| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 
 | # This file was automatically generated by SWIG (http://www.swig.org).
# Version 4.0.1
#
# Do not make changes to this file unless you know what you are doing--modify
# the SWIG interface file instead.
package Math::GSL::Randist;
use base qw(Exporter);
use base qw(DynaLoader);
package Math::GSL::Randistc;
bootstrap Math::GSL::Randist;
package Math::GSL::Randist;
@EXPORT = qw();
# ---------- BASE METHODS -------------
package Math::GSL::Randist;
sub TIEHASH {
    my ($classname,$obj) = @_;
    return bless $obj, $classname;
}
sub CLEAR { }
sub FIRSTKEY { }
sub NEXTKEY { }
sub FETCH {
    my ($self,$field) = @_;
    my $member_func = "swig_${field}_get";
    $self->$member_func();
}
sub STORE {
    my ($self,$field,$newval) = @_;
    my $member_func = "swig_${field}_set";
    $self->$member_func($newval);
}
sub this {
    my $ptr = shift;
    return tied(%$ptr);
}
# ------- FUNCTION WRAPPERS --------
package Math::GSL::Randist;
*gsl_error = *Math::GSL::Randistc::gsl_error;
*gsl_stream_printf = *Math::GSL::Randistc::gsl_stream_printf;
*gsl_strerror = *Math::GSL::Randistc::gsl_strerror;
*gsl_set_error_handler = *Math::GSL::Randistc::gsl_set_error_handler;
*gsl_set_error_handler_off = *Math::GSL::Randistc::gsl_set_error_handler_off;
*gsl_set_stream_handler = *Math::GSL::Randistc::gsl_set_stream_handler;
*gsl_set_stream = *Math::GSL::Randistc::gsl_set_stream;
*gsl_ran_dir_2d = *Math::GSL::Randistc::gsl_ran_dir_2d;
*gsl_ran_dir_2d_trig_method = *Math::GSL::Randistc::gsl_ran_dir_2d_trig_method;
*gsl_ran_dir_3d = *Math::GSL::Randistc::gsl_ran_dir_3d;
*gsl_ran_bivariate_gaussian = *Math::GSL::Randistc::gsl_ran_bivariate_gaussian;
*gsl_ran_dirichlet = *Math::GSL::Randistc::gsl_ran_dirichlet;
*gsl_ran_dirichlet_pdf = *Math::GSL::Randistc::gsl_ran_dirichlet_pdf;
*gsl_ran_dirichlet_lnpdf = *Math::GSL::Randistc::gsl_ran_dirichlet_lnpdf;
*gsl_ran_multinomial = *Math::GSL::Randistc::gsl_ran_multinomial;
*gsl_ran_multinomial_pdf = *Math::GSL::Randistc::gsl_ran_multinomial_pdf;
*gsl_ran_multinomial_lnpdf = *Math::GSL::Randistc::gsl_ran_multinomial_lnpdf;
*gsl_ran_dir_nd = *Math::GSL::Randistc::gsl_ran_dir_nd;
*gsl_ran_bernoulli = *Math::GSL::Randistc::gsl_ran_bernoulli;
*gsl_ran_bernoulli_pdf = *Math::GSL::Randistc::gsl_ran_bernoulli_pdf;
*gsl_ran_beta = *Math::GSL::Randistc::gsl_ran_beta;
*gsl_ran_beta_pdf = *Math::GSL::Randistc::gsl_ran_beta_pdf;
*gsl_ran_binomial = *Math::GSL::Randistc::gsl_ran_binomial;
*gsl_ran_binomial_knuth = *Math::GSL::Randistc::gsl_ran_binomial_knuth;
*gsl_ran_binomial_tpe = *Math::GSL::Randistc::gsl_ran_binomial_tpe;
*gsl_ran_binomial_pdf = *Math::GSL::Randistc::gsl_ran_binomial_pdf;
*gsl_ran_exponential = *Math::GSL::Randistc::gsl_ran_exponential;
*gsl_ran_exponential_pdf = *Math::GSL::Randistc::gsl_ran_exponential_pdf;
*gsl_ran_exppow = *Math::GSL::Randistc::gsl_ran_exppow;
*gsl_ran_exppow_pdf = *Math::GSL::Randistc::gsl_ran_exppow_pdf;
*gsl_ran_cauchy = *Math::GSL::Randistc::gsl_ran_cauchy;
*gsl_ran_cauchy_pdf = *Math::GSL::Randistc::gsl_ran_cauchy_pdf;
*gsl_ran_chisq = *Math::GSL::Randistc::gsl_ran_chisq;
*gsl_ran_chisq_pdf = *Math::GSL::Randistc::gsl_ran_chisq_pdf;
*gsl_ran_erlang = *Math::GSL::Randistc::gsl_ran_erlang;
*gsl_ran_erlang_pdf = *Math::GSL::Randistc::gsl_ran_erlang_pdf;
*gsl_ran_fdist = *Math::GSL::Randistc::gsl_ran_fdist;
*gsl_ran_fdist_pdf = *Math::GSL::Randistc::gsl_ran_fdist_pdf;
*gsl_ran_flat = *Math::GSL::Randistc::gsl_ran_flat;
*gsl_ran_flat_pdf = *Math::GSL::Randistc::gsl_ran_flat_pdf;
*gsl_ran_gamma = *Math::GSL::Randistc::gsl_ran_gamma;
*gsl_ran_gamma_int = *Math::GSL::Randistc::gsl_ran_gamma_int;
*gsl_ran_gamma_pdf = *Math::GSL::Randistc::gsl_ran_gamma_pdf;
*gsl_ran_gamma_mt = *Math::GSL::Randistc::gsl_ran_gamma_mt;
*gsl_ran_gamma_knuth = *Math::GSL::Randistc::gsl_ran_gamma_knuth;
*gsl_ran_gaussian = *Math::GSL::Randistc::gsl_ran_gaussian;
*gsl_ran_gaussian_ratio_method = *Math::GSL::Randistc::gsl_ran_gaussian_ratio_method;
*gsl_ran_gaussian_ziggurat = *Math::GSL::Randistc::gsl_ran_gaussian_ziggurat;
*gsl_ran_gaussian_pdf = *Math::GSL::Randistc::gsl_ran_gaussian_pdf;
*gsl_ran_ugaussian = *Math::GSL::Randistc::gsl_ran_ugaussian;
*gsl_ran_ugaussian_ratio_method = *Math::GSL::Randistc::gsl_ran_ugaussian_ratio_method;
*gsl_ran_ugaussian_pdf = *Math::GSL::Randistc::gsl_ran_ugaussian_pdf;
*gsl_ran_gaussian_tail = *Math::GSL::Randistc::gsl_ran_gaussian_tail;
*gsl_ran_gaussian_tail_pdf = *Math::GSL::Randistc::gsl_ran_gaussian_tail_pdf;
*gsl_ran_ugaussian_tail = *Math::GSL::Randistc::gsl_ran_ugaussian_tail;
*gsl_ran_ugaussian_tail_pdf = *Math::GSL::Randistc::gsl_ran_ugaussian_tail_pdf;
*gsl_ran_bivariate_gaussian_pdf = *Math::GSL::Randistc::gsl_ran_bivariate_gaussian_pdf;
*gsl_ran_landau = *Math::GSL::Randistc::gsl_ran_landau;
*gsl_ran_landau_pdf = *Math::GSL::Randistc::gsl_ran_landau_pdf;
*gsl_ran_geometric = *Math::GSL::Randistc::gsl_ran_geometric;
*gsl_ran_geometric_pdf = *Math::GSL::Randistc::gsl_ran_geometric_pdf;
*gsl_ran_hypergeometric = *Math::GSL::Randistc::gsl_ran_hypergeometric;
*gsl_ran_hypergeometric_pdf = *Math::GSL::Randistc::gsl_ran_hypergeometric_pdf;
*gsl_ran_gumbel1 = *Math::GSL::Randistc::gsl_ran_gumbel1;
*gsl_ran_gumbel1_pdf = *Math::GSL::Randistc::gsl_ran_gumbel1_pdf;
*gsl_ran_gumbel2 = *Math::GSL::Randistc::gsl_ran_gumbel2;
*gsl_ran_gumbel2_pdf = *Math::GSL::Randistc::gsl_ran_gumbel2_pdf;
*gsl_ran_logistic = *Math::GSL::Randistc::gsl_ran_logistic;
*gsl_ran_logistic_pdf = *Math::GSL::Randistc::gsl_ran_logistic_pdf;
*gsl_ran_lognormal = *Math::GSL::Randistc::gsl_ran_lognormal;
*gsl_ran_lognormal_pdf = *Math::GSL::Randistc::gsl_ran_lognormal_pdf;
*gsl_ran_logarithmic = *Math::GSL::Randistc::gsl_ran_logarithmic;
*gsl_ran_logarithmic_pdf = *Math::GSL::Randistc::gsl_ran_logarithmic_pdf;
*gsl_ran_negative_binomial = *Math::GSL::Randistc::gsl_ran_negative_binomial;
*gsl_ran_negative_binomial_pdf = *Math::GSL::Randistc::gsl_ran_negative_binomial_pdf;
*gsl_ran_pascal = *Math::GSL::Randistc::gsl_ran_pascal;
*gsl_ran_pascal_pdf = *Math::GSL::Randistc::gsl_ran_pascal_pdf;
*gsl_ran_pareto = *Math::GSL::Randistc::gsl_ran_pareto;
*gsl_ran_pareto_pdf = *Math::GSL::Randistc::gsl_ran_pareto_pdf;
*gsl_ran_poisson = *Math::GSL::Randistc::gsl_ran_poisson;
*gsl_ran_poisson_array = *Math::GSL::Randistc::gsl_ran_poisson_array;
*gsl_ran_poisson_pdf = *Math::GSL::Randistc::gsl_ran_poisson_pdf;
*gsl_ran_rayleigh = *Math::GSL::Randistc::gsl_ran_rayleigh;
*gsl_ran_rayleigh_pdf = *Math::GSL::Randistc::gsl_ran_rayleigh_pdf;
*gsl_ran_rayleigh_tail = *Math::GSL::Randistc::gsl_ran_rayleigh_tail;
*gsl_ran_rayleigh_tail_pdf = *Math::GSL::Randistc::gsl_ran_rayleigh_tail_pdf;
*gsl_ran_tdist = *Math::GSL::Randistc::gsl_ran_tdist;
*gsl_ran_tdist_pdf = *Math::GSL::Randistc::gsl_ran_tdist_pdf;
*gsl_ran_laplace = *Math::GSL::Randistc::gsl_ran_laplace;
*gsl_ran_laplace_pdf = *Math::GSL::Randistc::gsl_ran_laplace_pdf;
*gsl_ran_levy = *Math::GSL::Randistc::gsl_ran_levy;
*gsl_ran_levy_skew = *Math::GSL::Randistc::gsl_ran_levy_skew;
*gsl_ran_weibull = *Math::GSL::Randistc::gsl_ran_weibull;
*gsl_ran_weibull_pdf = *Math::GSL::Randistc::gsl_ran_weibull_pdf;
*gsl_ran_shuffle = *Math::GSL::Randistc::gsl_ran_shuffle;
*gsl_ran_choose = *Math::GSL::Randistc::gsl_ran_choose;
*gsl_ran_sample = *Math::GSL::Randistc::gsl_ran_sample;
*gsl_ran_discrete_preproc = *Math::GSL::Randistc::gsl_ran_discrete_preproc;
*gsl_ran_discrete_free = *Math::GSL::Randistc::gsl_ran_discrete_free;
*gsl_ran_discrete = *Math::GSL::Randistc::gsl_ran_discrete;
*gsl_ran_discrete_pdf = *Math::GSL::Randistc::gsl_ran_discrete_pdf;
*our_gsl_ran_shuffle = *Math::GSL::Randistc::our_gsl_ran_shuffle;
*our_gsl_ran_choose = *Math::GSL::Randistc::our_gsl_ran_choose;
*our_gsl_ran_sample = *Math::GSL::Randistc::our_gsl_ran_sample;
############# Class : Math::GSL::Randist::gsl_ran_discrete_t ##############
package Math::GSL::Randist::gsl_ran_discrete_t;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::Randist );
%OWNER = ();
%ITERATORS = ();
*swig_K_get = *Math::GSL::Randistc::gsl_ran_discrete_t_K_get;
*swig_K_set = *Math::GSL::Randistc::gsl_ran_discrete_t_K_set;
*swig_A_get = *Math::GSL::Randistc::gsl_ran_discrete_t_A_get;
*swig_A_set = *Math::GSL::Randistc::gsl_ran_discrete_t_A_set;
*swig_F_get = *Math::GSL::Randistc::gsl_ran_discrete_t_F_get;
*swig_F_set = *Math::GSL::Randistc::gsl_ran_discrete_t_F_set;
sub new {
    my $pkg = shift;
    my $self = Math::GSL::Randistc::new_gsl_ran_discrete_t(@_);
    bless $self, $pkg if defined($self);
}
sub DESTROY {
    return unless $_[0]->isa('HASH');
    my $self = tied(%{$_[0]});
    return unless defined $self;
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
        Math::GSL::Randistc::delete_gsl_ran_discrete_t($self);
        delete $OWNER{$self};
    }
}
sub DISOWN {
    my $self = shift;
    my $ptr = tied(%$self);
    delete $OWNER{$ptr};
}
sub ACQUIRE {
    my $self = shift;
    my $ptr = tied(%$self);
    $OWNER{$ptr} = 1;
}
# ------- VARIABLE STUBS --------
package Math::GSL::Randist;
*GSL_VERSION = *Math::GSL::Randistc::GSL_VERSION;
*GSL_MAJOR_VERSION = *Math::GSL::Randistc::GSL_MAJOR_VERSION;
*GSL_MINOR_VERSION = *Math::GSL::Randistc::GSL_MINOR_VERSION;
*GSL_POSZERO = *Math::GSL::Randistc::GSL_POSZERO;
*GSL_NEGZERO = *Math::GSL::Randistc::GSL_NEGZERO;
*GSL_SUCCESS = *Math::GSL::Randistc::GSL_SUCCESS;
*GSL_FAILURE = *Math::GSL::Randistc::GSL_FAILURE;
*GSL_CONTINUE = *Math::GSL::Randistc::GSL_CONTINUE;
*GSL_EDOM = *Math::GSL::Randistc::GSL_EDOM;
*GSL_ERANGE = *Math::GSL::Randistc::GSL_ERANGE;
*GSL_EFAULT = *Math::GSL::Randistc::GSL_EFAULT;
*GSL_EINVAL = *Math::GSL::Randistc::GSL_EINVAL;
*GSL_EFAILED = *Math::GSL::Randistc::GSL_EFAILED;
*GSL_EFACTOR = *Math::GSL::Randistc::GSL_EFACTOR;
*GSL_ESANITY = *Math::GSL::Randistc::GSL_ESANITY;
*GSL_ENOMEM = *Math::GSL::Randistc::GSL_ENOMEM;
*GSL_EBADFUNC = *Math::GSL::Randistc::GSL_EBADFUNC;
*GSL_ERUNAWAY = *Math::GSL::Randistc::GSL_ERUNAWAY;
*GSL_EMAXITER = *Math::GSL::Randistc::GSL_EMAXITER;
*GSL_EZERODIV = *Math::GSL::Randistc::GSL_EZERODIV;
*GSL_EBADTOL = *Math::GSL::Randistc::GSL_EBADTOL;
*GSL_ETOL = *Math::GSL::Randistc::GSL_ETOL;
*GSL_EUNDRFLW = *Math::GSL::Randistc::GSL_EUNDRFLW;
*GSL_EOVRFLW = *Math::GSL::Randistc::GSL_EOVRFLW;
*GSL_ELOSS = *Math::GSL::Randistc::GSL_ELOSS;
*GSL_EROUND = *Math::GSL::Randistc::GSL_EROUND;
*GSL_EBADLEN = *Math::GSL::Randistc::GSL_EBADLEN;
*GSL_ENOTSQR = *Math::GSL::Randistc::GSL_ENOTSQR;
*GSL_ESING = *Math::GSL::Randistc::GSL_ESING;
*GSL_EDIVERGE = *Math::GSL::Randistc::GSL_EDIVERGE;
*GSL_EUNSUP = *Math::GSL::Randistc::GSL_EUNSUP;
*GSL_EUNIMPL = *Math::GSL::Randistc::GSL_EUNIMPL;
*GSL_ECACHE = *Math::GSL::Randistc::GSL_ECACHE;
*GSL_ETABLE = *Math::GSL::Randistc::GSL_ETABLE;
*GSL_ENOPROG = *Math::GSL::Randistc::GSL_ENOPROG;
*GSL_ENOPROGJ = *Math::GSL::Randistc::GSL_ENOPROGJ;
*GSL_ETOLF = *Math::GSL::Randistc::GSL_ETOLF;
*GSL_ETOLX = *Math::GSL::Randistc::GSL_ETOLX;
*GSL_ETOLG = *Math::GSL::Randistc::GSL_ETOLG;
*GSL_EOF = *Math::GSL::Randistc::GSL_EOF;
our @EXPORT_OK = qw/gsl_ran_bernoulli gsl_ran_bernoulli_pdf gsl_ran_beta
                    gsl_ran_beta_pdf gsl_ran_binomial gsl_ran_binomial_knuth
                    gsl_ran_binomial_tpe gsl_ran_binomial_pdf gsl_ran_exponential
                    gsl_ran_exponential_pdf gsl_ran_exppow gsl_ran_exppow_pdf
                    gsl_ran_cauchy gsl_ran_cauchy_pdf gsl_ran_chisq
                    gsl_ran_chisq_pdf gsl_ran_dirichlet gsl_ran_dirichlet_pdf
                    gsl_ran_dirichlet_lnpdf gsl_ran_erlang gsl_ran_erlang_pdf
                    gsl_ran_fdist gsl_ran_fdist_pdf gsl_ran_flat
                    gsl_ran_flat_pdf gsl_ran_gamma gsl_ran_gamma_int
                    gsl_ran_gamma_pdf gsl_ran_gamma_mt gsl_ran_gamma_knuth
                    gsl_ran_gaussian gsl_ran_gaussian_ratio_method gsl_ran_gaussian_ziggurat
                    gsl_ran_gaussian_pdf gsl_ran_ugaussian gsl_ran_ugaussian_ratio_method
                    gsl_ran_ugaussian_pdf gsl_ran_gaussian_tail gsl_ran_gaussian_tail_pdf
                    gsl_ran_ugaussian_tail gsl_ran_ugaussian_tail_pdf gsl_ran_bivariate_gaussian
                    gsl_ran_bivariate_gaussian_pdf gsl_ran_landau gsl_ran_landau_pdf
                    gsl_ran_geometric gsl_ran_geometric_pdf gsl_ran_hypergeometric
                    gsl_ran_hypergeometric_pdf gsl_ran_gumbel1 gsl_ran_gumbel1_pdf
                    gsl_ran_gumbel2 gsl_ran_gumbel2_pdf gsl_ran_logistic
                    gsl_ran_logistic_pdf gsl_ran_lognormal gsl_ran_lognormal_pdf
                    gsl_ran_logarithmic gsl_ran_logarithmic_pdf gsl_ran_multinomial
                    gsl_ran_multinomial_pdf gsl_ran_multinomial_lnpdf
                    gsl_ran_negative_binomial gsl_ran_negative_binomial_pdf gsl_ran_pascal
                    gsl_ran_pascal_pdf gsl_ran_pareto gsl_ran_pareto_pdf
                    gsl_ran_poisson gsl_ran_poisson_array
                    gsl_ran_poisson_pdf gsl_ran_rayleigh gsl_ran_rayleigh_pdf
                    gsl_ran_rayleigh_tail gsl_ran_rayleigh_tail_pdf gsl_ran_tdist
                    gsl_ran_tdist_pdf gsl_ran_laplace gsl_ran_laplace_pdf
                    gsl_ran_levy gsl_ran_levy_skew gsl_ran_weibull
                    gsl_ran_weibull_pdf gsl_ran_dir_2d gsl_ran_dir_2d_trig_method
                    gsl_ran_dir_3d gsl_ran_dir_nd
                    gsl_ran_discrete_t gsl_ran_discrete_free gsl_ran_discrete_preproc
                    gsl_ran_discrete gsl_ran_discrete_pdf
                /;
our %EXPORT_TAGS = (
        all                 => [  @EXPORT_OK ],
        logarithmic         => [ gsl_ran_logarithmic , gsl_ran_logarithmic_pdf ],
        exponential         => [ gsl_ran_exponential , gsl_ran_exponential_pdf ],
        gumbel1             => [ gsl_ran_gumbel1 , gsl_ran_gumbel1_pdf ],
        exppow              => [ gsl_ran_exppow , gsl_ran_exppow_pdf ],
        logistic            => [ gsl_ran_logistic , gsl_ran_logistic_pdf ],
        gaussian            => [
                                 gsl_ran_gaussian , gsl_ran_gaussian_ratio_method , gsl_ran_gaussian_ziggurat,
                                 gsl_ran_gaussian_pdf , gsl_ran_gaussian_tail , gsl_ran_gaussian_tail_pdf
                               ],
        poisson             => [ gsl_ran_poisson , gsl_ran_poisson_array , gsl_ran_poisson_pdf ],
        binomial            => [ gsl_ran_binomial , gsl_ran_binomial_knuth , gsl_ran_binomial_tpe ,
                                 gsl_ran_binomial_pdf ],
        fdist               => [ gsl_ran_fdist , gsl_ran_fdist_pdf ],
        chisq               => [ gsl_ran_chisq , gsl_ran_chisq_pdf ],
        gamma               => [ gsl_ran_gamma , gsl_ran_gamma_int , gsl_ran_gamma_pdf , gsl_ran_gamma_mt , gsl_ran_gamma_knuth ],
        hypergeometric      => [ gsl_ran_hypergeometric , gsl_ran_hypergeometric_pdf ],
        dirichlet           => [ gsl_ran_dirichlet , gsl_ran_dirichlet_pdf , gsl_ran_dirichlet_lnpdf ],
        negative            => [ gsl_ran_negative_binomial , gsl_ran_negative_binomial_pdf ],
        flat                => [ gsl_ran_flat , gsl_ran_flat_pdf ],
        geometric           => [ gsl_ran_geometric , gsl_ran_geometric_pdf ],
        discrete            => [ gsl_ran_discrete , gsl_ran_discrete_pdf],
        tdist               => [ gsl_ran_tdist , gsl_ran_tdist_pdf ],
        ugaussian           => [ gsl_ran_ugaussian , gsl_ran_ugaussian_ratio_method , gsl_ran_ugaussian_pdf ,
                                 gsl_ran_ugaussian_tail , gsl_ran_ugaussian_tail_pdf ],
        rayleigh            => [ gsl_ran_rayleigh , gsl_ran_rayleigh_pdf , gsl_ran_rayleigh_tail ,
                                 gsl_ran_rayleigh_tail_pdf ],
        dir                 => [ gsl_ran_dir_2d , gsl_ran_dir_2d_trig_method , gsl_ran_dir_3d , gsl_ran_dir_nd ],
        pascal              => [ gsl_ran_pascal , gsl_ran_pascal_pdf ],
        gumbel2             => [ gsl_ran_gumbel2 , gsl_ran_gumbel2_pdf ],
        landau              => [ gsl_ran_landau , gsl_ran_landau_pdf ],
        bernoulli           => [ gsl_ran_bernoulli , gsl_ran_bernoulli_pdf ],
        weibull             => [ gsl_ran_weibull , gsl_ran_weibull_pdf ],
        multinomial         => [ gsl_ran_multinomial , gsl_ran_multinomial_pdf , gsl_ran_multinomial_lnpdf ],
        beta                => [ gsl_ran_beta , gsl_ran_beta_pdf ],
        lognormal           => [ gsl_ran_lognormal , gsl_ran_lognormal_pdf ],
        laplace             => [ gsl_ran_laplace , gsl_ran_laplace_pdf ],
        erlang              => [ gsl_ran_erlang , gsl_ran_erlang_pdf ],
        cauchy              => [ gsl_ran_cauchy , gsl_ran_cauchy_pdf ],
        levy                => [ gsl_ran_levy , gsl_ran_levy_skew ],
        bivariate           => [ gsl_ran_bivariate_gaussian , gsl_ran_bivariate_gaussian_pdf ],
        pareto              => [ gsl_ran_pareto , gsl_ran_pareto_pdf ]
);
__END__
=encoding utf8
=head1 NAME
Math::GSL::Randist - Probability Distributions
=head1 SYNOPSIS
 use Math::GSL::RNG;
 use Math::GSL::Randist qw/:all/;
 my $rng = Math::GSL::RNG->new();
 my $coinflip = gsl_ran_bernoulli($rng->raw(), .5);
=head1 DESCRIPTION
Here is a list of all the functions included in this module. For all sampling methods, the first argument $r is a raw gsl_rnd structure retrieve by calling raw() on an Math::GSL::RNG object.
=head2 Bernoulli
=over
=item gsl_ran_bernoulli($r, $p)
This function returns either 0 or 1, the result of a Bernoulli trial with probability $p. The probability distribution for a Bernoulli trial is, p(0) = 1 - $p and  p(1) = $p. $r is a gsl_rng structure.
=item gsl_ran_bernoulli_pdf($k, $p)
This function computes the probability p($k) of obtaining $k from a Bernoulli distribution with probability parameter $p, using the formula given above.
=back
=head2 Beta
=over
=item gsl_ran_beta($r, $a, $b)
This function returns a random variate from the beta distribution. The distribution function is, p($x) dx = {Gamma($a+$b) \ Gamma($a) Gamma($b)} $x**{$a-1} (1-$x)**{$b-1} dx for 0 <= $x <= 1.$r is a gsl_rng structure.
=item gsl_ran_beta_pdf($x, $a, $b)
This function computes the probability density p($x) at $x for a beta distribution with parameters $a and $b, using the formula given above.
=back
=head2 Binomial
=over
=item gsl_ran_binomial($k, $p, $n)
This function returns a random integer from the binomial distribution, the number of successes in n independent trials with probability $p. The probability distribution for binomial variates is p($k) = {$n! \ $k! ($n-$k)! } $p**$k (1-$p)^{$n-$k} for 0 <= $k <= $n.
Uses Binomial Triangle Parallelogram Exponential algorithm.
=item gsl_ran_binomial_knuth($k, $p, $n)
Alternative and original implementation for gsl_ran_binomial using Knuth's algorithm.
=item gsl_ran_binomial_tpe($k, $p, $n)
Same as gsl_ran_binomial.
=item gsl_ran_binomial_pdf($k, $p, $n)
This function computes the probability p($k) of obtaining $k from a binomial distribution with parameters $p and $n, using the formula given above.
=back
=head2 Exponential
=over
=item gsl_ran_exponential($r, $mu)
This function returns a random variate from the exponential distribution with mean $mu. The distribution is, p($x) dx = {1 \ $mu} exp(-$x/$mu) dx for $x >= 0. $r is a gsl_rng structure.
=item gsl_ran_exponential_pdf($x, $mu)
This function computes the probability density p($x) at $x for an exponential distribution with mean $mu, using the formula given above.
=back
=head2 Exponential Power
=over
=item gsl_ran_exppow($r, $a, $b)
This function returns a random variate from the exponential power distribution with scale parameter $a and exponent $b. The distribution is, p(x) dx = {1 / 2 $a Gamma(1+1/$b)} exp(-|$x/$a|**$b) dx for $x >= 0. For $b = 1 this reduces to the Laplace distribution. For $b = 2 it has the same form as a gaussian distribution, but with $a = sqrt(2) sigma. $r is a gsl_rng structure.
=item gsl_ran_exppow_pdf($x, $a, $b)
This function computes the probability density p($x) at $x for an exponential power distribution with scale parameter $a and exponent $b, using the formula given above.
=back
=head2 Cauchy
=over
=item gsl_ran_cauchy($r, $scale)
This function returns a random variate from the Cauchy distribution with
$scale. The probability distribution for Cauchy random variates is,
 p(x) dx = {1 / $scale pi (1 + (x/$$scale)**2) } dx
for x in the range -infinity to +infinity.  The Cauchy distribution is also
known as the Lorentz distribution. $r is a gsl_rng structure.
=item gsl_ran_cauchy_pdf($x, $scale)
This function computes the probability density p($x) at $x for a Cauchy
distribution with $scale, using the formula given above.
=back
=head2 Chi-Squared
=over
=item gsl_ran_chisq($r, $nu)
This function returns a random variate from the chi-squared distribution with $nu degrees of freedom. The distribution function is, p(x) dx = {1 / 2 Gamma($nu/2) } (x/2)**{$nu/2 - 1} exp(-x/2) dx for $x >= 0. $r is a gsl_rng structure.
=item gsl_ran_chisq_pdf($x, $nu)
This function computes the probability density p($x) at $x for a chi-squared distribution with $nu degrees of freedom, using the formula given above.
=back
=head2 Dirichlet
=over
=item gsl_ran_dirichlet($r, $alpha)
This function returns an array of K (where K = length of $alpha array) random
variates from a Dirichlet distribution of order K-1. The distribution function
is
  p(\theta_1, ..., \theta_K) d\theta_1 ... d\theta_K =
     (1/Z) \prod_{i=1}^K \theta_i^{\alpha_i - 1} \delta(1 -\sum_{i=1}^K \theta_i) d\theta_1 ... d\theta_K
for theta_i >= 0 and alpha_i > 0. The delta function ensures that \sum \theta_i
= 1. The normalization factor Z is
  Z = {\prod_{i=1}^K \Gamma(\alpha_i)} / {\Gamma( \sum_{i=1}^K \alpha_i)}
The random variates are generated by sampling K values from gamma distributions
with parameters a=alpha_i, b=1, and renormalizing. See A.M. Law, W.D. Kelton,
Simulation Modeling and Analysis (1991).
=item gsl_ran_dirichlet_pdf($theta, $alpha)
This function computes the probability density p(\theta_1, ... , \theta_K) at
theta[K] for a Dirichlet distribution with parameters alpha[K], using the
formula given above. $alpha and $theta should be array references of the same size.
Theta should be normalized to sum to 1.
=item gsl_ran_dirichlet_lnpdf($theta, $alpha)
This function computes the logarithm of the probability density p(\theta_1, ...
, \theta_K) for a Dirichlet distribution with parameters alpha[K]. $alpha and
$theta should be array references of the same size.
Theta should be normalized to sum to 1.
=back
=head2 Erlang
=over
=item gsl_ran_erlang($r, $scale, $shape)
Equivalent to gsl_ran_gamma($r, $shape, $scale) where $shape is an integer.
=item gsl_ran_erlang_pdf
Equivalent to gsl_ran_gamma_pdf($r, $shape, $scale) where $shape is an integer.
=for comment
This is undoc'd in the main GSL manual for some reason...
=back
=head2 F-distribution
=over
=item gsl_ran_fdist($r, $nu1, $nu2)
This function returns a random variate from the F-distribution with degrees of freedom nu1 and nu2. The distribution function is, p(x) dx = { Gamma(($nu_1 + $nu_2)/2) / Gamma($nu_1/2) Gamma($nu_2/2) } $nu_1**{$nu_1/2} $nu_2**{$nu_2/2} x**{$nu_1/2 - 1} ($nu_2 + $nu_1 x)**{-$nu_1/2 -$nu_2/2} for $x >= 0. $r is a gsl_rng structure.
=item gsl_ran_fdist_pdf($x, $nu1, $nu2)
This function computes the probability density p(x) at x for an F-distribution with nu1 and nu2 degrees of freedom, using the formula given above.
=back
=head2 Uniform/Flat distribution
=over
=item gsl_ran_flat($r, $a, $b)
This function returns a random variate from the flat (uniform) distribution from a to b. The distribution is, p(x) dx = {1 / ($b-$a)} dx if $a <= x < $b and 0 otherwise. $r is a gsl_rng structure.
=item gsl_ran_flat_pdf($x, $a, $b)
This function computes the probability density p($x) at $x for a uniform distribution from $a to $b, using the formula given above.
=back
=head2 Gamma
=over
=item gsl_ran_gamma($r, $shape, $scale)
This function returns a random variate from the gamma distribution. The distribution function is,
          p(x) dx = {1 \over \Gamma($shape) $scale^$shape} x^{$shape-1} e^{-x/$scale} dx
for x > 0.
Uses Marsaglia-Tsang method. Can also be called as gsl_ran_gamma_mt.
=item gsl_ran_gamma_pdf($x, $shape, $scale)
This function computes the probability density p($x) at $x for a gamma distribution with parameters $shape and $scale, using the formula given above.
=item gsl_ran_gamma($r, $shape, $scale)
Same as gsl_ran_gamma.
=item gsl_ran_gamma_knuth($r, $shape, $scale)
Alternative implementation for gsl_ran_gamma, using algorithm in Knuth volume 2.
=for comment
gsl_ran_gamma_int, gsl_ran_gamma_mt removed because those were just internal functions for gsl_ran_gamma
=back
=head2 Gaussian/Normal
=over
=item gsl_ran_gaussian($r, $sigma)
This function returns a Gaussian random variate, with mean zero and standard deviation $sigma. The probability distribution for Gaussian random variates is, p(x) dx = {1 / sqrt{2 pi $sigma**2}} exp(-x**2 / 2 $sigma**2) dx for x in the range -infinity to +infinity. $r is a gsl_rng structure.
Uses Box-Mueller (polar) method.
=item gsl_ran_gaussian_ratio_method($r, $sigma)
This function computes a Gaussian random variate using the alternative Kinderman-Monahan-Leva ratio method.
=item gsl_ran_gaussian_ziggurat($r, $sigma)
This function computes a Gaussian random variate using the alternative Marsaglia-Tsang ziggurat ratio method. The Ziggurat algorithm is the fastest available algorithm in most cases. $r is a gsl_rng structure.
=item gsl_ran_gaussian_pdf($x, $sigma)
This function computes the probability density p($x) at $x for a Gaussian distribution with standard deviation sigma, using the formula given above.
=item gsl_ran_ugaussian($r)
=item gsl_ran_ugaussian_ratio_method($r)
=item gsl_ran_ugaussian_pdf($x)
This function computes results for the unit Gaussian distribution. It is equivalent to the gaussian functions above with a standard deviation of one, sigma = 1.
=item gsl_ran_bivariate_gaussian($r, $sigma_x, $sigma_y, $rho)
This function generates a pair of correlated Gaussian variates, with mean zero, correlation coefficient rho and standard deviations $sigma_x and $sigma_y in the x and y directions. The first value returned is x and the second y. The probability distribution for bivariate Gaussian random variates is, p(x,y) dx dy = {1 / 2 pi $sigma_x $sigma_y sqrt{1-$rho**2}} exp (-(x**2/$sigma_x**2 + y**2/$sigma_y**2 - 2 $rho x y/($sigma_x $sigma_y))/2(1- $rho**2)) dx dy for x,y in the range -infinity to +infinity. The correlation coefficient $rho should lie between 1 and -1. $r is a gsl_rng structure.
=item gsl_ran_bivariate_gaussian_pdf($x, $y, $sigma_x, $sigma_y, $rho)
This function computes the probability density p($x,$y) at ($x,$y) for a bivariate Gaussian distribution with standard deviations $sigma_x, $sigma_y and correlation coefficient $rho, using the formula given above.
=back
=head2 Gaussian Tail
=over
=item gsl_ran_gaussian_tail($r, $a, $sigma)
This function provides random variates from the upper tail of a Gaussian distribution with standard deviation sigma. The values returned are larger than the lower limit a, which must be positive. The probability distribution for Gaussian tail random variates is, p(x) dx = {1 / N($a; $sigma) sqrt{2 pi sigma**2}} exp(- x**2/(2 sigma**2)) dx for x > $a where N($a; $sigma) is the normalization constant, N($a; $sigma) = (1/2) erfc($a / sqrt(2 $sigma**2)). $r is a gsl_rng structure.
=item gsl_ran_gaussian_tail_pdf($x, $a, $gaussian)
This function computes the probability density p($x) at $x for a Gaussian tail distribution with standard deviation sigma and lower limit $a, using the formula given above.
=item gsl_ran_ugaussian_tail($r, $a)
This functions compute results for the tail of a unit Gaussian distribution. It is equivalent to the functions above with a standard deviation of one, $sigma = 1. $r is a gsl_rng structure.
=item gsl_ran_ugaussian_tail_pdf($x, $a)
This functions compute results for the tail of a unit Gaussian distribution. It is equivalent to the functions above with a standard deviation of one, $sigma = 1.
=back
=head2 Landau
=over
=item gsl_ran_landau($r)
This function returns a random variate from the Landau distribution. The probability distribution for Landau random variates is defined analytically by the complex integral, p(x) = (1/(2 \pi i)) \int_{c-i\infty}^{c+i\infty} ds exp(s log(s) + x s) For numerical purposes it is more convenient to use the following equivalent form of the integral, p(x) = (1/\pi) \int_0^\infty dt \exp(-t \log(t) - x t) \sin(\pi t). $r is a gsl_rng structure.
=item gsl_ran_landau_pdf($x)
This function computes the probability density p($x) at $x for the Landau distribution using an approximation to the formula given above.
=back
=head2 Geometric
=over
=item gsl_ran_geometric($r, $p)
This function returns a random integer from the geometric distribution, the number of independent trials with probability $p until the first success. The probability distribution for geometric variates is, p(k) =  p (1-$p)^(k-1) for k >= 1. Note that the distribution begins with k=1 with this definition. There is another convention in which the exponent k-1 is replaced by k. $r is a gsl_rng structure.
=item gsl_ran_geometric_pdf($k, $p)
This function computes the probability p($k) of obtaining $k from a geometric distribution with probability parameter p, using the formula given above.
=back
=head2 Hypergeometric
=over
=item gsl_ran_hypergeometric($r, $n1, $n2, $t)
This function returns a random integer from the hypergeometric distribution. The probability distribution for hypergeometric random variates is, p(k) =  C(n_1, k) C(n_2, t - k) / C(n_1 + n_2, t) where C(a,b) = a!/(b!(a-b)!) and t <= n_1 + n_2. The domain of k is max(0,t-n_2), ..., min(t,n_1). If a population contains n_1 elements of "type 1" and n_2 elements of "type 2" then the hypergeometric distribution gives the probability of obtaining k elements of "type 1" in t samples from the population without replacement. $r is a gsl_rng structure.
=item gsl_ran_hypergeometric_pdf($k, $n1, $n2, $t)
This function computes the probability p(k) of obtaining k from a hypergeometric distribution with parameters $n1, $n2 $t, using the formula given above.
=back
=head2 Gumbel
=over
=item gsl_ran_gumbel1($r, $a, $b)
This function returns a random variate from the Type-1 Gumbel distribution. The Type-1 Gumbel distribution function is, p(x) dx = a b \exp(-(b \exp(-ax) + ax)) dx for -\infty < x < \infty. $r is a gsl_rng structure.
=item gsl_ran_gumbel1_pdf($x, $a, $b)
This function computes the probability density p($x) at $x for a Type-1 Gumbel distribution with parameters $a and $b, using the formula given above.
=item gsl_ran_gumbel2($r, $a, $b)
This function returns a random variate from the Type-2 Gumbel distribution. The Type-2 Gumbel distribution function is, p(x) dx = a b x^{-a-1} \exp(-b x^{-a}) dx for 0 < x < \infty. $r is a gsl_rng structure.
=item gsl_ran_gumbel2_pdf($x, $a, $b)
This function computes the probability density p($x) at $x for a Type-2 Gumbel distribution with parameters $a and $b, using the formula given above.
=back
=head2 Logistic
=over
=item gsl_ran_logistic($r, $a)
This function returns a random variate from the logistic distribution. The distribution function is, p(x) dx = { \exp(-x/a) \over a (1 + \exp(-x/a))^2 } dx for -\infty < x < +\infty. $r is a gsl_rng structure.
=item gsl_ran_logistic_pdf($x, $a)
This function computes the probability density p($x) at $x for a logistic distribution with scale parameter $a, using the formula given above.
=back
=head2 Lognormal
=over
=item gsl_ran_lognormal($r, $zeta, $sigma)
This function returns a random variate from the lognormal distribution. The distribution function is, p(x) dx = {1 \over x \sqrt{2 \pi \sigma^2} } \exp(-(\ln(x) - \zeta)^2/2 \sigma^2) dx for x > 0. $r is a gsl_rng structure.
=item gsl_ran_lognormal_pdf($x, $zeta, $sigma)
This function computes the probability density p($x) at $x for a lognormal distribution with parameters $zeta and $sigma, using the formula given above.
=back
=head2 Logarithmic
=over
=item gsl_ran_logarithmic($r, $p)
This function returns a random integer from the logarithmic distribution. The probability distribution for logarithmic random variates is, p(k) = {-1 \over \log(1-p)} {(p^k \over k)} for k >= 1. $r is a gsl_rng structure.
=item gsl_ran_logarithmic_pdf($k, $p)
This function computes the probability p($k) of obtaining $k from a logarithmic distribution with probability parameter $p, using the formula given above.
=back
=head2 Multinomial
=over
=item gsl_ran_multinomial($r, $P, $N)
This function computes and returns a random sample n[] from the multinomial
distribution formed by N trials from an underlying distribution p[K]. The
distribution function for n[] is,
 P(n_1, n_2, ..., n_K) =
    (N!/(n_1! n_2! ... n_K!)) p_1^n_1 p_2^n_2 ... p_K^n_K
where (n_1, n_2, ..., n_K) are nonnegative integers with sum_{k=1}^K n_k = N,
and (p_1, p_2, ..., p_K) is a probability distribution with \sum p_i = 1. If
the array p[K] is not normalized then its entries will be treated as weights
and normalized appropriately.
Random variates are generated using the conditional binomial method (see C.S.
Davis, The computer generation of multinomial random variates, Comp. Stat. Data
Anal. 16 (1993) 205-217 for details).
=item gsl_ran_multinomial_pdf($counts, $P)
This function returns the probability for the multinomial
distribution P(counts[1], counts[2], ..., counts[K]) with parameters p[K].
=item gsl_ran_multinomial_lnpdf($counts, $P)
This function returns the logarithm of the probability for the multinomial
distribution P(counts[1], counts[2], ..., counts[K]) with parameters p[K].
=back
=head2 Negative Binomial
=over
=item gsl_ran_negative_binomial($r, $p, $n)
This function returns a random integer from the negative binomial distribution, the number of failures occurring before n successes in independent trials with probability p of success. The probability distribution for negative binomial variates is, p(k) = {\Gamma(n + k) \over \Gamma(k+1) \Gamma(n) } p^n (1-p)^k Note that n is not required to be an integer.
=item gsl_ran_negative_binomial_pdf($k, $p, $n)
This function computes the probability p($k) of obtaining $k from a negative binomial distribution with parameters $p and $n, using the formula given above.
=back
=head2 Pascal
=over
=item gsl_ran_pascal($r, $p, $n)
This function returns a random integer from the Pascal distribution. The Pascal distribution is simply a negative binomial distribution with an integer value of $n. p($k) = {($n + $k - 1)! \ $k! ($n - 1)! } $p**$n (1-$p)**$k for $k >= 0. $r is gsl_rng structure
=item gsl_ran_pascal_pdf($k, $p, $n)
This function computes the probability p($k) of obtaining $k from a Pascal distribution with parameters $p and $n, using the formula given above.
=back
=head2 Pareto
=over
=item gsl_ran_pareto($r, $a, $b)
This function returns a random variate from the Pareto distribution of order $a. The distribution function is p($x) dx = ($a/$b) / ($x/$b)^{$a+1} dx for $x >= $b. $r is a gsl_rng structure
=item gsl_ran_pareto_pdf($x, $a, $b)
This function computes the probability density p(x) at x for a Pareto distribution with exponent a and scale b, using the formula given above.
=back
=head2 Poisson
=over
=item gsl_ran_poisson($r, $lambda)
This function returns a random integer from the Poisson distribution with mean
$lambda. $r is a gsl_rng structure. The probability distribution for Poisson
variates is,
 p(k) = {$lambda**$k \ $k!} exp(-$lambda)
for $k >= 0. $r is a gsl_rng structure.
=item gsl_ran_poisson_pdf($k, $lambda)
This function computes the probability p($k) of obtaining $k from a Poisson
distribution with mean $lambda, using the formula given above.
=for Comment
gsl_ran_poisson_array removed b/c it's an undoc'd function which merely returns array of poisson draws
=back
=head2 Rayleigh
=over
=item gsl_ran_rayleigh($r, $sigma)
This function returns a random variate from the Rayleigh distribution with scale parameter sigma. The distribution is, p(x) dx = {x \over \sigma^2} \exp(- x^2/(2 \sigma^2)) dx for x > 0. $r is a gsl_rng structure
=item gsl_ran_rayleigh_pdf($x, $sigma)
This function computes the probability density p($x) at $x for a Rayleigh distribution with scale parameter sigma, using the formula given above.
=item gsl_ran_rayleigh_tail($r, $a, $sigma)
This function returns a random variate from the tail of the Rayleigh distribution with scale parameter $sigma and a lower limit of $a. The distribution is, p(x) dx = {x \over \sigma^2} \exp ((a^2 - x^2) /(2 \sigma^2)) dx for x > a. $r is a gsl_rng structure
=item gsl_ran_rayleigh_tail_pdf($x, $a, $sigma)
This function computes the probability density p($x) at $x for a Rayleigh tail distribution with scale parameter $sigma and lower limit $a, using the formula given above.
=back
=head2 Student-t
=over
=item gsl_ran_tdist($r, $nu)
This function returns a random variate from the t-distribution. The distribution function is, p(x) dx = {\Gamma((\nu + 1)/2) \over \sqrt{\pi \nu} \Gamma(\nu/2)} (1 + x^2/\nu)^{-(\nu + 1)/2} dx for -\infty < x < +\infty.
=item gsl_ran_tdist_pdf($x, $nu)
This function computes the probability density p($x) at $x for a t-distribution with nu degrees of freedom, using the formula given above.
=back
=head2 Laplace
=over
=item gsl_ran_laplace($r, $a)
This function returns a random variate from the Laplace distribution with width $a. The distribution is, p(x) dx = {1 \over 2 a}  \exp(-|x/a|) dx for -\infty < x < \infty.
=item gsl_ran_laplace_pdf($x, $a)
This function computes the probability density p($x) at $x for a Laplace distribution with width $a, using the formula given above.
=back
=head2 Levy
=over
=item gsl_ran_levy($r, $c, $alpha)
This function returns a random variate from the Levy symmetric stable distribution with scale $c and exponent $alpha. The symmetric stable probability distribution is defined by a fourier transform, p(x) = {1 \over 2 \pi} \int_{-\infty}^{+\infty} dt \exp(-it x - |c t|^alpha) There is no explicit solution for the form of p(x) and the library does not define a corresponding pdf function. For \alpha = 1 the distribution reduces to the Cauchy distribution. For \alpha = 2 it is a Gaussian distribution with \sigma = \sqrt{2} c. For \alpha < 1 the tails of the distribution become extremely wide. The algorithm only works for 0 < alpha <= 2. $r is a gsl_rng structure
=item gsl_ran_levy_skew($r, $c, $alpha, $beta)
This function returns a random variate from the Levy skew stable distribution with scale $c, exponent $alpha and skewness parameter $beta. The skewness parameter must lie in the range [-1,1]. The Levy skew stable probability distribution is defined by a fourier transform, p(x) = {1 \over 2 \pi} \int_{-\infty}^{+\infty} dt \exp(-it x - |c t|^alpha (1-i beta sign(t) tan(pi alpha/2))) When \alpha = 1 the term \tan(\pi \alpha/2) is replaced by -(2/\pi)\log|t|. There is no explicit solution for the form of p(x) and the library does not define a corresponding pdf function. For $alpha = 2 the distribution reduces to a Gaussian distribution with $sigma = sqrt(2) $c and the skewness parameter has no effect. For $alpha < 1 the tails of the distribution become extremely wide. The symmetric distribution corresponds to $beta = 0. The algorithm only works for 0 < $alpha <= 2. The Levy alpha-stable distributions have the property that if N alpha-stable variates are drawn from the distribution p(c, \alpha, \beta) then the sum Y = X_1 + X_2 + \dots + X_N will also be distributed as an alpha-stable variate, p(N^(1/\alpha) c, \alpha, \beta). $r is a gsl_rng structure
=back
=head2 Weibull
=over
=item gsl_ran_weibull($r, $scale, $exponent)
This function returns a random variate from the Weibull distribution with
$scale and $exponent (aka scale). The distribution function is
 p(x) dx = {$exponent \over $scale^$exponent} x^{$exponent-1}
           \exp(-(x/$scale)^$exponent) dx
for x >= 0. $r is a gsl_rng structure
=item gsl_ran_weibull_pdf($x, $scale, $exponent)
This function computes the probability density p($x) at $x for a Weibull
distribution with $scale and $exponent, using the formula given above.
=back
=head2 Spherical Vector
=over
=item gsl_ran_dir_2d($r)
This function returns two values. The first is $x and the second is $y of a
random direction vector v = ($x,$y) in two dimensions. The vector is normalized
such that |v|^2 = $x^2 + $y^2 = 1. $r is a gsl_rng structure
=item gsl_ran_dir_2d_trig_method($r)
This function returns two values. The first is $x and the second is $y of a
random direction vector v = ($x,$y) in two dimensions. The vector is normalized
such that |v|^2 = $x^2 + $y^2 = 1. $r is a gsl_rng structure
=item gsl_ran_dir_3d($r)
This function returns three values. The first is $x, the second $y and the third
$z of a random direction vector v = ($x,$y,$z) in three dimensions. The vector
is normalized such that |v|^2 = x^2 + y^2 + z^2 = 1. The method employed is due
to Robert E. Knop (CACM 13, 326 (1970)), and explained in Knuth, v2, 3rd ed,
p136. It uses the surprising fact that the distribution projected along any axis
is actually uniform (this is only true for 3 dimensions).
=item gsl_ran_dir_nd (Not yet implemented )
This function returns a random direction vector v = (x_1,x_2,...,x_n) in n
dimensions. The vector is normalized such that
    |v|^2 = x_1^2 + x_2^2 + ... + x_n^2 = 1.
The method uses the fact that a multivariate Gaussian distribution is
spherically symmetric. Each component is generated to have a Gaussian
distribution, and then the components are normalized. The method is described by
Knuth, v2, 3rd ed, p135-136, and attributed to G. W. Brown, Modern Mathematics
for the Engineer (1956).
=back
=head2 Shuffling and Sampling
=over
=item gsl_ran_shuffle
Please use the C<shuffle> method in the L<GSL::RNG> module OO interface.
=item gsl_ran_choose
Please use the C<choose> method in the L<GSL::RNG> module OO interface.
=item gsl_ran_sample
Please use the C<sample> method in the L<GSL::RNG> module OO interface.
=item gsl_ran_discrete_preproc
=item gsl_ran_discrete($r, $g)
After gsl_ran_discrete_preproc has been called, you use this function to get the discrete random numbers. $r is a gsl_rng structure and $g is a gsl_ran_discrete structure
=item gsl_ran_discrete_pdf($k, $g)
Returns the probability P[$k] of observing the variable $k. Since P[$k] is not stored as part of the lookup table, it must be recomputed; this computation takes O(K), so if K is large and you care about the original array P[$k] used to create the lookup table, then you should just keep this original array P[$k] around. $r is a gsl_rng structure and $g is a gsl_ran_discrete structure
=item gsl_ran_discrete_free($g)
De-allocates the gsl_ran_discrete pointed to by g.
=back
 You have to add the functions you want to use inside the qw /put_function_here /.
 You can also write use Math::GSL::Randist qw/:all/; to use all available functions of the module.
 Other tags are also available, here is a complete list of all tags for this module :
=over
=item logarithmic
=item choose
=item exponential
=item gumbel1
=item exppow
=item sample
=item logistic
=item gaussian
=item poisson
=item binomial
=item fdist
=item chisq
=item gamma
=item hypergeometric
=item dirichlet
=item negative
=item flat
=item geometric
=item discrete
=item tdist
=item ugaussian
=item rayleigh
=item dir
=item pascal
=item gumbel2
=item shuffle
=item landau
=item bernoulli
=item weibull
=item multinomial
=item beta
=item lognormal
=item laplace
=item erlang
=item cauchy
=item levy
=item bivariate
=item pareto
=back
 For example the beta tag contains theses functions : gsl_ran_beta, gsl_ran_beta_pdf.
For more information on the functions, we refer you to the GSL official documentation:
L<http://www.gnu.org/software/gsl/manual/html_node/>
 You might also want to write
    use Math::GSL::RNG qw/:all/;
since a lot of the functions of Math::GSL::Randist take as argument a structure
that is created by Math::GSL::RNG.  Refer to Math::GSL::RNG documentation to
see how to create such a structure.
Math::GSL::CDF also contains a structure named gsl_ran_discrete_t. An example is
given in the EXAMPLES part on how to use the function related to this structure.
=head1 EXAMPLES
    use Math::GSL::Randist qw/:all/;
    print gsl_ran_exponential_pdf(5,2) . "\n";
    use Math::GSL::Randist qw/:all/;
    my $x = Math::GSL::gsl_ran_discrete_t::new;
=head1 AUTHORS
Jonathan "Duke" Leto <jonathan@leto.net> and Thierry Moisan <thierry.moisan@gmail.com>
=head1 COPYRIGHT AND LICENSE
Copyright (C) 2008-2021 Jonathan "Duke" Leto and Thierry Moisan
This program is free software; you can redistribute it and/or modify it
under the same terms as Perl itself.
=cut
1;
 |