File: Sort.pm.1.16

package info (click to toggle)
libmath-gsl-perl 0.45-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 192,156 kB
  • sloc: ansic: 895,524; perl: 24,682; makefile: 12
file content (366 lines) | stat: -rw-r--r-- 14,333 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
# This file was automatically generated by SWIG (https://www.swig.org).
# Version 4.2.0
#
# Do not make changes to this file unless you know what you are doing - modify
# the SWIG interface file instead.

package Math::GSL::Sort;
use base qw(Exporter);
use base qw(DynaLoader);
package Math::GSL::Sortc;
bootstrap Math::GSL::Sort;
package Math::GSL::Sort;
@EXPORT = qw();

# ---------- BASE METHODS -------------

package Math::GSL::Sort;

sub TIEHASH {
    my ($classname,$obj) = @_;
    return bless $obj, $classname;
}

sub CLEAR { }

sub FIRSTKEY { }

sub NEXTKEY { }

sub FETCH {
    my ($self,$field) = @_;
    my $member_func = "swig_${field}_get";
    $self->$member_func();
}

sub STORE {
    my ($self,$field,$newval) = @_;
    my $member_func = "swig_${field}_set";
    $self->$member_func($newval);
}

sub this {
    my $ptr = shift;
    return tied(%$ptr);
}


# ------- FUNCTION WRAPPERS --------

package Math::GSL::Sort;

*gsl_error = *Math::GSL::Sortc::gsl_error;
*gsl_stream_printf = *Math::GSL::Sortc::gsl_stream_printf;
*gsl_strerror = *Math::GSL::Sortc::gsl_strerror;
*gsl_set_error_handler = *Math::GSL::Sortc::gsl_set_error_handler;
*gsl_set_error_handler_off = *Math::GSL::Sortc::gsl_set_error_handler_off;
*gsl_set_stream_handler = *Math::GSL::Sortc::gsl_set_stream_handler;
*gsl_set_stream = *Math::GSL::Sortc::gsl_set_stream;
*gsl_sort = *Math::GSL::Sortc::gsl_sort;
*gsl_sort2 = *Math::GSL::Sortc::gsl_sort2;
*gsl_sort_index = *Math::GSL::Sortc::gsl_sort_index;
*gsl_sort_smallest = *Math::GSL::Sortc::gsl_sort_smallest;
*gsl_sort_smallest_index = *Math::GSL::Sortc::gsl_sort_smallest_index;
*gsl_sort_largest = *Math::GSL::Sortc::gsl_sort_largest;
*gsl_sort_largest_index = *Math::GSL::Sortc::gsl_sort_largest_index;
*gsl_sort_int = *Math::GSL::Sortc::gsl_sort_int;
*gsl_sort2_int = *Math::GSL::Sortc::gsl_sort2_int;
*gsl_sort_int_index = *Math::GSL::Sortc::gsl_sort_int_index;
*gsl_sort_int_smallest = *Math::GSL::Sortc::gsl_sort_int_smallest;
*gsl_sort_int_smallest_index = *Math::GSL::Sortc::gsl_sort_int_smallest_index;
*gsl_sort_int_largest = *Math::GSL::Sortc::gsl_sort_int_largest;
*gsl_sort_int_largest_index = *Math::GSL::Sortc::gsl_sort_int_largest_index;
*gsl_sort_vector = *Math::GSL::Sortc::gsl_sort_vector;
*gsl_sort_vector2 = *Math::GSL::Sortc::gsl_sort_vector2;
*gsl_sort_vector_index = *Math::GSL::Sortc::gsl_sort_vector_index;
*gsl_sort_vector_smallest = *Math::GSL::Sortc::gsl_sort_vector_smallest;
*gsl_sort_vector_largest = *Math::GSL::Sortc::gsl_sort_vector_largest;
*gsl_sort_vector_smallest_index = *Math::GSL::Sortc::gsl_sort_vector_smallest_index;
*gsl_sort_vector_largest_index = *Math::GSL::Sortc::gsl_sort_vector_largest_index;
*gsl_sort_vector_int = *Math::GSL::Sortc::gsl_sort_vector_int;
*gsl_sort_vector2_int = *Math::GSL::Sortc::gsl_sort_vector2_int;
*gsl_sort_vector_int_index = *Math::GSL::Sortc::gsl_sort_vector_int_index;
*gsl_sort_vector_int_smallest = *Math::GSL::Sortc::gsl_sort_vector_int_smallest;
*gsl_sort_vector_int_largest = *Math::GSL::Sortc::gsl_sort_vector_int_largest;
*gsl_sort_vector_int_smallest_index = *Math::GSL::Sortc::gsl_sort_vector_int_smallest_index;
*gsl_sort_vector_int_largest_index = *Math::GSL::Sortc::gsl_sort_vector_int_largest_index;
*gsl_permutation_alloc = *Math::GSL::Sortc::gsl_permutation_alloc;
*gsl_permutation_calloc = *Math::GSL::Sortc::gsl_permutation_calloc;
*gsl_permutation_init = *Math::GSL::Sortc::gsl_permutation_init;
*gsl_permutation_free = *Math::GSL::Sortc::gsl_permutation_free;
*gsl_permutation_memcpy = *Math::GSL::Sortc::gsl_permutation_memcpy;
*gsl_permutation_fread = *Math::GSL::Sortc::gsl_permutation_fread;
*gsl_permutation_fwrite = *Math::GSL::Sortc::gsl_permutation_fwrite;
*gsl_permutation_fscanf = *Math::GSL::Sortc::gsl_permutation_fscanf;
*gsl_permutation_fprintf = *Math::GSL::Sortc::gsl_permutation_fprintf;
*gsl_permutation_size = *Math::GSL::Sortc::gsl_permutation_size;
*gsl_permutation_data = *Math::GSL::Sortc::gsl_permutation_data;
*gsl_permutation_swap = *Math::GSL::Sortc::gsl_permutation_swap;
*gsl_permutation_valid = *Math::GSL::Sortc::gsl_permutation_valid;
*gsl_permutation_reverse = *Math::GSL::Sortc::gsl_permutation_reverse;
*gsl_permutation_inverse = *Math::GSL::Sortc::gsl_permutation_inverse;
*gsl_permutation_next = *Math::GSL::Sortc::gsl_permutation_next;
*gsl_permutation_prev = *Math::GSL::Sortc::gsl_permutation_prev;
*gsl_permutation_mul = *Math::GSL::Sortc::gsl_permutation_mul;
*gsl_permutation_linear_to_canonical = *Math::GSL::Sortc::gsl_permutation_linear_to_canonical;
*gsl_permutation_canonical_to_linear = *Math::GSL::Sortc::gsl_permutation_canonical_to_linear;
*gsl_permutation_inversions = *Math::GSL::Sortc::gsl_permutation_inversions;
*gsl_permutation_linear_cycles = *Math::GSL::Sortc::gsl_permutation_linear_cycles;
*gsl_permutation_canonical_cycles = *Math::GSL::Sortc::gsl_permutation_canonical_cycles;
*gsl_permutation_get = *Math::GSL::Sortc::gsl_permutation_get;

############# Class : Math::GSL::Sort::gsl_permutation_struct ##############

package Math::GSL::Sort::gsl_permutation_struct;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::Sort );
%OWNER = ();
%ITERATORS = ();
*swig_size_get = *Math::GSL::Sortc::gsl_permutation_struct_size_get;
*swig_size_set = *Math::GSL::Sortc::gsl_permutation_struct_size_set;
*swig_data_get = *Math::GSL::Sortc::gsl_permutation_struct_data_get;
*swig_data_set = *Math::GSL::Sortc::gsl_permutation_struct_data_set;
sub new {
    my $pkg = shift;
    my $self = Math::GSL::Sortc::new_gsl_permutation_struct(@_);
    bless $self, $pkg if defined($self);
}

sub DESTROY {
    return unless $_[0]->isa('HASH');
    my $self = tied(%{$_[0]});
    return unless defined $self;
    delete $ITERATORS{$self};
    if (exists $OWNER{$self}) {
        Math::GSL::Sortc::delete_gsl_permutation_struct($self);
        delete $OWNER{$self};
    }
}

sub DISOWN {
    my $self = shift;
    my $ptr = tied(%$self);
    delete $OWNER{$ptr};
}

sub ACQUIRE {
    my $self = shift;
    my $ptr = tied(%$self);
    $OWNER{$ptr} = 1;
}


# ------- VARIABLE STUBS --------

package Math::GSL::Sort;

*GSL_VERSION = *Math::GSL::Sortc::GSL_VERSION;
*GSL_MAJOR_VERSION = *Math::GSL::Sortc::GSL_MAJOR_VERSION;
*GSL_MINOR_VERSION = *Math::GSL::Sortc::GSL_MINOR_VERSION;
*GSL_POSZERO = *Math::GSL::Sortc::GSL_POSZERO;
*GSL_NEGZERO = *Math::GSL::Sortc::GSL_NEGZERO;
*GSL_SUCCESS = *Math::GSL::Sortc::GSL_SUCCESS;
*GSL_FAILURE = *Math::GSL::Sortc::GSL_FAILURE;
*GSL_CONTINUE = *Math::GSL::Sortc::GSL_CONTINUE;
*GSL_EDOM = *Math::GSL::Sortc::GSL_EDOM;
*GSL_ERANGE = *Math::GSL::Sortc::GSL_ERANGE;
*GSL_EFAULT = *Math::GSL::Sortc::GSL_EFAULT;
*GSL_EINVAL = *Math::GSL::Sortc::GSL_EINVAL;
*GSL_EFAILED = *Math::GSL::Sortc::GSL_EFAILED;
*GSL_EFACTOR = *Math::GSL::Sortc::GSL_EFACTOR;
*GSL_ESANITY = *Math::GSL::Sortc::GSL_ESANITY;
*GSL_ENOMEM = *Math::GSL::Sortc::GSL_ENOMEM;
*GSL_EBADFUNC = *Math::GSL::Sortc::GSL_EBADFUNC;
*GSL_ERUNAWAY = *Math::GSL::Sortc::GSL_ERUNAWAY;
*GSL_EMAXITER = *Math::GSL::Sortc::GSL_EMAXITER;
*GSL_EZERODIV = *Math::GSL::Sortc::GSL_EZERODIV;
*GSL_EBADTOL = *Math::GSL::Sortc::GSL_EBADTOL;
*GSL_ETOL = *Math::GSL::Sortc::GSL_ETOL;
*GSL_EUNDRFLW = *Math::GSL::Sortc::GSL_EUNDRFLW;
*GSL_EOVRFLW = *Math::GSL::Sortc::GSL_EOVRFLW;
*GSL_ELOSS = *Math::GSL::Sortc::GSL_ELOSS;
*GSL_EROUND = *Math::GSL::Sortc::GSL_EROUND;
*GSL_EBADLEN = *Math::GSL::Sortc::GSL_EBADLEN;
*GSL_ENOTSQR = *Math::GSL::Sortc::GSL_ENOTSQR;
*GSL_ESING = *Math::GSL::Sortc::GSL_ESING;
*GSL_EDIVERGE = *Math::GSL::Sortc::GSL_EDIVERGE;
*GSL_EUNSUP = *Math::GSL::Sortc::GSL_EUNSUP;
*GSL_EUNIMPL = *Math::GSL::Sortc::GSL_EUNIMPL;
*GSL_ECACHE = *Math::GSL::Sortc::GSL_ECACHE;
*GSL_ETABLE = *Math::GSL::Sortc::GSL_ETABLE;
*GSL_ENOPROG = *Math::GSL::Sortc::GSL_ENOPROG;
*GSL_ENOPROGJ = *Math::GSL::Sortc::GSL_ENOPROGJ;
*GSL_ETOLF = *Math::GSL::Sortc::GSL_ETOLF;
*GSL_ETOLX = *Math::GSL::Sortc::GSL_ETOLX;
*GSL_ETOLG = *Math::GSL::Sortc::GSL_ETOLG;
*GSL_EOF = *Math::GSL::Sortc::GSL_EOF;

@EXPORT_plain = qw/
                gsl_sort gsl_sort_index
                gsl_sort_smallest gsl_sort_smallest_index
                gsl_sort_largest gsl_sort_largest_index
                /;
@EXPORT_vector= qw/
                gsl_sort_vector gsl_sort_vector_index
                gsl_sort_vector_smallest gsl_sort_vector_smallest_index
                gsl_sort_vector_largest gsl_sort_vector_largest_index
                /;
@EXPORT_OK    = ( @EXPORT_plain, @EXPORT_vector );
%EXPORT_TAGS  = (
                 all    => [ @EXPORT_OK     ],
                 plain  => [ @EXPORT_plain  ],
                 vector => [ @EXPORT_vector ],
                );
__END__

=encoding utf8

=head1 NAME

Math::GSL::Sort - Functions for sorting data

=head1 SYNOPSIS

    use Math::GSL::Sort qw/:all/;
    my $x       = [ 2**15, 1.67, 20e5, -17, 6900, 1/3 , 42e-10 ];
    my $sorted  = gsl_sort($x, 1, $#$x+1 );
    my $numbers = [ map { rand(100) } (1..100) ];
    my ($status, $smallest10) = gsl_sort_smallest($array, 10, $x, 1, $#$x+1);


=head1 DESCRIPTION

=over

=item * gsl_sort_vector($v)

This function sorts the elements of the vector $v into ascending numerical
order.

=item * gsl_sort_vector_index($p, $v)

This function indirectly sorts the elements of the vector $v into ascending
order, storing the resulting permutation in $p. The elements of $p give the
index of the vector element which would have been stored in that position if
the vector had been sorted in place. The first element of $p gives the index
of the least element in $v, and the last element of $p gives the index of the
greatest element in $v. The vector $v is not changed.

=item * gsl_sort_vector_smallest($array, $k, $vector)

This function outputs 0 if the operation succeeded, 1 otherwise and then the
$k smallest elements of the vector $v. $k must be less than or equal to the
length of the vector $v.

=item * gsl_sort_vector_smallest_index($p, $k, $v)

This function outputs 0 if the operation succeeded, 1 otherwise and then the
indices of the $k smallest elements of the vector $v. $p must be a prealocated
array reference. This should be removed in further versions. $k must be less
than or equal to the length of the vector $v.

=item * gsl_sort_vector_largest($array, $k, $vector)

This function outputs 0 if the operation succeeded, 1 otherwise and then the
$k largest elements of the vector $v. $k must be less than or equal to the
length of the vector $v.

=item * gsl_sort_vector_largest_index($p, $k, $v)

This function outputs 0 if the operation succeeded, 1 otherwise and then the
indices of the $k largest elements of the vector $v. $p must be a prealocated
array reference. This should be removed in further versions. $k must be less
than or equal to the length of the vector $v.

=item * gsl_sort($data, $stride, $n)

This function returns an array reference to the sorted $n elements of the
array $data with stride $stride into ascending numerical order.

=item * gsl_sort_index($p, $data, $stride, $n)

This function indirectly sorts the $n elements of the array $data with stride
$stride into ascending order, outputting the permutation in the foram of an
array. $p must be a prealocated array reference. This should be removed in
further versions. The array $data is not changed.

=item * gsl_sort_smallest($array, $k, $data, $stride, $n)

This function outputs 0 if the operation succeeded, 1 otherwise and then the
$k smallest elements of the array $data, of size $n and stride $stride, in
ascending numerical. The size $k of the subset must be less than or equal to
$n. The data $src is not modified by this operation. $array must be a
prealocated array reference. This should be removed in further versions.

=item * gsl_sort_smallest_index($p, $k, $src, $stride, $n)

This function outputs 0 if the operation succeeded, 1 otherwise and then the
indices of the $k smallest elements of the array $src, of size $n and stride
$stride. The indices are chosen so that the corresponding data is in ascending
numerical order. $k must be less than or equal to $n. The data $src is not
modified by this operation. $p must be a prealocated array reference. This
should be removed in further versions.

=item * gsl_sort_largest($array, $k, $data, $stride, $n)

This function outputs 0 if the operation succeeded, 1 otherwise and then the
$k largest elements of the array $data, of size $n and stride $stride, in
ascending numerical. The size $k of the subset must be less than or equal to
$n. The data $src is not modified by this operation. $array must be a
prealocated array reference. This should be removed in further versions.

=item * gsl_sort_largest_index($p, $k, $src, $stride, $n)

This function outputs 0 if the operation succeeded, 1 otherwise and then the
indices of the $k largest elements of the array $src, of size $n and stride
$stride. The indices are chosen so that the corresponding data is in ascending
numerical order. $k must be less than or equal to $n. The data $src is not
modified by this operation. $p must be a prealocated array reference. This
should be removed in further versions.

=back

 Here is a complete list of all tags for this module :

=over

=item all

=item plain

=item vector

=back

For more information on the functions, we refer you to the GSL official
documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>

=head1 PERFORMANCE

In the source code of Math::GSL, the file "examples/benchmark/sort" compares
the performance of gsl_sort() to Perl's builtin sort() function. Its first
argument is the number of iterations and the second is the size of the array
of numbers to sort. For example, to see a benchmark of 1000 iterations for
arrays of size 50000 you would type

    ./examples/benchmark/sort 1000 50000

Initial benchmarks indicate just slightly above a 2x performance increase
over sort() for arrays of between 5000 and 50000 elements. This may mostly
be due to the fact that gsl_sort() takes and returns a reference while sort()
takes and returns a plain list.

=head1 AUTHORS

Jonathan "Duke" Leto <jonathan@leto.net> and Thierry Moisan <thierry.moisan@gmail.com>

=head1 COPYRIGHT AND LICENSE

Copyright (C) 2008-2024 Jonathan "Duke" Leto and Thierry Moisan

This program is free software; you can redistribute it and/or modify it
under the same terms as Perl itself.

=cut

1;