_set_error_handler = *Math::GSL::Interpc::gsl_set_error_handler;
*gsl_set_error_handler_off = *Math::GSL::Interpc::gsl_set_error_handler_off;
*gsl_set_stream_handler = *Math::GSL::Interpc::gsl_set_stream_handler;
*gsl_set_stream = *Math::GSL::Interpc::gsl_set_stream;
*gsl_interp_accel_alloc = *Math::GSL::Interpc::gsl_interp_accel_alloc;
*gsl_interp_accel_reset = *Math::GSL::Interpc::gsl_interp_accel_reset;
*gsl_interp_accel_free = *Math::GSL::Interpc::gsl_interp_accel_free;
*gsl_interp_alloc = *Math::GSL::Interpc::gsl_interp_alloc;
*gsl_interp_init = *Math::GSL::Interpc::gsl_interp_init;
*gsl_interp_name = *Math::GSL::Interpc::gsl_interp_name;
*gsl_interp_min_size = *Math::GSL::Interpc::gsl_interp_min_size;
*gsl_interp_type_min_size = *Math::GSL::Interpc::gsl_interp_type_min_size;
*gsl_interp_eval_e = *Math::GSL::Interpc::gsl_interp_eval_e;
*gsl_interp_eval = *Math::GSL::Interpc::gsl_interp_eval;
*gsl_interp_eval_deriv_e = *Math::GSL::Interpc::gsl_interp_eval_deriv_e;
*gsl_interp_eval_deriv = *Math::GSL::Interpc::gsl_interp_eval_deriv;
*gsl_interp_eval_deriv2_e = *Math::GSL::Interpc::gsl_interp_eval_deriv2_e;
*gsl_interp_eval_deriv2 = *Math::GSL::Interpc::gsl_interp_eval_deriv2;
*gsl_interp_eval_integ_e = *Math::GSL::Interpc::gsl_interp_eval_integ_e;
*gsl_interp_eval_integ = *Math::GSL::Interpc::gsl_interp_eval_integ;
*gsl_interp_free = *Math::GSL::Interpc::gsl_interp_free;
*gsl_interp_bsearch = *Math::GSL::Interpc::gsl_interp_bsearch;
*gsl_interp_accel_find = *Math::GSL::Interpc::gsl_interp_accel_find;
############# Class : Math::GSL::Interp::gsl_interp_accel ##############
package Math::GSL::Interp::gsl_interp_accel;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::Interp );
%OWNER = ();
%ITERATORS = ();
*swig_cache_get = *Math::GSL::Interpc::gsl_interp_accel_cache_get;
*swig_cache_set = *Math::GSL::Interpc::gsl_interp_accel_cache_set;
*swig_miss_count_get = *Math::GSL::Interpc::gsl_interp_accel_miss_count_get;
*swig_miss_count_set = *Math::GSL::Interpc::gsl_interp_accel_miss_count_set;
*swig_hit_count_get = *Math::GSL::Interpc::gsl_interp_accel_hit_count_get;
*swig_hit_count_set = *Math::GSL::Interpc::gsl_interp_accel_hit_count_set;
sub new {
    my $pkg = shift;
    my $self = Math::GSL::Interpc::new_gsl_interp_accel(@_);
    bless $self, $pkg if defined($self);
}
sub DESTROY {
    return unless $_[0]->isa('HASH');
    my $self = tied(%{$_[0]});
    return unless defined $self;
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
        Math::GSL::Interpc::delete_gsl_interp_accel($self);
        delete $OWNER{$self};
    }
}
sub DISOWN {
    my $self = shift;
    my $ptr = tied(%$self);
    delete $OWNER{$ptr};
}
sub ACQUIRE {
    my $self = shift;
    my $ptr = tied(%$self);
    $OWNER{$ptr} = 1;
}
############# Class : Math::GSL::Interp::gsl_interp ##############
package Math::GSL::Interp::gsl_interp;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::Interp );
%OWNER = ();
%ITERATORS = ();
*swig_type_get = *Math::GSL::Interpc::gsl_interp_type_get;
*swig_type_set = *Math::GSL::Interpc::gsl_interp_type_set;
*swig_xmin_get = *Math::GSL::Interpc::gsl_interp_xmin_get;
*swig_xmin_set = *Math::GSL::Interpc::gsl_interp_xmin_set;
*swig_xmax_get = *Math::GSL::Interpc::gsl_interp_xmax_get;
*swig_xmax_set = *Math::GSL::Interpc::gsl_interp_xmax_set;
*swig_size_get = *Math::GSL::Interpc::gsl_interp_size_get;
*swig_size_set = *Math::GSL::Interpc::gsl_interp_size_set;
*swig_state_get = *Math::GSL::Interpc::gsl_interp_state_get;
*swig_state_set = *Math::GSL::Interpc::gsl_interp_state_set;
sub new {
    my $pkg = shift;
    my $self = Math::GSL::Interpc::new_gsl_interp(@_);
    bless $self, $pkg if defined($self);
}
sub DESTROY {
    return unless $_[0]->isa('HASH');
    my $self = tied(%{$_[0]});
    return unless defined $self;
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
        Math::GSL::Interpc::delete_gsl_interp($self);
        delete $OWNER{$self};
    }
}
sub DISOWN {
    my $self = shift;
    my $ptr = tied(%$self);
    delete $OWNER{$ptr};
}
sub ACQUIRE {
    my $self = shift;
    my $ptr = tied(%$self);
    $OWNER{$ptr} = 1;
}
# ------- VARIABLE STUBS --------
package Math::GSL::Interp;
*GSL_MAJOR_VERSION = *Math::GSL::Interpc::GSL_MAJOR_VERSION;
*GSL_MINOR_VERSION = *Math::GSL::Interpc::GSL_MINOR_VERSION;
*GSL_POSZERO = *Math::GSL::Interpc::GSL_POSZERO;
*GSL_NEGZERO = *Math::GSL::Interpc::GSL_NEGZERO;
*GSL_SUCCESS = *Math::GSL::Interpc::GSL_SUCCESS;
*GSL_FAILURE = *Math::GSL::Interpc::GSL_FAILURE;
*GSL_CONTINUE = *Math::GSL::Interpc::GSL_CONTINUE;
*GSL_EDOM = *Math::GSL::Interpc::GSL_EDOM;
*GSL_ERANGE = *Math::GSL::Interpc::GSL_ERANGE;
*GSL_EFAULT = *Math::GSL::Interpc::GSL_EFAULT;
*GSL_EINVAL = *Math::GSL::Interpc::GSL_EINVAL;
*GSL_EFAILED = *Math::GSL::Interpc::GSL_EFAILED;
*GSL_EFACTOR = *Math::GSL::Interpc::GSL_EFACTOR;
*GSL_ESANITY = *Math::GSL::Interpc::GSL_ESANITY;
*GSL_ENOMEM = *Math::GSL::Interpc::GSL_ENOMEM;
*GSL_EBADFUNC = *Math::GSL::Interpc::GSL_EBADFUNC;
*GSL_ERUNAWAY = *Math::GSL::Interpc::GSL_ERUNAWAY;
*GSL_EMAXITER = *Math::GSL::Interpc::GSL_EMAXITER;
*GSL_EZERODIV = *Math::GSL::Interpc::GSL_EZERODIV;
*GSL_EBADTOL = *Math::GSL::Interpc::GSL_EBADTOL;
*GSL_ETOL = *Math::GSL::Interpc::GSL_ETOL;
*GSL_EUNDRFLW = *Math::GSL::Interpc::GSL_EUNDRFLW;
*GSL_EOVRFLW = *Math::GSL::Interpc::GSL_EOVRFLW;
*GSL_ELOSS = *Math::GSL::Interpc::GSL_ELOSS;
*GSL_EROUND = *Math::GSL::Interpc::GSL_EROUND;
*GSL_EBADLEN = *Math::GSL::Interpc::GSL_EBADLEN;
*GSL_ENOTSQR = *Math::GSL::Interpc::GSL_ENOTSQR;
*GSL_ESING = *Math::GSL::Interpc::GSL_ESING;
*GSL_EDIVERGE = *Math::GSL::Interpc::GSL_EDIVERGE;
*GSL_EUNSUP = *Math::GSL::Interpc::GSL_EUNSUP;
*GSL_EUNIMPL = *Math::GSL::Interpc::GSL_EUNIMPL;
*GSL_ECACHE = *Math::GSL::Interpc::GSL_ECACHE;
*GSL_ETABLE = *Math::GSL::Interpc::GSL_ETABLE;
*GSL_ENOPROG = *Math::GSL::Interpc::GSL_ENOPROG;
*GSL_ENOPROGJ = *Math::GSL::Interpc::GSL_ENOPROGJ;
*GSL_ETOLF = *Math::GSL::Interpc::GSL_ETOLF;
*GSL_ETOLX = *Math::GSL::Interpc::GSL_ETOLX;
*GSL_ETOLG = *Math::GSL::Interpc::GSL_ETOLG;
*GSL_EOF = *Math::GSL::Interpc::GSL_EOF;
*GSL_VERSION = *Math::GSL::Interpc::GSL_VERSION;
*gsl_version = *Math::GSL::Interpc::gsl_version;
*gsl_interp_linear = *Math::GSL::Interpc::gsl_interp_linear;
*gsl_interp_polynomial = *Math::GSL::Interpc::gsl_interp_polynomial;
*gsl_interp_cspline = *Math::GSL::Interpc::gsl_interp_cspline;
*gsl_interp_cspline_periodic = *Math::GSL::Interpc::gsl_interp_cspline_periodic;
*gsl_interp_akima = *Math::GSL::Interpc::gsl_interp_akima;
*gsl_interp_akima_periodic = *Math::GSL::Interpc::gsl_interp_akima_periodic;
@EXPORT_OK = qw/
               gsl_interp_accel_alloc
               gsl_interp_accel_find
               gsl_interp_accel_reset
               gsl_interp_accel_free
               gsl_interp_alloc
               gsl_interp_init
               gsl_interp_name
               gsl_interp_min_size
               gsl_interp_eval_e
               gsl_interp_eval
               gsl_interp_eval_deriv_e
               gsl_interp_eval_deriv
               gsl_interp_eval_deriv2_e
               gsl_interp_eval_deriv2
               gsl_interp_eval_integ_e
               gsl_interp_eval_integ
               gsl_interp_free
               gsl_interp_bsearch
               $gsl_interp_linear
               $gsl_interp_polynomial
               $gsl_interp_cspline
               $gsl_interp_cspline_periodic
               $gsl_interp_akima
               $gsl_interp_akima_periodic
             /;
%EXPORT_TAGS = ( all => \@EXPORT_OK  );
__END__
=encoding utf8
=head1 NAME
Math::GSL::Interp - Interpolation
=head1 SYNOPSIS
    use Math::GSL::Interp qw/:all/;
    my $x_array = [ 0.0, 1.0, 2.0, 3.0, 4.0 ];
    # check that we get the last interval if x == last value
    $index_result = gsl_interp_bsearch($x_array, 4.0, 0, 4);
    print "The last interval is $index_result \n";
=head1 DESCRIPTION
=over 1
=item C<gsl_interp_accel_alloc()>
This function returns a pointer to an accelerator object, which is a kind of
iterator for interpolation lookups. It tracks the state of lookups, thus
allowing for application of various acceleration strategies.
=item C<gsl_interp_accel_find($a, $x_array, $size, $x)>
This function performs a lookup action on the data array $x_array of size
$size, using the given accelerator $a. This is how lookups are performed during
evaluation of an interpolation. The function returns an index i such that
$x_array[i] <= $x < $x_array[i+1].
=item C<gsl_interp_accel_reset>
=item C<gsl_interp_accel_free($a)>
This function frees the accelerator object $a.
=item C<gsl_interp_alloc($T, $alloc)>
This function returns a newly allocated interpolation object of type $T for
$size data-points. $T must be one of the constants below.
=item C<gsl_interp_init($interp, $xa, $ya, $size)>
This function initializes the interpolation object interp for the data (xa,ya)
where xa and ya are arrays of size size. The interpolation object (gsl_interp)
does not save the data arrays xa and ya and only stores the static state
computed from the data. The xa data array is always assumed to be strictly
ordered, with increasing x values; the behavior for other arrangements is not
defined.
=item C<gsl_interp_name($interp)>
This function returns the name of the interpolation type used by $interp.
=item C<gsl_interp_min_size($interp)>
This function returns the minimum number of points required by the
interpolation type of $interp. For example, Akima spline interpolation requires
a minimum of 5 points.
=item C<gsl_interp_eval_e($interp, $xa, $ya, $x, $acc)>
This functions returns the interpolated value of y for a given point $x, using
the interpolation object $interp, data arrays $xa and $ya and the accelerator
$acc. The function returns 0 if the operation succeeded, 1 otherwise and the y
value.
=item C<gsl_interp_eval($interp, $xa, $ya, $x, $acc)>
This functions returns the interpolated value of y for a given point $x, using
the interpolation object $interp, data arrays $xa and $ya and the accelerator
$acc.
=item C<gsl_interp_eval_deriv_e($interp, $xa, $ya, $x, $acc)>
This function computes the derivative value of y for a given point $x, using
the interpolation object $interp, data arrays $xa and $ya and the accelerator
$acc. The function returns 0 if the operation succeeded, 1 otherwise and the d
value.
=item C<gsl_interp_eval_deriv($interp, $xa, $ya, $x, $acc)>
This function returns the derivative d of an interpolated function for a given
point $x, using the interpolation object interp, data arrays $xa and $ya and
the accelerator $acc.
=item C<gsl_interp_eval_deriv2_e($interp, $xa, $ya, $x, $acc)>
This function computes the second derivative d2 of an interpolated function for
a given point $x, using the interpolation object $interp, data arrays $xa and
$ya and the accelerator $acc. The function returns 0 if the operation
succeeded, 1 otherwise and the d2 value.
=item C<gsl_interp_eval_deriv2($interp, $xa, $ya, $x, $acc)>
This function returns the second derivative d2 of an interpolated function
for a given point $x, using the interpolation object $interp, data arrays $xa
and $ya and the accelerator $acc.
=item C<gsl_interp_eval_integ_e($interp, $xa, $ya, $a, $b, $acc)>
This function computes the numerical integral result of an interpolated
function over the range [$a, $b], using the interpolation object $interp, data
arrays $xa and $ya and the accelerator $acc. The function returns 0 if the
operation succeeded, 1 otherwise and the result value.
=item C<gsl_interp_eval_integ($interp, $xa, $ya, $a, $b, $acc)>
This function returns the numerical integral result of an interpolated function
over the range [$a, $b], using the interpolation object $interp, data arrays
$xa and $ya and the accelerator $acc.
=item C<gsl_interp_free($interp)> - This function frees the interpolation object $interp.
=item C<gsl_interp_bsearch($x_array, $x, $index_lo, $index_hi)>
This function returns the index i of the array $x_array such that $x_array[i]
<= x < $x_array[i+1]. The index is searched for in the range
[$index_lo,$index_hi].
=back
This module also includes the following constants :
=over 1
=item C<$gsl_interp_linear>
Linear interpolation
=item C<$gsl_interp_polynomial>
Polynomial interpolation. This method should only be used for interpolating
small numbers of points because polynomial interpolation introduces large
oscillations, even for well-behaved datasets. The number of terms in the
interpolating polynomial is equal to the number of points.
=item C<$gsl_interp_cspline>
Cubic spline with natural boundary conditions. The resulting curve is piecewise
cubic on each interval, with matching first and second derivatives at the
supplied data-points. The second derivative is chosen to be zero at the first
point and last point.
=item C<$gsl_interp_cspline_periodic>
Cubic spline with periodic boundary conditions. The resulting curve is
piecewise cubic on each interval, with matching first and second derivatives at
the supplied data-points. The derivatives at the first and last points are also
matched. Note that the last point in the data must have the same y-value as the
first point, otherwise the resulting periodic interpolation will have a
discontinuity at the boundary.
=item C<$gsl_interp_akima>
Non-rounded Akima spline with natural boundary conditions. This method uses the
non-rounded corner algorithm of Wodicka.
=item C<$gsl_interp_akima_periodic>
Non-rounded Akima spline with periodic boundary conditions. This method uses
the non-rounded corner algorithm of Wodicka.
=back
=head1 AUTHORS
Jonathan "Duke" Leto <jonathan@leto.net> and Thierry Moisan <thierry.moisan@gmail.com>
=head1 COPYRIGHT AND LICENSE
Copyright (C) 2008-2011 Jonathan "Duke" Leto and Thierry Moisan
This program is free software; you can redistribute it and/or modify it
under the same terms as Perl itself.
=cut
1;
 |