File: Interp.pm.2.2.1

package info (click to toggle)
libmath-gsl-perl 0.45-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 192,156 kB
  • sloc: ansic: 895,524; perl: 24,682; makefile: 12
file content (430 lines) | stat: -rw-r--r-- 15,051 bytes parent folder | download | duplicates (13)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
# This file was automatically generated by SWIG (https://www.swig.org).
# Version 4.2.0
#
# Do not make changes to this file unless you know what you are doing - modify
# the SWIG interface file instead.

package Math::GSL::Interp;
use base qw(Exporter);
use base qw(DynaLoader);
package Math::GSL::Interpc;
bootstrap Math::GSL::Interp;
package Math::GSL::Interp;
@EXPORT = qw();

# ---------- BASE METHODS -------------

package Math::GSL::Interp;

sub TIEHASH {
    my ($classname,$obj) = @_;
    return bless $obj, $classname;
}

sub CLEAR { }

sub FIRSTKEY { }

sub NEXTKEY { }

sub FETCH {
    my ($self,$field) = @_;
    my $member_func = "swig_${field}_get";
    $self->$member_func();
}

sub STORE {
    my ($self,$field,$newval) = @_;
    my $member_func = "swig_${field}_set";
    $self->$member_func($newval);
}

sub this {
    my $ptr = shift;
    return tied(%$ptr);
}


# ------- FUNCTION WRAPPERS --------

package Math::GSL::Interp;

*gsl_error = *Math::GSL::Interpc::gsl_error;
*gsl_stream_printf = *Math::GSL::Interpc::gsl_stream_printf;
*gsl_strerror = *Math::GSL::Interpc::gsl_strerror;
*gsl_set_error_handler = *Math::GSL::Interpc::gsl_set_error_handler;
*gsl_set_error_handler_off = *Math::GSL::Interpc::gsl_set_error_handler_off;
*gsl_set_stream_handler = *Math::GSL::Interpc::gsl_set_stream_handler;
*gsl_set_stream = *Math::GSL::Interpc::gsl_set_stream;
*gsl_interp_accel_alloc = *Math::GSL::Interpc::gsl_interp_accel_alloc;
*gsl_interp_accel_reset = *Math::GSL::Interpc::gsl_interp_accel_reset;
*gsl_interp_accel_free = *Math::GSL::Interpc::gsl_interp_accel_free;
*gsl_interp_alloc = *Math::GSL::Interpc::gsl_interp_alloc;
*gsl_interp_init = *Math::GSL::Interpc::gsl_interp_init;
*gsl_interp_name = *Math::GSL::Interpc::gsl_interp_name;
*gsl_interp_min_size = *Math::GSL::Interpc::gsl_interp_min_size;
*gsl_interp_type_min_size = *Math::GSL::Interpc::gsl_interp_type_min_size;
*gsl_interp_eval_e = *Math::GSL::Interpc::gsl_interp_eval_e;
*gsl_interp_eval = *Math::GSL::Interpc::gsl_interp_eval;
*gsl_interp_eval_deriv_e = *Math::GSL::Interpc::gsl_interp_eval_deriv_e;
*gsl_interp_eval_deriv = *Math::GSL::Interpc::gsl_interp_eval_deriv;
*gsl_interp_eval_deriv2_e = *Math::GSL::Interpc::gsl_interp_eval_deriv2_e;
*gsl_interp_eval_deriv2 = *Math::GSL::Interpc::gsl_interp_eval_deriv2;
*gsl_interp_eval_integ_e = *Math::GSL::Interpc::gsl_interp_eval_integ_e;
*gsl_interp_eval_integ = *Math::GSL::Interpc::gsl_interp_eval_integ;
*gsl_interp_free = *Math::GSL::Interpc::gsl_interp_free;
*gsl_interp_bsearch = *Math::GSL::Interpc::gsl_interp_bsearch;
*gsl_interp_accel_find = *Math::GSL::Interpc::gsl_interp_accel_find;

############# Class : Math::GSL::Interp::gsl_interp_accel ##############

package Math::GSL::Interp::gsl_interp_accel;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::Interp );
%OWNER = ();
%ITERATORS = ();
*swig_cache_get = *Math::GSL::Interpc::gsl_interp_accel_cache_get;
*swig_cache_set = *Math::GSL::Interpc::gsl_interp_accel_cache_set;
*swig_miss_count_get = *Math::GSL::Interpc::gsl_interp_accel_miss_count_get;
*swig_miss_count_set = *Math::GSL::Interpc::gsl_interp_accel_miss_count_set;
*swig_hit_count_get = *Math::GSL::Interpc::gsl_interp_accel_hit_count_get;
*swig_hit_count_set = *Math::GSL::Interpc::gsl_interp_accel_hit_count_set;
sub new {
    my $pkg = shift;
    my $self = Math::GSL::Interpc::new_gsl_interp_accel(@_);
    bless $self, $pkg if defined($self);
}

sub DESTROY {
    return unless $_[0]->isa('HASH');
    my $self = tied(%{$_[0]});
    return unless defined $self;
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
        Math::GSL::Interpc::delete_gsl_interp_accel($self);
        delete $OWNER{$self};
    }
}

sub DISOWN {
    my $self = shift;
    my $ptr = tied(%$self);
    delete $OWNER{$ptr};
}

sub ACQUIRE {
    my $self = shift;
    my $ptr = tied(%$self);
    $OWNER{$ptr} = 1;
}


############# Class : Math::GSL::Interp::gsl_interp ##############

package Math::GSL::Interp::gsl_interp;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::Interp );
%OWNER = ();
%ITERATORS = ();
*swig_type_get = *Math::GSL::Interpc::gsl_interp_type_get;
*swig_type_set = *Math::GSL::Interpc::gsl_interp_type_set;
*swig_xmin_get = *Math::GSL::Interpc::gsl_interp_xmin_get;
*swig_xmin_set = *Math::GSL::Interpc::gsl_interp_xmin_set;
*swig_xmax_get = *Math::GSL::Interpc::gsl_interp_xmax_get;
*swig_xmax_set = *Math::GSL::Interpc::gsl_interp_xmax_set;
*swig_size_get = *Math::GSL::Interpc::gsl_interp_size_get;
*swig_size_set = *Math::GSL::Interpc::gsl_interp_size_set;
*swig_state_get = *Math::GSL::Interpc::gsl_interp_state_get;
*swig_state_set = *Math::GSL::Interpc::gsl_interp_state_set;
sub new {
    my $pkg = shift;
    my $self = Math::GSL::Interpc::new_gsl_interp(@_);
    bless $self, $pkg if defined($self);
}

sub DESTROY {
    return unless $_[0]->isa('HASH');
    my $self = tied(%{$_[0]});
    return unless defined $self;
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
        Math::GSL::Interpc::delete_gsl_interp($self);
        delete $OWNER{$self};
    }
}

sub DISOWN {
    my $self = shift;
    my $ptr = tied(%$self);
    delete $OWNER{$ptr};
}

sub ACQUIRE {
    my $self = shift;
    my $ptr = tied(%$self);
    $OWNER{$ptr} = 1;
}


# ------- VARIABLE STUBS --------

package Math::GSL::Interp;

*GSL_VERSION = *Math::GSL::Interpc::GSL_VERSION;
*GSL_MAJOR_VERSION = *Math::GSL::Interpc::GSL_MAJOR_VERSION;
*GSL_MINOR_VERSION = *Math::GSL::Interpc::GSL_MINOR_VERSION;
*GSL_POSZERO = *Math::GSL::Interpc::GSL_POSZERO;
*GSL_NEGZERO = *Math::GSL::Interpc::GSL_NEGZERO;
*GSL_SUCCESS = *Math::GSL::Interpc::GSL_SUCCESS;
*GSL_FAILURE = *Math::GSL::Interpc::GSL_FAILURE;
*GSL_CONTINUE = *Math::GSL::Interpc::GSL_CONTINUE;
*GSL_EDOM = *Math::GSL::Interpc::GSL_EDOM;
*GSL_ERANGE = *Math::GSL::Interpc::GSL_ERANGE;
*GSL_EFAULT = *Math::GSL::Interpc::GSL_EFAULT;
*GSL_EINVAL = *Math::GSL::Interpc::GSL_EINVAL;
*GSL_EFAILED = *Math::GSL::Interpc::GSL_EFAILED;
*GSL_EFACTOR = *Math::GSL::Interpc::GSL_EFACTOR;
*GSL_ESANITY = *Math::GSL::Interpc::GSL_ESANITY;
*GSL_ENOMEM = *Math::GSL::Interpc::GSL_ENOMEM;
*GSL_EBADFUNC = *Math::GSL::Interpc::GSL_EBADFUNC;
*GSL_ERUNAWAY = *Math::GSL::Interpc::GSL_ERUNAWAY;
*GSL_EMAXITER = *Math::GSL::Interpc::GSL_EMAXITER;
*GSL_EZERODIV = *Math::GSL::Interpc::GSL_EZERODIV;
*GSL_EBADTOL = *Math::GSL::Interpc::GSL_EBADTOL;
*GSL_ETOL = *Math::GSL::Interpc::GSL_ETOL;
*GSL_EUNDRFLW = *Math::GSL::Interpc::GSL_EUNDRFLW;
*GSL_EOVRFLW = *Math::GSL::Interpc::GSL_EOVRFLW;
*GSL_ELOSS = *Math::GSL::Interpc::GSL_ELOSS;
*GSL_EROUND = *Math::GSL::Interpc::GSL_EROUND;
*GSL_EBADLEN = *Math::GSL::Interpc::GSL_EBADLEN;
*GSL_ENOTSQR = *Math::GSL::Interpc::GSL_ENOTSQR;
*GSL_ESING = *Math::GSL::Interpc::GSL_ESING;
*GSL_EDIVERGE = *Math::GSL::Interpc::GSL_EDIVERGE;
*GSL_EUNSUP = *Math::GSL::Interpc::GSL_EUNSUP;
*GSL_EUNIMPL = *Math::GSL::Interpc::GSL_EUNIMPL;
*GSL_ECACHE = *Math::GSL::Interpc::GSL_ECACHE;
*GSL_ETABLE = *Math::GSL::Interpc::GSL_ETABLE;
*GSL_ENOPROG = *Math::GSL::Interpc::GSL_ENOPROG;
*GSL_ENOPROGJ = *Math::GSL::Interpc::GSL_ENOPROGJ;
*GSL_ETOLF = *Math::GSL::Interpc::GSL_ETOLF;
*GSL_ETOLX = *Math::GSL::Interpc::GSL_ETOLX;
*GSL_ETOLG = *Math::GSL::Interpc::GSL_ETOLG;
*GSL_EOF = *Math::GSL::Interpc::GSL_EOF;
*gsl_interp_linear = *Math::GSL::Interpc::gsl_interp_linear;
*gsl_interp_polynomial = *Math::GSL::Interpc::gsl_interp_polynomial;
*gsl_interp_cspline = *Math::GSL::Interpc::gsl_interp_cspline;
*gsl_interp_cspline_periodic = *Math::GSL::Interpc::gsl_interp_cspline_periodic;
*gsl_interp_akima = *Math::GSL::Interpc::gsl_interp_akima;
*gsl_interp_akima_periodic = *Math::GSL::Interpc::gsl_interp_akima_periodic;

@EXPORT_OK = qw/
               gsl_interp_accel_alloc
               gsl_interp_accel_find
               gsl_interp_accel_reset
               gsl_interp_accel_free
               gsl_interp_alloc
               gsl_interp_init
               gsl_interp_name
               gsl_interp_min_size
               gsl_interp_eval_e
               gsl_interp_eval
               gsl_interp_eval_deriv_e
               gsl_interp_eval_deriv
               gsl_interp_eval_deriv2_e
               gsl_interp_eval_deriv2
               gsl_interp_eval_integ_e
               gsl_interp_eval_integ
               gsl_interp_free
               gsl_interp_bsearch
               $gsl_interp_linear
               $gsl_interp_polynomial
               $gsl_interp_cspline
               $gsl_interp_cspline_periodic
               $gsl_interp_akima
               $gsl_interp_akima_periodic
             /;
%EXPORT_TAGS = ( all => \@EXPORT_OK  );

__END__

=encoding utf8

=head1 NAME

Math::GSL::Interp - Interpolation

=head1 SYNOPSIS

    use Math::GSL::Interp qw/:all/;
    my $x_array = [ 0.0, 1.0, 2.0, 3.0, 4.0 ];

    # check that we get the last interval if x == last value
    $index_result = gsl_interp_bsearch($x_array, 4.0, 0, 4);
    print "The last interval is $index_result \n";

=head1 DESCRIPTION

=over 1

=item C<gsl_interp_accel_alloc()>

This function returns a pointer to an accelerator object, which is a kind of
iterator for interpolation lookups. It tracks the state of lookups, thus
allowing for application of various acceleration strategies.

=item C<gsl_interp_accel_find($a, $x_array, $size, $x)>

This function performs a lookup action on the data array $x_array of size
$size, using the given accelerator $a. This is how lookups are performed during
evaluation of an interpolation. The function returns an index i such that
$x_array[i] <= $x < $x_array[i+1].

=item C<gsl_interp_accel_reset>

=item C<gsl_interp_accel_free($a)>

This function frees the accelerator object $a.

=item C<gsl_interp_alloc($T, $alloc)>

This function returns a newly allocated interpolation object of type $T for
$size data-points. $T must be one of the constants below.

=item C<gsl_interp_init($interp, $xa, $ya, $size)>

This function initializes the interpolation object interp for the data (xa,ya)
where xa and ya are arrays of size size. The interpolation object (gsl_interp)
does not save the data arrays xa and ya and only stores the static state
computed from the data. The xa data array is always assumed to be strictly
ordered, with increasing x values; the behavior for other arrangements is not
defined.

=item C<gsl_interp_name($interp)>

This function returns the name of the interpolation type used by $interp.

=item C<gsl_interp_min_size($interp)>

This function returns the minimum number of points required by the
interpolation type of $interp. For example, Akima spline interpolation requires
a minimum of 5 points.

=item C<gsl_interp_eval_e($interp, $xa, $ya, $x, $acc)>

This functions returns the interpolated value of y for a given point $x, using
the interpolation object $interp, data arrays $xa and $ya and the accelerator
$acc. The function returns 0 if the operation succeeded, 1 otherwise and the y
value.

=item C<gsl_interp_eval($interp, $xa, $ya, $x, $acc)>

This functions returns the interpolated value of y for a given point $x, using
the interpolation object $interp, data arrays $xa and $ya and the accelerator
$acc.

=item C<gsl_interp_eval_deriv_e($interp, $xa, $ya, $x, $acc)>

This function computes the derivative value of y for a given point $x, using
the interpolation object $interp, data arrays $xa and $ya and the accelerator
$acc. The function returns 0 if the operation succeeded, 1 otherwise and the d
value.

=item C<gsl_interp_eval_deriv($interp, $xa, $ya, $x, $acc)>

This function returns the derivative d of an interpolated function for a given
point $x, using the interpolation object interp, data arrays $xa and $ya and
the accelerator $acc.

=item C<gsl_interp_eval_deriv2_e($interp, $xa, $ya, $x, $acc)>

This function computes the second derivative d2 of an interpolated function for
a given point $x, using the interpolation object $interp, data arrays $xa and
$ya and the accelerator $acc. The function returns 0 if the operation
succeeded, 1 otherwise and the d2 value.

=item C<gsl_interp_eval_deriv2($interp, $xa, $ya, $x, $acc)>

This function returns the second derivative d2 of an interpolated function
for a given point $x, using the interpolation object $interp, data arrays $xa
and $ya and the accelerator $acc.

=item C<gsl_interp_eval_integ_e($interp, $xa, $ya, $a, $b, $acc)>

This function computes the numerical integral result of an interpolated
function over the range [$a, $b], using the interpolation object $interp, data
arrays $xa and $ya and the accelerator $acc. The function returns 0 if the
operation succeeded, 1 otherwise and the result value.

=item C<gsl_interp_eval_integ($interp, $xa, $ya, $a, $b, $acc)>

This function returns the numerical integral result of an interpolated function
over the range [$a, $b], using the interpolation object $interp, data arrays
$xa and $ya and the accelerator $acc.

=item C<gsl_interp_free($interp)> - This function frees the interpolation object $interp.

=item C<gsl_interp_bsearch($x_array, $x, $index_lo, $index_hi)>

This function returns the index i of the array $x_array such that $x_array[i]
<= x < $x_array[i+1]. The index is searched for in the range
[$index_lo,$index_hi].

=back

This module also includes the following constants :

=over 1

=item C<$gsl_interp_linear>

Linear interpolation

=item C<$gsl_interp_polynomial>

Polynomial interpolation. This method should only be used for interpolating
small numbers of points because polynomial interpolation introduces large
oscillations, even for well-behaved datasets. The number of terms in the
interpolating polynomial is equal to the number of points.

=item C<$gsl_interp_cspline>

Cubic spline with natural boundary conditions. The resulting curve is piecewise
cubic on each interval, with matching first and second derivatives at the
supplied data-points. The second derivative is chosen to be zero at the first
point and last point.

=item C<$gsl_interp_cspline_periodic>

Cubic spline with periodic boundary conditions. The resulting curve is
piecewise cubic on each interval, with matching first and second derivatives at
the supplied data-points. The derivatives at the first and last points are also
matched. Note that the last point in the data must have the same y-value as the
first point, otherwise the resulting periodic interpolation will have a
discontinuity at the boundary.

=item C<$gsl_interp_akima>

Non-rounded Akima spline with natural boundary conditions. This method uses the
non-rounded corner algorithm of Wodicka.

=item C<$gsl_interp_akima_periodic>

Non-rounded Akima spline with periodic boundary conditions. This method uses
the non-rounded corner algorithm of Wodicka.

=back

=head1 AUTHORS

Jonathan "Duke" Leto <jonathan@leto.net> and Thierry Moisan <thierry.moisan@gmail.com>

=head1 COPYRIGHT AND LICENSE

Copyright (C) 2008-2024 Jonathan "Duke" Leto and Thierry Moisan

This program is free software; you can redistribute it and/or modify it
under the same terms as Perl itself.

=cut

1;