File: FFT.pm.2.4

package info (click to toggle)
libmath-gsl-perl 0.45-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 192,156 kB
  • sloc: ansic: 895,524; perl: 24,682; makefile: 12
file content (1013 lines) | stat: -rw-r--r-- 36,695 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
# This file was automatically generated by SWIG (https://www.swig.org).
# Version 4.2.0
#
# Do not make changes to this file unless you know what you are doing - modify
# the SWIG interface file instead.

package Math::GSL::FFT;
use base qw(Exporter);
use base qw(DynaLoader);
package Math::GSL::FFTc;
bootstrap Math::GSL::FFT;
package Math::GSL::FFT;
@EXPORT = qw();

# ---------- BASE METHODS -------------

package Math::GSL::FFT;

sub TIEHASH {
    my ($classname,$obj) = @_;
    return bless $obj, $classname;
}

sub CLEAR { }

sub FIRSTKEY { }

sub NEXTKEY { }

sub FETCH {
    my ($self,$field) = @_;
    my $member_func = "swig_${field}_get";
    $self->$member_func();
}

sub STORE {
    my ($self,$field,$newval) = @_;
    my $member_func = "swig_${field}_set";
    $self->$member_func($newval);
}

sub this {
    my $ptr = shift;
    return tied(%$ptr);
}


# ------- FUNCTION WRAPPERS --------

package Math::GSL::FFT;

*gsl_error = *Math::GSL::FFTc::gsl_error;
*gsl_stream_printf = *Math::GSL::FFTc::gsl_stream_printf;
*gsl_strerror = *Math::GSL::FFTc::gsl_strerror;
*gsl_set_error_handler = *Math::GSL::FFTc::gsl_set_error_handler;
*gsl_set_error_handler_off = *Math::GSL::FFTc::gsl_set_error_handler_off;
*gsl_set_stream_handler = *Math::GSL::FFTc::gsl_set_stream_handler;
*gsl_set_stream = *Math::GSL::FFTc::gsl_set_stream;
*gsl_log1p = *Math::GSL::FFTc::gsl_log1p;
*gsl_expm1 = *Math::GSL::FFTc::gsl_expm1;
*gsl_hypot = *Math::GSL::FFTc::gsl_hypot;
*gsl_hypot3 = *Math::GSL::FFTc::gsl_hypot3;
*gsl_acosh = *Math::GSL::FFTc::gsl_acosh;
*gsl_asinh = *Math::GSL::FFTc::gsl_asinh;
*gsl_atanh = *Math::GSL::FFTc::gsl_atanh;
*gsl_isnan = *Math::GSL::FFTc::gsl_isnan;
*gsl_isinf = *Math::GSL::FFTc::gsl_isinf;
*gsl_finite = *Math::GSL::FFTc::gsl_finite;
*gsl_nan = *Math::GSL::FFTc::gsl_nan;
*gsl_posinf = *Math::GSL::FFTc::gsl_posinf;
*gsl_neginf = *Math::GSL::FFTc::gsl_neginf;
*gsl_fdiv = *Math::GSL::FFTc::gsl_fdiv;
*gsl_coerce_double = *Math::GSL::FFTc::gsl_coerce_double;
*gsl_coerce_float = *Math::GSL::FFTc::gsl_coerce_float;
*gsl_coerce_long_double = *Math::GSL::FFTc::gsl_coerce_long_double;
*gsl_ldexp = *Math::GSL::FFTc::gsl_ldexp;
*gsl_frexp = *Math::GSL::FFTc::gsl_frexp;
*gsl_fcmp = *Math::GSL::FFTc::gsl_fcmp;
*gsl_pow_2 = *Math::GSL::FFTc::gsl_pow_2;
*gsl_pow_3 = *Math::GSL::FFTc::gsl_pow_3;
*gsl_pow_4 = *Math::GSL::FFTc::gsl_pow_4;
*gsl_pow_5 = *Math::GSL::FFTc::gsl_pow_5;
*gsl_pow_6 = *Math::GSL::FFTc::gsl_pow_6;
*gsl_pow_7 = *Math::GSL::FFTc::gsl_pow_7;
*gsl_pow_8 = *Math::GSL::FFTc::gsl_pow_8;
*gsl_pow_9 = *Math::GSL::FFTc::gsl_pow_9;
*gsl_pow_int = *Math::GSL::FFTc::gsl_pow_int;
*gsl_pow_uint = *Math::GSL::FFTc::gsl_pow_uint;
*gsl_fft_complex_radix2_forward = *Math::GSL::FFTc::gsl_fft_complex_radix2_forward;
*gsl_fft_complex_radix2_backward = *Math::GSL::FFTc::gsl_fft_complex_radix2_backward;
*gsl_fft_complex_radix2_inverse = *Math::GSL::FFTc::gsl_fft_complex_radix2_inverse;
*gsl_fft_complex_radix2_transform = *Math::GSL::FFTc::gsl_fft_complex_radix2_transform;
*gsl_fft_complex_radix2_dif_forward = *Math::GSL::FFTc::gsl_fft_complex_radix2_dif_forward;
*gsl_fft_complex_radix2_dif_backward = *Math::GSL::FFTc::gsl_fft_complex_radix2_dif_backward;
*gsl_fft_complex_radix2_dif_inverse = *Math::GSL::FFTc::gsl_fft_complex_radix2_dif_inverse;
*gsl_fft_complex_radix2_dif_transform = *Math::GSL::FFTc::gsl_fft_complex_radix2_dif_transform;
*gsl_fft_complex_wavetable_alloc = *Math::GSL::FFTc::gsl_fft_complex_wavetable_alloc;
*gsl_fft_complex_wavetable_free = *Math::GSL::FFTc::gsl_fft_complex_wavetable_free;
*gsl_fft_complex_workspace_alloc = *Math::GSL::FFTc::gsl_fft_complex_workspace_alloc;
*gsl_fft_complex_workspace_free = *Math::GSL::FFTc::gsl_fft_complex_workspace_free;
*gsl_fft_complex_memcpy = *Math::GSL::FFTc::gsl_fft_complex_memcpy;
*gsl_fft_complex_forward = *Math::GSL::FFTc::gsl_fft_complex_forward;
*gsl_fft_complex_backward = *Math::GSL::FFTc::gsl_fft_complex_backward;
*gsl_fft_complex_inverse = *Math::GSL::FFTc::gsl_fft_complex_inverse;
*gsl_fft_complex_transform = *Math::GSL::FFTc::gsl_fft_complex_transform;
*gsl_fft_halfcomplex_radix2_backward = *Math::GSL::FFTc::gsl_fft_halfcomplex_radix2_backward;
*gsl_fft_halfcomplex_radix2_inverse = *Math::GSL::FFTc::gsl_fft_halfcomplex_radix2_inverse;
*gsl_fft_halfcomplex_radix2_transform = *Math::GSL::FFTc::gsl_fft_halfcomplex_radix2_transform;
*gsl_fft_halfcomplex_wavetable_alloc = *Math::GSL::FFTc::gsl_fft_halfcomplex_wavetable_alloc;
*gsl_fft_halfcomplex_wavetable_free = *Math::GSL::FFTc::gsl_fft_halfcomplex_wavetable_free;
*gsl_fft_halfcomplex_backward = *Math::GSL::FFTc::gsl_fft_halfcomplex_backward;
*gsl_fft_halfcomplex_inverse = *Math::GSL::FFTc::gsl_fft_halfcomplex_inverse;
*gsl_fft_halfcomplex_transform = *Math::GSL::FFTc::gsl_fft_halfcomplex_transform;
*gsl_fft_halfcomplex_unpack = *Math::GSL::FFTc::gsl_fft_halfcomplex_unpack;
*gsl_fft_halfcomplex_radix2_unpack = *Math::GSL::FFTc::gsl_fft_halfcomplex_radix2_unpack;
*gsl_fft_real_radix2_transform = *Math::GSL::FFTc::gsl_fft_real_radix2_transform;
*gsl_fft_real_wavetable_alloc = *Math::GSL::FFTc::gsl_fft_real_wavetable_alloc;
*gsl_fft_real_wavetable_free = *Math::GSL::FFTc::gsl_fft_real_wavetable_free;
*gsl_fft_real_workspace_alloc = *Math::GSL::FFTc::gsl_fft_real_workspace_alloc;
*gsl_fft_real_workspace_free = *Math::GSL::FFTc::gsl_fft_real_workspace_free;
*gsl_fft_real_transform = *Math::GSL::FFTc::gsl_fft_real_transform;
*gsl_fft_real_unpack = *Math::GSL::FFTc::gsl_fft_real_unpack;

############# Class : Math::GSL::FFT::gsl_function_struct ##############

package Math::GSL::FFT::gsl_function_struct;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::FFT );
%OWNER = ();
%ITERATORS = ();
*swig_function_get = *Math::GSL::FFTc::gsl_function_struct_function_get;
*swig_function_set = *Math::GSL::FFTc::gsl_function_struct_function_set;
*swig_params_get = *Math::GSL::FFTc::gsl_function_struct_params_get;
*swig_params_set = *Math::GSL::FFTc::gsl_function_struct_params_set;
sub new {
    my $pkg = shift;
    my $self = Math::GSL::FFTc::new_gsl_function_struct(@_);
    bless $self, $pkg if defined($self);
}

sub DESTROY {
    return unless $_[0]->isa('HASH');
    my $self = tied(%{$_[0]});
    return unless defined $self;
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
        Math::GSL::FFTc::delete_gsl_function_struct($self);
        delete $OWNER{$self};
    }
}

sub DISOWN {
    my $self = shift;
    my $ptr = tied(%$self);
    delete $OWNER{$ptr};
}

sub ACQUIRE {
    my $self = shift;
    my $ptr = tied(%$self);
    $OWNER{$ptr} = 1;
}


############# Class : Math::GSL::FFT::gsl_function_fdf_struct ##############

package Math::GSL::FFT::gsl_function_fdf_struct;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::FFT );
%OWNER = ();
%ITERATORS = ();
*swig_f_get = *Math::GSL::FFTc::gsl_function_fdf_struct_f_get;
*swig_f_set = *Math::GSL::FFTc::gsl_function_fdf_struct_f_set;
*swig_df_get = *Math::GSL::FFTc::gsl_function_fdf_struct_df_get;
*swig_df_set = *Math::GSL::FFTc::gsl_function_fdf_struct_df_set;
*swig_fdf_get = *Math::GSL::FFTc::gsl_function_fdf_struct_fdf_get;
*swig_fdf_set = *Math::GSL::FFTc::gsl_function_fdf_struct_fdf_set;
*swig_params_get = *Math::GSL::FFTc::gsl_function_fdf_struct_params_get;
*swig_params_set = *Math::GSL::FFTc::gsl_function_fdf_struct_params_set;
sub new {
    my $pkg = shift;
    my $self = Math::GSL::FFTc::new_gsl_function_fdf_struct(@_);
    bless $self, $pkg if defined($self);
}

sub DESTROY {
    return unless $_[0]->isa('HASH');
    my $self = tied(%{$_[0]});
    return unless defined $self;
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
        Math::GSL::FFTc::delete_gsl_function_fdf_struct($self);
        delete $OWNER{$self};
    }
}

sub DISOWN {
    my $self = shift;
    my $ptr = tied(%$self);
    delete $OWNER{$ptr};
}

sub ACQUIRE {
    my $self = shift;
    my $ptr = tied(%$self);
    $OWNER{$ptr} = 1;
}


############# Class : Math::GSL::FFT::gsl_function_vec_struct ##############

package Math::GSL::FFT::gsl_function_vec_struct;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::FFT );
%OWNER = ();
%ITERATORS = ();
*swig_function_get = *Math::GSL::FFTc::gsl_function_vec_struct_function_get;
*swig_function_set = *Math::GSL::FFTc::gsl_function_vec_struct_function_set;
*swig_params_get = *Math::GSL::FFTc::gsl_function_vec_struct_params_get;
*swig_params_set = *Math::GSL::FFTc::gsl_function_vec_struct_params_set;
sub new {
    my $pkg = shift;
    my $self = Math::GSL::FFTc::new_gsl_function_vec_struct(@_);
    bless $self, $pkg if defined($self);
}

sub DESTROY {
    return unless $_[0]->isa('HASH');
    my $self = tied(%{$_[0]});
    return unless defined $self;
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
        Math::GSL::FFTc::delete_gsl_function_vec_struct($self);
        delete $OWNER{$self};
    }
}

sub DISOWN {
    my $self = shift;
    my $ptr = tied(%$self);
    delete $OWNER{$ptr};
}

sub ACQUIRE {
    my $self = shift;
    my $ptr = tied(%$self);
    $OWNER{$ptr} = 1;
}


############# Class : Math::GSL::FFT::gsl_complex ##############

package Math::GSL::FFT::gsl_complex;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::FFT );
%OWNER = ();
%ITERATORS = ();
*swig_dat_get = *Math::GSL::FFTc::gsl_complex_dat_get;
*swig_dat_set = *Math::GSL::FFTc::gsl_complex_dat_set;
sub new {
    my $pkg = shift;
    my $self = Math::GSL::FFTc::new_gsl_complex(@_);
    bless $self, $pkg if defined($self);
}

sub DESTROY {
    return unless $_[0]->isa('HASH');
    my $self = tied(%{$_[0]});
    return unless defined $self;
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
        Math::GSL::FFTc::delete_gsl_complex($self);
        delete $OWNER{$self};
    }
}

sub DISOWN {
    my $self = shift;
    my $ptr = tied(%$self);
    delete $OWNER{$ptr};
}

sub ACQUIRE {
    my $self = shift;
    my $ptr = tied(%$self);
    $OWNER{$ptr} = 1;
}


############# Class : Math::GSL::FFT::gsl_complex_long_double ##############

package Math::GSL::FFT::gsl_complex_long_double;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::FFT );
%OWNER = ();
%ITERATORS = ();
*swig_dat_get = *Math::GSL::FFTc::gsl_complex_long_double_dat_get;
*swig_dat_set = *Math::GSL::FFTc::gsl_complex_long_double_dat_set;
sub new {
    my $pkg = shift;
    my $self = Math::GSL::FFTc::new_gsl_complex_long_double(@_);
    bless $self, $pkg if defined($self);
}

sub DESTROY {
    return unless $_[0]->isa('HASH');
    my $self = tied(%{$_[0]});
    return unless defined $self;
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
        Math::GSL::FFTc::delete_gsl_complex_long_double($self);
        delete $OWNER{$self};
    }
}

sub DISOWN {
    my $self = shift;
    my $ptr = tied(%$self);
    delete $OWNER{$ptr};
}

sub ACQUIRE {
    my $self = shift;
    my $ptr = tied(%$self);
    $OWNER{$ptr} = 1;
}


############# Class : Math::GSL::FFT::gsl_complex_float ##############

package Math::GSL::FFT::gsl_complex_float;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::FFT );
%OWNER = ();
%ITERATORS = ();
*swig_dat_get = *Math::GSL::FFTc::gsl_complex_float_dat_get;
*swig_dat_set = *Math::GSL::FFTc::gsl_complex_float_dat_set;
sub new {
    my $pkg = shift;
    my $self = Math::GSL::FFTc::new_gsl_complex_float(@_);
    bless $self, $pkg if defined($self);
}

sub DESTROY {
    return unless $_[0]->isa('HASH');
    my $self = tied(%{$_[0]});
    return unless defined $self;
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
        Math::GSL::FFTc::delete_gsl_complex_float($self);
        delete $OWNER{$self};
    }
}

sub DISOWN {
    my $self = shift;
    my $ptr = tied(%$self);
    delete $OWNER{$ptr};
}

sub ACQUIRE {
    my $self = shift;
    my $ptr = tied(%$self);
    $OWNER{$ptr} = 1;
}


############# Class : Math::GSL::FFT::gsl_fft_complex_wavetable ##############

package Math::GSL::FFT::gsl_fft_complex_wavetable;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::FFT );
%OWNER = ();
%ITERATORS = ();
*swig_n_get = *Math::GSL::FFTc::gsl_fft_complex_wavetable_n_get;
*swig_n_set = *Math::GSL::FFTc::gsl_fft_complex_wavetable_n_set;
*swig_nf_get = *Math::GSL::FFTc::gsl_fft_complex_wavetable_nf_get;
*swig_nf_set = *Math::GSL::FFTc::gsl_fft_complex_wavetable_nf_set;
*swig_factor_get = *Math::GSL::FFTc::gsl_fft_complex_wavetable_factor_get;
*swig_factor_set = *Math::GSL::FFTc::gsl_fft_complex_wavetable_factor_set;
*swig_twiddle_get = *Math::GSL::FFTc::gsl_fft_complex_wavetable_twiddle_get;
*swig_twiddle_set = *Math::GSL::FFTc::gsl_fft_complex_wavetable_twiddle_set;
*swig_trig_get = *Math::GSL::FFTc::gsl_fft_complex_wavetable_trig_get;
*swig_trig_set = *Math::GSL::FFTc::gsl_fft_complex_wavetable_trig_set;
sub new {
    my $pkg = shift;
    my $self = Math::GSL::FFTc::new_gsl_fft_complex_wavetable(@_);
    bless $self, $pkg if defined($self);
}

sub DESTROY {
    return unless $_[0]->isa('HASH');
    my $self = tied(%{$_[0]});
    return unless defined $self;
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
        Math::GSL::FFTc::delete_gsl_fft_complex_wavetable($self);
        delete $OWNER{$self};
    }
}

sub DISOWN {
    my $self = shift;
    my $ptr = tied(%$self);
    delete $OWNER{$ptr};
}

sub ACQUIRE {
    my $self = shift;
    my $ptr = tied(%$self);
    $OWNER{$ptr} = 1;
}


############# Class : Math::GSL::FFT::gsl_fft_complex_workspace ##############

package Math::GSL::FFT::gsl_fft_complex_workspace;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::FFT );
%OWNER = ();
%ITERATORS = ();
*swig_n_get = *Math::GSL::FFTc::gsl_fft_complex_workspace_n_get;
*swig_n_set = *Math::GSL::FFTc::gsl_fft_complex_workspace_n_set;
*swig_scratch_get = *Math::GSL::FFTc::gsl_fft_complex_workspace_scratch_get;
*swig_scratch_set = *Math::GSL::FFTc::gsl_fft_complex_workspace_scratch_set;
sub new {
    my $pkg = shift;
    my $self = Math::GSL::FFTc::new_gsl_fft_complex_workspace(@_);
    bless $self, $pkg if defined($self);
}

sub DESTROY {
    return unless $_[0]->isa('HASH');
    my $self = tied(%{$_[0]});
    return unless defined $self;
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
        Math::GSL::FFTc::delete_gsl_fft_complex_workspace($self);
        delete $OWNER{$self};
    }
}

sub DISOWN {
    my $self = shift;
    my $ptr = tied(%$self);
    delete $OWNER{$ptr};
}

sub ACQUIRE {
    my $self = shift;
    my $ptr = tied(%$self);
    $OWNER{$ptr} = 1;
}


############# Class : Math::GSL::FFT::gsl_fft_halfcomplex_wavetable ##############

package Math::GSL::FFT::gsl_fft_halfcomplex_wavetable;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::FFT );
%OWNER = ();
%ITERATORS = ();
*swig_n_get = *Math::GSL::FFTc::gsl_fft_halfcomplex_wavetable_n_get;
*swig_n_set = *Math::GSL::FFTc::gsl_fft_halfcomplex_wavetable_n_set;
*swig_nf_get = *Math::GSL::FFTc::gsl_fft_halfcomplex_wavetable_nf_get;
*swig_nf_set = *Math::GSL::FFTc::gsl_fft_halfcomplex_wavetable_nf_set;
*swig_factor_get = *Math::GSL::FFTc::gsl_fft_halfcomplex_wavetable_factor_get;
*swig_factor_set = *Math::GSL::FFTc::gsl_fft_halfcomplex_wavetable_factor_set;
*swig_twiddle_get = *Math::GSL::FFTc::gsl_fft_halfcomplex_wavetable_twiddle_get;
*swig_twiddle_set = *Math::GSL::FFTc::gsl_fft_halfcomplex_wavetable_twiddle_set;
*swig_trig_get = *Math::GSL::FFTc::gsl_fft_halfcomplex_wavetable_trig_get;
*swig_trig_set = *Math::GSL::FFTc::gsl_fft_halfcomplex_wavetable_trig_set;
sub new {
    my $pkg = shift;
    my $self = Math::GSL::FFTc::new_gsl_fft_halfcomplex_wavetable(@_);
    bless $self, $pkg if defined($self);
}

sub DESTROY {
    return unless $_[0]->isa('HASH');
    my $self = tied(%{$_[0]});
    return unless defined $self;
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
        Math::GSL::FFTc::delete_gsl_fft_halfcomplex_wavetable($self);
        delete $OWNER{$self};
    }
}

sub DISOWN {
    my $self = shift;
    my $ptr = tied(%$self);
    delete $OWNER{$ptr};
}

sub ACQUIRE {
    my $self = shift;
    my $ptr = tied(%$self);
    $OWNER{$ptr} = 1;
}


############# Class : Math::GSL::FFT::gsl_fft_real_wavetable ##############

package Math::GSL::FFT::gsl_fft_real_wavetable;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::FFT );
%OWNER = ();
%ITERATORS = ();
*swig_n_get = *Math::GSL::FFTc::gsl_fft_real_wavetable_n_get;
*swig_n_set = *Math::GSL::FFTc::gsl_fft_real_wavetable_n_set;
*swig_nf_get = *Math::GSL::FFTc::gsl_fft_real_wavetable_nf_get;
*swig_nf_set = *Math::GSL::FFTc::gsl_fft_real_wavetable_nf_set;
*swig_factor_get = *Math::GSL::FFTc::gsl_fft_real_wavetable_factor_get;
*swig_factor_set = *Math::GSL::FFTc::gsl_fft_real_wavetable_factor_set;
*swig_twiddle_get = *Math::GSL::FFTc::gsl_fft_real_wavetable_twiddle_get;
*swig_twiddle_set = *Math::GSL::FFTc::gsl_fft_real_wavetable_twiddle_set;
*swig_trig_get = *Math::GSL::FFTc::gsl_fft_real_wavetable_trig_get;
*swig_trig_set = *Math::GSL::FFTc::gsl_fft_real_wavetable_trig_set;
sub new {
    my $pkg = shift;
    my $self = Math::GSL::FFTc::new_gsl_fft_real_wavetable(@_);
    bless $self, $pkg if defined($self);
}

sub DESTROY {
    return unless $_[0]->isa('HASH');
    my $self = tied(%{$_[0]});
    return unless defined $self;
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
        Math::GSL::FFTc::delete_gsl_fft_real_wavetable($self);
        delete $OWNER{$self};
    }
}

sub DISOWN {
    my $self = shift;
    my $ptr = tied(%$self);
    delete $OWNER{$ptr};
}

sub ACQUIRE {
    my $self = shift;
    my $ptr = tied(%$self);
    $OWNER{$ptr} = 1;
}


############# Class : Math::GSL::FFT::gsl_fft_real_workspace ##############

package Math::GSL::FFT::gsl_fft_real_workspace;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::FFT );
%OWNER = ();
%ITERATORS = ();
*swig_n_get = *Math::GSL::FFTc::gsl_fft_real_workspace_n_get;
*swig_n_set = *Math::GSL::FFTc::gsl_fft_real_workspace_n_set;
*swig_scratch_get = *Math::GSL::FFTc::gsl_fft_real_workspace_scratch_get;
*swig_scratch_set = *Math::GSL::FFTc::gsl_fft_real_workspace_scratch_set;
sub new {
    my $pkg = shift;
    my $self = Math::GSL::FFTc::new_gsl_fft_real_workspace(@_);
    bless $self, $pkg if defined($self);
}

sub DESTROY {
    return unless $_[0]->isa('HASH');
    my $self = tied(%{$_[0]});
    return unless defined $self;
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
        Math::GSL::FFTc::delete_gsl_fft_real_workspace($self);
        delete $OWNER{$self};
    }
}

sub DISOWN {
    my $self = shift;
    my $ptr = tied(%$self);
    delete $OWNER{$ptr};
}

sub ACQUIRE {
    my $self = shift;
    my $ptr = tied(%$self);
    $OWNER{$ptr} = 1;
}


# ------- VARIABLE STUBS --------

package Math::GSL::FFT;

*GSL_VERSION = *Math::GSL::FFTc::GSL_VERSION;
*GSL_MAJOR_VERSION = *Math::GSL::FFTc::GSL_MAJOR_VERSION;
*GSL_MINOR_VERSION = *Math::GSL::FFTc::GSL_MINOR_VERSION;
*GSL_POSZERO = *Math::GSL::FFTc::GSL_POSZERO;
*GSL_NEGZERO = *Math::GSL::FFTc::GSL_NEGZERO;
*GSL_SUCCESS = *Math::GSL::FFTc::GSL_SUCCESS;
*GSL_FAILURE = *Math::GSL::FFTc::GSL_FAILURE;
*GSL_CONTINUE = *Math::GSL::FFTc::GSL_CONTINUE;
*GSL_EDOM = *Math::GSL::FFTc::GSL_EDOM;
*GSL_ERANGE = *Math::GSL::FFTc::GSL_ERANGE;
*GSL_EFAULT = *Math::GSL::FFTc::GSL_EFAULT;
*GSL_EINVAL = *Math::GSL::FFTc::GSL_EINVAL;
*GSL_EFAILED = *Math::GSL::FFTc::GSL_EFAILED;
*GSL_EFACTOR = *Math::GSL::FFTc::GSL_EFACTOR;
*GSL_ESANITY = *Math::GSL::FFTc::GSL_ESANITY;
*GSL_ENOMEM = *Math::GSL::FFTc::GSL_ENOMEM;
*GSL_EBADFUNC = *Math::GSL::FFTc::GSL_EBADFUNC;
*GSL_ERUNAWAY = *Math::GSL::FFTc::GSL_ERUNAWAY;
*GSL_EMAXITER = *Math::GSL::FFTc::GSL_EMAXITER;
*GSL_EZERODIV = *Math::GSL::FFTc::GSL_EZERODIV;
*GSL_EBADTOL = *Math::GSL::FFTc::GSL_EBADTOL;
*GSL_ETOL = *Math::GSL::FFTc::GSL_ETOL;
*GSL_EUNDRFLW = *Math::GSL::FFTc::GSL_EUNDRFLW;
*GSL_EOVRFLW = *Math::GSL::FFTc::GSL_EOVRFLW;
*GSL_ELOSS = *Math::GSL::FFTc::GSL_ELOSS;
*GSL_EROUND = *Math::GSL::FFTc::GSL_EROUND;
*GSL_EBADLEN = *Math::GSL::FFTc::GSL_EBADLEN;
*GSL_ENOTSQR = *Math::GSL::FFTc::GSL_ENOTSQR;
*GSL_ESING = *Math::GSL::FFTc::GSL_ESING;
*GSL_EDIVERGE = *Math::GSL::FFTc::GSL_EDIVERGE;
*GSL_EUNSUP = *Math::GSL::FFTc::GSL_EUNSUP;
*GSL_EUNIMPL = *Math::GSL::FFTc::GSL_EUNIMPL;
*GSL_ECACHE = *Math::GSL::FFTc::GSL_ECACHE;
*GSL_ETABLE = *Math::GSL::FFTc::GSL_ETABLE;
*GSL_ENOPROG = *Math::GSL::FFTc::GSL_ENOPROG;
*GSL_ENOPROGJ = *Math::GSL::FFTc::GSL_ENOPROGJ;
*GSL_ETOLF = *Math::GSL::FFTc::GSL_ETOLF;
*GSL_ETOLX = *Math::GSL::FFTc::GSL_ETOLX;
*GSL_ETOLG = *Math::GSL::FFTc::GSL_ETOLG;
*GSL_EOF = *Math::GSL::FFTc::GSL_EOF;
*M_E = *Math::GSL::FFTc::M_E;
*M_LOG2E = *Math::GSL::FFTc::M_LOG2E;
*M_LOG10E = *Math::GSL::FFTc::M_LOG10E;
*M_SQRT2 = *Math::GSL::FFTc::M_SQRT2;
*M_SQRT1_2 = *Math::GSL::FFTc::M_SQRT1_2;
*M_SQRT3 = *Math::GSL::FFTc::M_SQRT3;
*M_PI = *Math::GSL::FFTc::M_PI;
*M_PI_2 = *Math::GSL::FFTc::M_PI_2;
*M_PI_4 = *Math::GSL::FFTc::M_PI_4;
*M_SQRTPI = *Math::GSL::FFTc::M_SQRTPI;
*M_2_SQRTPI = *Math::GSL::FFTc::M_2_SQRTPI;
*M_1_PI = *Math::GSL::FFTc::M_1_PI;
*M_2_PI = *Math::GSL::FFTc::M_2_PI;
*M_LN10 = *Math::GSL::FFTc::M_LN10;
*M_LN2 = *Math::GSL::FFTc::M_LN2;
*M_LNPI = *Math::GSL::FFTc::M_LNPI;
*M_EULER = *Math::GSL::FFTc::M_EULER;
*GSL_DBL_EPSILON = *Math::GSL::FFTc::GSL_DBL_EPSILON;
*GSL_SQRT_DBL_EPSILON = *Math::GSL::FFTc::GSL_SQRT_DBL_EPSILON;
*GSL_ROOT3_DBL_EPSILON = *Math::GSL::FFTc::GSL_ROOT3_DBL_EPSILON;
*GSL_ROOT4_DBL_EPSILON = *Math::GSL::FFTc::GSL_ROOT4_DBL_EPSILON;
*GSL_ROOT5_DBL_EPSILON = *Math::GSL::FFTc::GSL_ROOT5_DBL_EPSILON;
*GSL_ROOT6_DBL_EPSILON = *Math::GSL::FFTc::GSL_ROOT6_DBL_EPSILON;
*GSL_LOG_DBL_EPSILON = *Math::GSL::FFTc::GSL_LOG_DBL_EPSILON;
*GSL_DBL_MIN = *Math::GSL::FFTc::GSL_DBL_MIN;
*GSL_SQRT_DBL_MIN = *Math::GSL::FFTc::GSL_SQRT_DBL_MIN;
*GSL_ROOT3_DBL_MIN = *Math::GSL::FFTc::GSL_ROOT3_DBL_MIN;
*GSL_ROOT4_DBL_MIN = *Math::GSL::FFTc::GSL_ROOT4_DBL_MIN;
*GSL_ROOT5_DBL_MIN = *Math::GSL::FFTc::GSL_ROOT5_DBL_MIN;
*GSL_ROOT6_DBL_MIN = *Math::GSL::FFTc::GSL_ROOT6_DBL_MIN;
*GSL_LOG_DBL_MIN = *Math::GSL::FFTc::GSL_LOG_DBL_MIN;
*GSL_DBL_MAX = *Math::GSL::FFTc::GSL_DBL_MAX;
*GSL_SQRT_DBL_MAX = *Math::GSL::FFTc::GSL_SQRT_DBL_MAX;
*GSL_ROOT3_DBL_MAX = *Math::GSL::FFTc::GSL_ROOT3_DBL_MAX;
*GSL_ROOT4_DBL_MAX = *Math::GSL::FFTc::GSL_ROOT4_DBL_MAX;
*GSL_ROOT5_DBL_MAX = *Math::GSL::FFTc::GSL_ROOT5_DBL_MAX;
*GSL_ROOT6_DBL_MAX = *Math::GSL::FFTc::GSL_ROOT6_DBL_MAX;
*GSL_LOG_DBL_MAX = *Math::GSL::FFTc::GSL_LOG_DBL_MAX;
*GSL_FLT_EPSILON = *Math::GSL::FFTc::GSL_FLT_EPSILON;
*GSL_SQRT_FLT_EPSILON = *Math::GSL::FFTc::GSL_SQRT_FLT_EPSILON;
*GSL_ROOT3_FLT_EPSILON = *Math::GSL::FFTc::GSL_ROOT3_FLT_EPSILON;
*GSL_ROOT4_FLT_EPSILON = *Math::GSL::FFTc::GSL_ROOT4_FLT_EPSILON;
*GSL_ROOT5_FLT_EPSILON = *Math::GSL::FFTc::GSL_ROOT5_FLT_EPSILON;
*GSL_ROOT6_FLT_EPSILON = *Math::GSL::FFTc::GSL_ROOT6_FLT_EPSILON;
*GSL_LOG_FLT_EPSILON = *Math::GSL::FFTc::GSL_LOG_FLT_EPSILON;
*GSL_FLT_MIN = *Math::GSL::FFTc::GSL_FLT_MIN;
*GSL_SQRT_FLT_MIN = *Math::GSL::FFTc::GSL_SQRT_FLT_MIN;
*GSL_ROOT3_FLT_MIN = *Math::GSL::FFTc::GSL_ROOT3_FLT_MIN;
*GSL_ROOT4_FLT_MIN = *Math::GSL::FFTc::GSL_ROOT4_FLT_MIN;
*GSL_ROOT5_FLT_MIN = *Math::GSL::FFTc::GSL_ROOT5_FLT_MIN;
*GSL_ROOT6_FLT_MIN = *Math::GSL::FFTc::GSL_ROOT6_FLT_MIN;
*GSL_LOG_FLT_MIN = *Math::GSL::FFTc::GSL_LOG_FLT_MIN;
*GSL_FLT_MAX = *Math::GSL::FFTc::GSL_FLT_MAX;
*GSL_SQRT_FLT_MAX = *Math::GSL::FFTc::GSL_SQRT_FLT_MAX;
*GSL_ROOT3_FLT_MAX = *Math::GSL::FFTc::GSL_ROOT3_FLT_MAX;
*GSL_ROOT4_FLT_MAX = *Math::GSL::FFTc::GSL_ROOT4_FLT_MAX;
*GSL_ROOT5_FLT_MAX = *Math::GSL::FFTc::GSL_ROOT5_FLT_MAX;
*GSL_ROOT6_FLT_MAX = *Math::GSL::FFTc::GSL_ROOT6_FLT_MAX;
*GSL_LOG_FLT_MAX = *Math::GSL::FFTc::GSL_LOG_FLT_MAX;
*GSL_SFLT_EPSILON = *Math::GSL::FFTc::GSL_SFLT_EPSILON;
*GSL_SQRT_SFLT_EPSILON = *Math::GSL::FFTc::GSL_SQRT_SFLT_EPSILON;
*GSL_ROOT3_SFLT_EPSILON = *Math::GSL::FFTc::GSL_ROOT3_SFLT_EPSILON;
*GSL_ROOT4_SFLT_EPSILON = *Math::GSL::FFTc::GSL_ROOT4_SFLT_EPSILON;
*GSL_ROOT5_SFLT_EPSILON = *Math::GSL::FFTc::GSL_ROOT5_SFLT_EPSILON;
*GSL_ROOT6_SFLT_EPSILON = *Math::GSL::FFTc::GSL_ROOT6_SFLT_EPSILON;
*GSL_LOG_SFLT_EPSILON = *Math::GSL::FFTc::GSL_LOG_SFLT_EPSILON;
*GSL_MACH_EPS = *Math::GSL::FFTc::GSL_MACH_EPS;
*GSL_SQRT_MACH_EPS = *Math::GSL::FFTc::GSL_SQRT_MACH_EPS;
*GSL_ROOT3_MACH_EPS = *Math::GSL::FFTc::GSL_ROOT3_MACH_EPS;
*GSL_ROOT4_MACH_EPS = *Math::GSL::FFTc::GSL_ROOT4_MACH_EPS;
*GSL_ROOT5_MACH_EPS = *Math::GSL::FFTc::GSL_ROOT5_MACH_EPS;
*GSL_ROOT6_MACH_EPS = *Math::GSL::FFTc::GSL_ROOT6_MACH_EPS;
*GSL_LOG_MACH_EPS = *Math::GSL::FFTc::GSL_LOG_MACH_EPS;
*gsl_fft_forward = *Math::GSL::FFTc::gsl_fft_forward;
*gsl_fft_backward = *Math::GSL::FFTc::gsl_fft_backward;

@EXPORT_complex = qw/
               gsl_fft_complex_radix2_forward
               gsl_fft_complex_radix2_backward
               gsl_fft_complex_radix2_inverse
               gsl_fft_complex_radix2_transform
               gsl_fft_complex_radix2_dif_forward
               gsl_fft_complex_radix2_dif_backward
               gsl_fft_complex_radix2_dif_inverse
               gsl_fft_complex_radix2_dif_transform
               gsl_fft_complex_wavetable_alloc
               gsl_fft_complex_wavetable_free
               gsl_fft_complex_workspace_alloc
               gsl_fft_complex_workspace_free
               gsl_fft_complex_memcpy
               gsl_fft_complex_forward
               gsl_fft_complex_backward
               gsl_fft_complex_inverse
               gsl_fft_complex_transform
               /;
@EXPORT_halfcomplex = qw/
               gsl_fft_halfcomplex_radix2_backward
               gsl_fft_halfcomplex_radix2_inverse
               gsl_fft_halfcomplex_radix2_transform
               gsl_fft_halfcomplex_wavetable_alloc
               gsl_fft_halfcomplex_wavetable_free
               gsl_fft_halfcomplex_backward
               gsl_fft_halfcomplex_inverse
               gsl_fft_halfcomplex_transform
               gsl_fft_halfcomplex_unpack
               gsl_fft_halfcomplex_radix2_unpack
               /;
@EXPORT_real = qw/
               gsl_fft_real_radix2_transform
               gsl_fft_real_wavetable_alloc
               gsl_fft_real_wavetable_free
               gsl_fft_real_workspace_alloc
               gsl_fft_real_workspace_free
               gsl_fft_real_transform
               gsl_fft_real_unpack
             /;
@EXPORT_vars = qw/
                $gsl_fft_forward
                $gsl_fft_backward
                /;
@EXPORT_OK =   (
                @EXPORT_real,
                @EXPORT_complex,
                @EXPORT_halfcomplex,
                @EXPORT_vars,
                );
%EXPORT_TAGS = (
                all         => \@EXPORT_OK,
                real        => \@EXPORT_real,
                complex     => \@EXPORT_complex,
                halfcomplex => \@EXPORT_halfcomplex,
                vars        => \@EXPORT_vars,
               );
__END__

=encoding utf8

=head1 NAME

Math::GSL::FFT - Fast Fourier Transforms (FFT)

=head1 SYNOPSIS

    use Math::GSL::FFT qw /:all/;
    my $input1              = [ 0 .. 7 ];
    my $N1                  = @$input1;
    my ($status1, $output1) = gsl_fft_real_radix2_transform ($input, 1, $N1);
    my ($status2, $output2) = gsl_fft_halfcomplex_radix2_inverse($output2, 1, $N1);
    # $input1 == $output2

    my $input2              = [ 0 .. 6 ];
    my $N2                  = @$input;
    my $workspace1          = gsl_fft_real_workspace_alloc($N2);
    my $wavetable1          = gsl_fft_real_wavetable_alloc($N2);
    my ($status3,$output3)  = gsl_fft_real_transform ($input, 1, $N2, $wavetable1, $workspace1);
    my $wavetable4          = gsl_fft_halfcomplex_wavetable_alloc($N2);
    my $workspace4          = gsl_fft_real_workspace_alloc($N2);
    my ($status4,$output4)  = gsl_fft_halfcomplex_inverse($output, 1, $N2, $wavetable4, $workspace4);

    # $input2 == $output4

=head1 DESCRIPTION

=over

=item * C<gsl_fft_complex_radix2_forward($data, $stride, $n) >

This function computes the forward FFTs of length $n with stride $stride, on
the array reference $data using an in-place radix-2 decimation-in-time
algorithm. The length of the transform $n is restricted to powers of two. For
the transform version of the function the sign argument can be either forward
(-1) or backward (+1). The functions return a value of $GSL_SUCCESS if no
errors were detected, or $GSL_EDOM if the length of the data $n is not a power
of two.

=item * C<gsl_fft_complex_radix2_backward >

=item * C<gsl_fft_complex_radix2_inverse >

=item * C<gsl_fft_complex_radix2_transform >

=item * C<gsl_fft_complex_radix2_dif_forward >

=item * C<gsl_fft_complex_radix2_dif_backward >

=item * C<gsl_fft_complex_radix2_dif_inverse >

=item * C<gsl_fft_complex_radix2_dif_transform >

=item * C<gsl_fft_complex_wavetable_alloc($n)>

This function prepares a trigonometric lookup table for a complex FFT of length
$n. The function returns a pointer to the newly allocated
gsl_fft_complex_wavetable if no errors were detected, and a null pointer in the
case of error. The length $n is factorized into a product of subtransforms, and
the factors and their trigonometric coefficients are stored in the wavetable.
The trigonometric coefficients are computed using direct calls to sin and cos,
for accuracy. Recursion relations could be used to compute the lookup table
faster, but if an application performs many FFTs of the same length then this
computation is a one-off overhead which does not affect the final throughput.
The wavetable structure can be used repeatedly for any transform of the same
length. The table is not modified by calls to any of the other FFT functions.
The same wavetable can be used for both forward and backward (or inverse)
transforms of a given length.

=item * C<gsl_fft_complex_wavetable_free($wavetable)>

This function frees the memory associated with the wavetable $wavetable. The
wavetable can be freed if no further FFTs of the same length will be needed.

=item * C<gsl_fft_complex_workspace_alloc($n)>

This function allocates a workspace for a complex transform of length $n.

=item * C<gsl_fft_complex_workspace_free($workspace) >

This function frees the memory associated with the workspace $workspace. The
workspace can be freed if no further FFTs of the same length will be needed.

=item * C<gsl_fft_complex_memcpy >

=item * C<gsl_fft_complex_forward >

=item * C<gsl_fft_complex_backward >

=item * C<gsl_fft_complex_inverse >

=item * C<gsl_fft_complex_transform >

=item * C<gsl_fft_halfcomplex_radix2_backward($data, $stride, $n)>

This function computes the backwards in-place radix-2 FFT of length $n and
stride $stride on the half-complex sequence data stored according the output
scheme used by gsl_fft_real_radix2. The result is a real array stored in
natural order.

=item * C<gsl_fft_halfcomplex_radix2_inverse($data, $stride, $n)>

This function computes the inverse in-place radix-2 FFT of length $n and stride
$stride on the half-complex sequence data stored according the output scheme
used by gsl_fft_real_radix2. The result is a real array stored in natural
order.

=item * C<gsl_fft_halfcomplex_radix2_transform>

=item * C<gsl_fft_halfcomplex_wavetable_alloc($n)>

This function prepares trigonometric lookup tables for an FFT of size $n real
elements. The functions return a pointer to the newly allocated struct if no
errors were detected, and a null pointer in the case of error. The length $n is
factorized into a product of subtransforms, and the factors and their
trigonometric coefficients are stored in the wavetable. The trigonometric
coefficients are computed using direct calls to sin and cos, for accuracy.
Recursion relations could be used to compute the lookup table faster, but if an
application performs many FFTs of the same length then computing the wavetable
is a one-off overhead which does not affect the final throughput.  The
wavetable structure can be used repeatedly for any transform of the same
length. The table is not modified by calls to any of the other FFT functions.
The appropriate type of wavetable must be used for forward real or inverse
half-complex transforms.

=item * C<gsl_fft_halfcomplex_wavetable_free($wavetable)>

This function frees the memory associated with the wavetable $wavetable. The
wavetable can be freed if no further FFTs of the same length will be needed.

=item * C<gsl_fft_halfcomplex_backward >

=item * C<gsl_fft_halfcomplex_inverse >

=item * C<gsl_fft_halfcomplex_transform >

=item * C<gsl_fft_halfcomplex_unpack >

=item * C<gsl_fft_halfcomplex_radix2_unpack >

=item * C<gsl_fft_real_radix2_transform($data, $stride, $n) >

This function computes an in-place radix-2 FFT of length $n and stride $stride
on the real array reference $data. The output is a half-complex sequence, which
is stored in-place. The arrangement of the half-complex terms uses the
following scheme: for k < N/2 the real part of the k-th term is stored in
location k, and the corresponding imaginary part is stored in location N-k.
Terms with k > N/2 can be reconstructed using the symmetry z_k = z^*_{N-k}. The
terms for k=0 and k=N/2 are both purely real, and count as a special case.
Their real parts are stored in locations 0 and N/2 respectively, while their
imaginary parts which are zero are not stored. The following table shows the
correspondence between the output data and the equivalent results obtained by
considering the input data as a complex sequence with zero imaginary part,

          complex[0].real    =    data[0]
          complex[0].imag    =    0
          complex[1].real    =    data[1]
          complex[1].imag    =    data[N-1]
          ...............         ................
          complex[k].real    =    data[k]
          complex[k].imag    =    data[N-k]
          ...............         ................
          complex[N/2].real  =    data[N/2]
          complex[N/2].imag  =    0
          ...............         ................
          complex[k'].real   =    data[k]        k' = N - k
          complex[k'].imag   =   -data[N-k]
          ...............         ................
          complex[N-1].real  =    data[1]
          complex[N-1].imag  =   -data[N-1]

=for notyou #'

Note that the output data can be converted into the full complex sequence using
the function gsl_fft_halfcomplex_unpack.

=item * C<gsl_fft_real_wavetable_alloc($n)>

This function prepares trigonometric lookup tables for an FFT of size $n real
elements. The functions return a pointer to the newly allocated struct if no
errors were detected, and a null pointer in the case of error. The length $n is
factorized into a product of subtransforms, and the factors and their
trigonometric coefficients are stored in the wavetable. The trigonometric
coefficients are computed using direct calls to sin and cos, for accuracy.
Recursion relations could be used to compute the lookup table faster, but if an
application performs many FFTs of the same length then computing the wavetable
is a one-off overhead which does not affect the final throughput.  The
wavetable structure can be used repeatedly for any transform of the same
length. The table is not modified by calls to any of the other FFT functions.
The appropriate type of wavetable must be used for forward real or inverse
half-complex transforms.

=item * C<gsl_fft_real_wavetable_free($wavetable)>

This function frees the memory associated with the wavetable $wavetable. The
wavetable can be freed if no further FFTs of the same length will be needed.

=item * C<gsl_fft_real_workspace_alloc($n)>

This function allocates a workspace for a real transform of length $n. The same
workspace can be used for both forward real and inverse halfcomplex transforms.

=item * C<gsl_fft_real_workspace_free($workspace)>

This function frees the memory associated with the workspace $workspace. The
workspace can be freed if no further FFTs of the same length will be needed.

=item * C<gsl_fft_real_transform >

=item * C<gsl_fft_real_unpack >

=back

This module also includes the following constants :

=over

=item * C<$gsl_fft_forward>

=item * C<$gsl_fft_backward>

=back

For more information on the functions, we refer you to the GSL official
documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>




=head1 AUTHORS

Jonathan "Duke" Leto <jonathan@leto.net> and Thierry Moisan <thierry.moisan@gmail.com>

=head1 COPYRIGHT AND LICENSE

Copyright (C) 2008-2024 Jonathan "Duke" Leto and Thierry Moisan

This program is free software; you can redistribute it and/or modify it
under the same terms as Perl itself.

=cut

1;