| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 
 | # This file was automatically generated by SWIG (http://www.swig.org).
# Version 3.0.4
#
# Do not make changes to this file unless you know what you are doing--modify
# the SWIG interface file instead.
package Math::GSL::Roots;
use base qw(Exporter);
use base qw(DynaLoader);
package Math::GSL::Rootsc;
bootstrap Math::GSL::Roots;
package Math::GSL::Roots;
@EXPORT = qw();
# ---------- BASE METHODS -------------
package Math::GSL::Roots;
sub TIEHASH {
    my ($classname,$obj) = @_;
    return bless $obj, $classname;
}
sub CLEAR { }
sub FIRSTKEY { }
sub NEXTKEY { }
sub FETCH {
    my ($self,$field) = @_;
    my $member_func = "swig_${field}_get";
    $self->$member_func();
}
sub STORE {
    my ($self,$field,$newval) = @_;
    my $member_func = "swig_${field}_set";
    $self->$member_func($newval);
}
sub this {
    my $ptr = shift;
    return tied(%$ptr);
}
# ------- FUNCTION WRAPPERS --------
package Math::GSL::Roots;
*gsl_error = *Math::GSL::Rootsc::gsl_error;
*gsl_stream_printf = *Math::GSL::Rootsc::gsl_stream_printf;
*gsl_strerror = *Math::GSL::Rootsc::gsl_strerror;
*gsl_set_error_handler = *Math::GSL::Rootsc::gsl_set_error_handler;
*gsl_set_error_handler_off = *Math::GSL::Rootsc::gsl_set_error_handler_off;
*gsl_set_stream_handler = *Math::GSL::Rootsc::gsl_set_stream_handler;
*gsl_set_stream = *Math::GSL::Rootsc::gsl_set_stream;
*gsl_root_fsolver_alloc = *Math::GSL::Rootsc::gsl_root_fsolver_alloc;
*gsl_root_fsolver_free = *Math::GSL::Rootsc::gsl_root_fsolver_free;
*gsl_root_fsolver_set = *Math::GSL::Rootsc::gsl_root_fsolver_set;
*gsl_root_fsolver_iterate = *Math::GSL::Rootsc::gsl_root_fsolver_iterate;
*gsl_root_fsolver_name = *Math::GSL::Rootsc::gsl_root_fsolver_name;
*gsl_root_fsolver_root = *Math::GSL::Rootsc::gsl_root_fsolver_root;
*gsl_root_fsolver_x_lower = *Math::GSL::Rootsc::gsl_root_fsolver_x_lower;
*gsl_root_fsolver_x_upper = *Math::GSL::Rootsc::gsl_root_fsolver_x_upper;
*gsl_root_fdfsolver_alloc = *Math::GSL::Rootsc::gsl_root_fdfsolver_alloc;
*gsl_root_fdfsolver_set = *Math::GSL::Rootsc::gsl_root_fdfsolver_set;
*gsl_root_fdfsolver_iterate = *Math::GSL::Rootsc::gsl_root_fdfsolver_iterate;
*gsl_root_fdfsolver_free = *Math::GSL::Rootsc::gsl_root_fdfsolver_free;
*gsl_root_fdfsolver_name = *Math::GSL::Rootsc::gsl_root_fdfsolver_name;
*gsl_root_fdfsolver_root = *Math::GSL::Rootsc::gsl_root_fdfsolver_root;
*gsl_root_test_interval = *Math::GSL::Rootsc::gsl_root_test_interval;
*gsl_root_test_residual = *Math::GSL::Rootsc::gsl_root_test_residual;
*gsl_root_test_delta = *Math::GSL::Rootsc::gsl_root_test_delta;
############# Class : Math::GSL::Roots::gsl_root_fsolver_type ##############
package Math::GSL::Roots::gsl_root_fsolver_type;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::Roots );
%OWNER = ();
%ITERATORS = ();
*swig_name_get = *Math::GSL::Rootsc::gsl_root_fsolver_type_name_get;
*swig_name_set = *Math::GSL::Rootsc::gsl_root_fsolver_type_name_set;
*swig_size_get = *Math::GSL::Rootsc::gsl_root_fsolver_type_size_get;
*swig_size_set = *Math::GSL::Rootsc::gsl_root_fsolver_type_size_set;
*swig_set_get = *Math::GSL::Rootsc::gsl_root_fsolver_type_set_get;
*swig_set_set = *Math::GSL::Rootsc::gsl_root_fsolver_type_set_set;
*swig_iterate_get = *Math::GSL::Rootsc::gsl_root_fsolver_type_iterate_get;
*swig_iterate_set = *Math::GSL::Rootsc::gsl_root_fsolver_type_iterate_set;
sub new {
    my $pkg = shift;
    my $self = Math::GSL::Rootsc::new_gsl_root_fsolver_type(@_);
    bless $self, $pkg if defined($self);
}
sub DESTROY {
    return unless $_[0]->isa('HASH');
    my $self = tied(%{$_[0]});
    return unless defined $self;
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
        Math::GSL::Rootsc::delete_gsl_root_fsolver_type($self);
        delete $OWNER{$self};
    }
}
sub DISOWN {
    my $self = shift;
    my $ptr = tied(%$self);
    delete $OWNER{$ptr};
}
sub ACQUIRE {
    my $self = shift;
    my $ptr = tied(%$self);
    $OWNER{$ptr} = 1;
}
############# Class : Math::GSL::Roots::gsl_root_fsolver ##############
package Math::GSL::Roots::gsl_root_fsolver;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::Roots );
%OWNER = ();
%ITERATORS = ();
sub DESTROY {
    return unless $_[0]->isa('HASH');
    my $self = tied(%{$_[0]});
    return unless defined $self;
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
        Math::GSL::Rootsc::delete_gsl_root_fsolver($self);
        delete $OWNER{$self};
    }
}
*swig_type_get = *Math::GSL::Rootsc::gsl_root_fsolver_type_get;
*swig_type_set = *Math::GSL::Rootsc::gsl_root_fsolver_type_set;
*swig_function_get = *Math::GSL::Rootsc::gsl_root_fsolver_function_get;
*swig_function_set = *Math::GSL::Rootsc::gsl_root_fsolver_function_set;
*swig_root_get = *Math::GSL::Rootsc::gsl_root_fsolver_root_get;
*swig_root_set = *Math::GSL::Rootsc::gsl_root_fsolver_root_set;
*swig_x_lower_get = *Math::GSL::Rootsc::gsl_root_fsolver_x_lower_get;
*swig_x_lower_set = *Math::GSL::Rootsc::gsl_root_fsolver_x_lower_set;
*swig_x_upper_get = *Math::GSL::Rootsc::gsl_root_fsolver_x_upper_get;
*swig_x_upper_set = *Math::GSL::Rootsc::gsl_root_fsolver_x_upper_set;
*swig_state_get = *Math::GSL::Rootsc::gsl_root_fsolver_state_get;
*swig_state_set = *Math::GSL::Rootsc::gsl_root_fsolver_state_set;
sub new {
    my $pkg = shift;
    my $self = Math::GSL::Rootsc::new_gsl_root_fsolver(@_);
    bless $self, $pkg if defined($self);
}
sub DISOWN {
    my $self = shift;
    my $ptr = tied(%$self);
    delete $OWNER{$ptr};
}
sub ACQUIRE {
    my $self = shift;
    my $ptr = tied(%$self);
    $OWNER{$ptr} = 1;
}
############# Class : Math::GSL::Roots::gsl_root_fdfsolver_type ##############
package Math::GSL::Roots::gsl_root_fdfsolver_type;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::Roots );
%OWNER = ();
%ITERATORS = ();
*swig_name_get = *Math::GSL::Rootsc::gsl_root_fdfsolver_type_name_get;
*swig_name_set = *Math::GSL::Rootsc::gsl_root_fdfsolver_type_name_set;
*swig_size_get = *Math::GSL::Rootsc::gsl_root_fdfsolver_type_size_get;
*swig_size_set = *Math::GSL::Rootsc::gsl_root_fdfsolver_type_size_set;
*swig_set_get = *Math::GSL::Rootsc::gsl_root_fdfsolver_type_set_get;
*swig_set_set = *Math::GSL::Rootsc::gsl_root_fdfsolver_type_set_set;
*swig_iterate_get = *Math::GSL::Rootsc::gsl_root_fdfsolver_type_iterate_get;
*swig_iterate_set = *Math::GSL::Rootsc::gsl_root_fdfsolver_type_iterate_set;
sub new {
    my $pkg = shift;
    my $self = Math::GSL::Rootsc::new_gsl_root_fdfsolver_type(@_);
    bless $self, $pkg if defined($self);
}
sub DESTROY {
    return unless $_[0]->isa('HASH');
    my $self = tied(%{$_[0]});
    return unless defined $self;
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
        Math::GSL::Rootsc::delete_gsl_root_fdfsolver_type($self);
        delete $OWNER{$self};
    }
}
sub DISOWN {
    my $self = shift;
    my $ptr = tied(%$self);
    delete $OWNER{$ptr};
}
sub ACQUIRE {
    my $self = shift;
    my $ptr = tied(%$self);
    $OWNER{$ptr} = 1;
}
############# Class : Math::GSL::Roots::gsl_root_fdfsolver ##############
package Math::GSL::Roots::gsl_root_fdfsolver;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::Roots );
%OWNER = ();
%ITERATORS = ();
sub DESTROY {
    return unless $_[0]->isa('HASH');
    my $self = tied(%{$_[0]});
    return unless defined $self;
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
        Math::GSL::Rootsc::delete_gsl_root_fdfsolver($self);
        delete $OWNER{$self};
    }
}
*swig_type_get = *Math::GSL::Rootsc::gsl_root_fdfsolver_type_get;
*swig_type_set = *Math::GSL::Rootsc::gsl_root_fdfsolver_type_set;
*swig_fdf_get = *Math::GSL::Rootsc::gsl_root_fdfsolver_fdf_get;
*swig_fdf_set = *Math::GSL::Rootsc::gsl_root_fdfsolver_fdf_set;
*swig_root_get = *Math::GSL::Rootsc::gsl_root_fdfsolver_root_get;
*swig_root_set = *Math::GSL::Rootsc::gsl_root_fdfsolver_root_set;
*swig_state_get = *Math::GSL::Rootsc::gsl_root_fdfsolver_state_get;
*swig_state_set = *Math::GSL::Rootsc::gsl_root_fdfsolver_state_set;
sub new {
    my $pkg = shift;
    my $self = Math::GSL::Rootsc::new_gsl_root_fdfsolver(@_);
    bless $self, $pkg if defined($self);
}
sub DISOWN {
    my $self = shift;
    my $ptr = tied(%$self);
    delete $OWNER{$ptr};
}
sub ACQUIRE {
    my $self = shift;
    my $ptr = tied(%$self);
    $OWNER{$ptr} = 1;
}
# ------- VARIABLE STUBS --------
package Math::GSL::Roots;
*GSL_MAJOR_VERSION = *Math::GSL::Rootsc::GSL_MAJOR_VERSION;
*GSL_MINOR_VERSION = *Math::GSL::Rootsc::GSL_MINOR_VERSION;
*GSL_POSZERO = *Math::GSL::Rootsc::GSL_POSZERO;
*GSL_NEGZERO = *Math::GSL::Rootsc::GSL_NEGZERO;
*GSL_SUCCESS = *Math::GSL::Rootsc::GSL_SUCCESS;
*GSL_FAILURE = *Math::GSL::Rootsc::GSL_FAILURE;
*GSL_CONTINUE = *Math::GSL::Rootsc::GSL_CONTINUE;
*GSL_EDOM = *Math::GSL::Rootsc::GSL_EDOM;
*GSL_ERANGE = *Math::GSL::Rootsc::GSL_ERANGE;
*GSL_EFAULT = *Math::GSL::Rootsc::GSL_EFAULT;
*GSL_EINVAL = *Math::GSL::Rootsc::GSL_EINVAL;
*GSL_EFAILED = *Math::GSL::Rootsc::GSL_EFAILED;
*GSL_EFACTOR = *Math::GSL::Rootsc::GSL_EFACTOR;
*GSL_ESANITY = *Math::GSL::Rootsc::GSL_ESANITY;
*GSL_ENOMEM = *Math::GSL::Rootsc::GSL_ENOMEM;
*GSL_EBADFUNC = *Math::GSL::Rootsc::GSL_EBADFUNC;
*GSL_ERUNAWAY = *Math::GSL::Rootsc::GSL_ERUNAWAY;
*GSL_EMAXITER = *Math::GSL::Rootsc::GSL_EMAXITER;
*GSL_EZERODIV = *Math::GSL::Rootsc::GSL_EZERODIV;
*GSL_EBADTOL = *Math::GSL::Rootsc::GSL_EBADTOL;
*GSL_ETOL = *Math::GSL::Rootsc::GSL_ETOL;
*GSL_EUNDRFLW = *Math::GSL::Rootsc::GSL_EUNDRFLW;
*GSL_EOVRFLW = *Math::GSL::Rootsc::GSL_EOVRFLW;
*GSL_ELOSS = *Math::GSL::Rootsc::GSL_ELOSS;
*GSL_EROUND = *Math::GSL::Rootsc::GSL_EROUND;
*GSL_EBADLEN = *Math::GSL::Rootsc::GSL_EBADLEN;
*GSL_ENOTSQR = *Math::GSL::Rootsc::GSL_ENOTSQR;
*GSL_ESING = *Math::GSL::Rootsc::GSL_ESING;
*GSL_EDIVERGE = *Math::GSL::Rootsc::GSL_EDIVERGE;
*GSL_EUNSUP = *Math::GSL::Rootsc::GSL_EUNSUP;
*GSL_EUNIMPL = *Math::GSL::Rootsc::GSL_EUNIMPL;
*GSL_ECACHE = *Math::GSL::Rootsc::GSL_ECACHE;
*GSL_ETABLE = *Math::GSL::Rootsc::GSL_ETABLE;
*GSL_ENOPROG = *Math::GSL::Rootsc::GSL_ENOPROG;
*GSL_ENOPROGJ = *Math::GSL::Rootsc::GSL_ENOPROGJ;
*GSL_ETOLF = *Math::GSL::Rootsc::GSL_ETOLF;
*GSL_ETOLX = *Math::GSL::Rootsc::GSL_ETOLX;
*GSL_ETOLG = *Math::GSL::Rootsc::GSL_ETOLG;
*GSL_EOF = *Math::GSL::Rootsc::GSL_EOF;
my %__gsl_root_fsolver_bisection_hash;
tie %__gsl_root_fsolver_bisection_hash,"Math::GSL::Roots::gsl_root_fsolver_type", $Math::GSL::Rootsc::gsl_root_fsolver_bisection;
$gsl_root_fsolver_bisection= \%__gsl_root_fsolver_bisection_hash;
bless $gsl_root_fsolver_bisection, Math::GSL::Roots::gsl_root_fsolver_type;
my %__gsl_root_fsolver_brent_hash;
tie %__gsl_root_fsolver_brent_hash,"Math::GSL::Roots::gsl_root_fsolver_type", $Math::GSL::Rootsc::gsl_root_fsolver_brent;
$gsl_root_fsolver_brent= \%__gsl_root_fsolver_brent_hash;
bless $gsl_root_fsolver_brent, Math::GSL::Roots::gsl_root_fsolver_type;
my %__gsl_root_fsolver_falsepos_hash;
tie %__gsl_root_fsolver_falsepos_hash,"Math::GSL::Roots::gsl_root_fsolver_type", $Math::GSL::Rootsc::gsl_root_fsolver_falsepos;
$gsl_root_fsolver_falsepos= \%__gsl_root_fsolver_falsepos_hash;
bless $gsl_root_fsolver_falsepos, Math::GSL::Roots::gsl_root_fsolver_type;
my %__gsl_root_fdfsolver_newton_hash;
tie %__gsl_root_fdfsolver_newton_hash,"Math::GSL::Roots::gsl_root_fdfsolver_type", $Math::GSL::Rootsc::gsl_root_fdfsolver_newton;
$gsl_root_fdfsolver_newton= \%__gsl_root_fdfsolver_newton_hash;
bless $gsl_root_fdfsolver_newton, Math::GSL::Roots::gsl_root_fdfsolver_type;
my %__gsl_root_fdfsolver_secant_hash;
tie %__gsl_root_fdfsolver_secant_hash,"Math::GSL::Roots::gsl_root_fdfsolver_type", $Math::GSL::Rootsc::gsl_root_fdfsolver_secant;
$gsl_root_fdfsolver_secant= \%__gsl_root_fdfsolver_secant_hash;
bless $gsl_root_fdfsolver_secant, Math::GSL::Roots::gsl_root_fdfsolver_type;
my %__gsl_root_fdfsolver_steffenson_hash;
tie %__gsl_root_fdfsolver_steffenson_hash,"Math::GSL::Roots::gsl_root_fdfsolver_type", $Math::GSL::Rootsc::gsl_root_fdfsolver_steffenson;
$gsl_root_fdfsolver_steffenson= \%__gsl_root_fdfsolver_steffenson_hash;
bless $gsl_root_fdfsolver_steffenson, Math::GSL::Roots::gsl_root_fdfsolver_type;
 @EXPORT_OK = qw/
               gsl_root_fsolver_alloc
               gsl_root_fsolver_free
               gsl_root_fsolver_set
               gsl_root_fsolver_iterate
               gsl_root_fsolver_name
               gsl_root_fsolver_root
               gsl_root_fsolver_x_lower
               gsl_root_fsolver_x_upper
               gsl_root_fdfsolver_alloc
               gsl_root_fdfsolver_set
               gsl_root_fdfsolver_iterate
               gsl_root_fdfsolver_free
               gsl_root_fdfsolver_name
               gsl_root_fdfsolver_root
               gsl_root_test_interval
               gsl_root_test_residual
               gsl_root_test_delta
               $gsl_root_fsolver_bisection
               $gsl_root_fsolver_brent
               $gsl_root_fsolver_falsepos
               $gsl_root_fdfsolver_newton
               $gsl_root_fdfsolver_secant
               $gsl_root_fdfsolver_steffenson
             /;
%EXPORT_TAGS = ( all => [ @EXPORT_OK ] );
__END__
=encoding utf8
=head1 NAME
Math::GSL::Roots - Find roots of arbitrary 1-D functions
=head1 SYNOPSIS
    use Math::GSL::Roots qw/:all/;
=head1 DESCRIPTION
=over
=item * C<gsl_root_fsolver_alloc($T)> -
This function returns a pointer to a newly allocated instance of a solver of
type C<$T>. C<$T> must be one of the constant included with this module. If there is
insufficient memory to create the solver then the function returns a null
pointer and the error handler is invoked with an error code of $GSL_ENOMEM.
=item * C<gsl_root_fsolver_free($s)> -
Don't call this function explicitly. It will be called automatically in DESTROY for fsolver.
=item * C<gsl_root_fsolver_set($s, $fspec, $x_lower, $x_upper)> -
This function initializes, or reinitializes, an existing solver C<$s>
to use the function described by C<$fspec> and the initial search interval
[C<$x_lower>, C<$x_upper>]. C<$fspec> may either be
=over
=item *
a I<coderef>, e.g.
  $fspec = sub { ... };
or
  sub f { ... };
  $fspec = \&f;
=item *
an arrayref with elements [ I<$coderef>, I<$params> ]
=back
The coderef is called as
      &$coderef( $x, $params );
and should return the function evaluated at C<$x, $params>. For example, to
find the root of a quadratic with run-time specified coefficients C<3, 2, 22>,
  $f = sub {
             my ( $x, $params ) = @_;
             return $params->[0] + $x * $params->[1] + $x**2 * $params->[2];
           };
  $fspec = [ $f, [ 3, 2, 22 ];
  gsl_root_fsolver_set( $s, $fspec, $x_lower, $x_upper );
If there are no extra parameters, set C<$fspec> to the function to be evaluated:
  $fspec = sub {
             my ( $x ) = shift;
             return  $x + $x**2;
           };
  gsl_root_fsolver_set( $s, $fspec, $x_lower, $x_upper );
Don't apply C<gsl_root_fsolver_set> twice to the same fsolver.
It will cause a memory leak. Instead of this you should create new fsolver.
=item * C<gsl_root_fsolver_iterate($s)> -
This function performs a single iteration of the solver $s. If the iteration
encounters an unexpected problem then an error code will be returned (the
Math::GSL::Errno has to be included),
$GSL_EBADFUNC - The iteration encountered a singular point where the function
or its derivative evaluated to Inf or NaN.
$GSL_EZERODIV - The derivative of the function vanished at the iteration point,
preventing the algorithm from continuing without a division by zero.
=item * C<gsl_root_fsolver_name($s)> -
This function returns the name of the solver use within the $s solver.
=item * C<gsl_root_fsolver_root($s)> -
This function returns the current estimate of the root for the solver $s.
=item * C<gsl_root_fsolver_x_lower($s)> -
This function returns the current lower value of the bracketing interval for the solver $s.
=item * C<gsl_root_fsolver_x_upper($s)> -
This function returns the current lower value of the bracketing interval for the solver $s.
=item * C<gsl_root_fdfsolver_alloc($T)> -
This function returns a pointer to a newly allocated instance of a
derivative-based solver of type $T. If there is insufficient memory to create
the solver then the function returns a null pointer and the error handler is
invoked with an error code of $GSL_ENOMEM.
=item * C<gsl_root_fdfsolver_set($s, $fspec, $root)> -
This function initializes, or reinitializes, an existing fdfsolver C<$s> to use the
function and its derivatives specified by C<$fspec> and the initial guess C<$root.> 
C<$fspec> may either be:
=over
=item *
A hashref with elements C<f>, C<df>, C<fdf>.
=item *
An arrayref with elements C<[ $hashref, $params ]>
where C<$hashref> has elements  C<f>, C<df>, C<fdf>;
=back
The hashref elements are
=over
=item *
C<f>
A coderef returning the value of the function at a given C<x>. It is called as C<&$f($x, $params)>.
=item *
C<df>
A coderef returning the value of the derivative of the function with
respect to C<x>. It is called as C<&$df($x, $params)>.
=item *
C<fdf>
A coderef returning the value of the function and its derivative with
respect to C<x>. It is called as C<&$fdf($x, $params)>.
=back
For example, to find the root of a quadratic with run-time specified coefficients C<3, 2, 22>,
  $fdf = {
      f => sub {
          my ( $x, $params ) = @_;
          return $params->[0] + $x * $params->[1] + $x**2 * $params->[2];
      },
      df => sub {
          my ( $x, $params ) = @_;
          $params->[1] + 2 * $x * $params->[2];
      },
      fdf => sub {
          my ( $x, $params ) = @_;
          return
            $params->[0] + $x * $params->[1] + $x**2 * $params->[2],
            $params->[1] + 2 * $x * $params->[2];
      },
  };
  $fspec = [ $fdf, [ 3, 2, 22 ];
  gsl_root_fdsolver_set( $s, $fspec );
If there are no extra parameters, set C<$fspec> to C<$fdf>:
  $fdf = {
      f => sub {
          my $x = shift;
          return $x + $x**2;
      },
      df => sub {
          my $x = shift;
          1 + 2 * $x;
      },
      fdf => sub {
          my $x = shift;
          return
            $x + $x**2,
            1 + 2 * $x;
      },
  };
  gsl_root_fdfsolver_set( $s, $fdf );
Don't apply C<gsl_root_fdffsolver_set> twice to the same fdfsolver.  It
will cause a memory leak. Instead of this you should create new
fdfsolver.
=item * C<gsl_root_fdfsolver_iterate($s)> -
This function performs a single iteration of the solver $s. If the iteration
encounters an unexpected problem then an error code will be returned (the
Math::GSL::Errno has to be included),
$GSL_EBADFUNC - The iteration encountered a singular point where the function or its derivative evaluated to Inf or NaN.
$GSL_EZERODIV - The derivative of the function vanished at the iteration point, preventing the algorithm from continuing without a division by zero.
=item * C<gsl_root_fdfsolver_free($s)> -
Don't call this function explicitly. It will be called automatically in DESTROY for fdfsolver.
=item * C<gsl_root_fdfsolver_name($s)> -
This function returns the name of the solver use within the $s solver.
=item * C<gsl_root_fdfsolver_root($s)> -
This function returns the current estimate of the root for the solver $s.
=item * C<gsl_root_test_interval($x_lower, $x_upper, $epsabs, $epsrel)> -
This function tests for the convergence of the interval [$x_lower, $x_upper]
with absolute error epsabs and relative error $epsrel. The test returns
$GSL_SUCCESS if the following condition is achieved,
    |a - b| < epsabs + epsrel min(|a|,|b|)
 when the interval x = [a,b] does not include the origin. If the interval
 includes the origin then \min(|a|,|b|) is replaced by zero (which is the
 minimum value of |x| over the interval). This ensures that the relative error
 is accurately estimated for roots close to the origin.  This condition on the
 interval also implies that any estimate of the root r in the interval
 satisfies the same condition with respect to the true root r^*,
    |r - r^*| < epsabs + epsrel r^*
  assuming that the true root r^* is contained within the interval.
=item * C<gsl_root_test_residual($f, $epsabs)> -
This function tests the residual value $f against the absolute error bound
$epsabs. The test returns $GSL_SUCCESS if the following condition is achieved,
    |$f| < $epsabs
and returns $GSL_CONTINUE otherwise. This criterion is suitable for situations
where the precise location of the root, x, is unimportant provided a value can
be found where the residual, |f(x)|, is small enough.
=item * C<gsl_root_test_delta($x1, $x0, $epsabs, $epsrel)> -
This function tests for the convergence of the sequence ..., $x0, $x1 with
absolute error $epsabs and relative error $epsrel. The test returns
$GSL_SUCCESS if the following condition is achieved,
    |x_1 - x_0| < epsabs + epsrel |x_1|
and returns $GSL_CONTINUE otherwise.
=back
This module also includes the following constants :
=over
=item * C<$gsl_root_fsolver_bisection> -
The bisection algorithm is the simplest method of bracketing the roots of a
function. It is the slowest algorithm provided by the library, with linear
convergence. On each iteration, the interval is bisected and the value of the
function at the midpoint is calculated. The sign of this value is used to
determine which half of the interval does not contain a root. That half is
discarded to give a new, smaller interval containing the root. This procedure
can be continued indefinitely until the interval is sufficiently small. At any
time the current estimate of the root is taken as the midpoint of the interval.
=item * C<$gsl_root_fsolver_brent> -
The Brent-Dekker method (referred to here as Brent's method) combines an
interpolation strategy with the bisection algorithm. This produces a fast
algorithm which is still robust. On each iteration Brent's method approximates
the function using an interpolating curve. On the first iteration this is a
linear interpolation of the two endpoints. For subsequent iterations the
algorithm uses an inverse quadratic fit to the last three points, for higher
accuracy. The intercept of the interpolating curve with the x-axis is taken as
a guess for the root. If it lies within the bounds of the current interval then
the interpolating point is accepted, and used to generate a smaller interval.
If the interpolating point is not accepted then the algorithm falls back to an
ordinary bisection step. The best estimate of the root is taken from the most
recent interpolation or bisection.
=item * C<$gsl_root_fsolver_falsepos> -
The false position algorithm is a method of finding roots based on linear
interpolation. Its convergence is linear, but it is usually faster than
bisection. On each iteration a line is drawn between the endpoints (a,f(a)) and
(b,f(b)) and the point where this line crosses the x-axis taken as a
"midpoint". The value of the function at this point is calculated and its sign
is used to determine which side of the interval does not contain a root. That
side is discarded to give a new, smaller interval containing the root. This
procedure can be continued indefinitely until the interval is sufficiently
small. The best estimate of the root is taken from the linear interpolation of
the interval on the current iteration.
=item * C<$gsl_root_fdfsolver_newton> -
Newton's Method is the standard root-polishing algorithm. The algorithm begins
with an initial guess for the location of the root. On each iteration, a line
tangent to the function f is drawn at that position. The point where this line
crosses the x-axis becomes the new guess. The iteration is defined by the
following sequence, x_{i+1} = x_i - f(x_i)/f'(x_i) Newton's method converges
quadratically for single roots, and linearly for multiple roots.
=item * C<$gsl_root_fdfsolver_secant> -
The secant method is a simplified version of Newton's method which does not
require the computation of the derivative on every step.  On its first
iteration the algorithm begins with Newton's method, using the derivative to
compute a first step,
    x_1 = x_0 - f(x_0)/f'(x_0)
Subsequent iterations avoid the evaluation of the derivative by replacing it
with a numerical estimate, the slope of the line through the previous two
points,
    x_{i+1} = x_i f(x_i) / f'_{est}
where
    f'_{est} = (f(x_i) - f(x_{i-1})/(x_i - x_{i-1})
When the derivative does not change significantly in the vicinity of the root
the secant method gives a useful saving. Asymptotically the secant method is
faster than Newton's method whenever the cost of evaluating the derivative is
more than 0.44 times the cost of evaluating the function itself. As with all
methods of computing a numerical derivative the estimate can suffer from
cancellation errors if the separation of the points becomes too small.
On single roots, the method has a convergence of order (1 + \sqrt 5)/2
(approximately 1.62). It converges linearly for multiple roots.
=item * C<$gsl_root_fdfsolver_steffenson> -
The Steffenson Method provides the fastest convergence of all the routines. It
combines the basic Newton algorithm with an Aitken “delta-squared”
acceleration. If the Newton iterates are x_i then the acceleration procedure
generates a new sequence R_i:
    R_i = x_i - (x_{i+1} - x_i)^2 / (x_{i+2} - 2 x_{i+1} + x_{i})
which converges faster than the original sequence under reasonable conditions.
The new sequence requires three terms before it can produce its first value so
the method returns accelerated values on the second and subsequent iterations.
On the first iteration it returns the ordinary Newton estimate. The Newton
iterate is also returned if the denominator of the acceleration term ever
becomes zero.
As with all acceleration procedures this method can become unstable if the
function is not well-behaved.
=back
For more information about these functions, we refer you to the official GSL
documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
=head1 AUTHORS
Jonathan "Duke" Leto <jonathan@leto.net> and Thierry Moisan <thierry.moisan@gmail.com>
=head1 COPYRIGHT AND LICENSE
Copyright (C) 2008-2011 Jonathan "Duke" Leto and Thierry Moisan
This program is free software; you can redistribute it and/or modify it
under the same terms as Perl itself.
=cut
1;
 |