1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
|
# This file was automatically generated by SWIG (https://www.swig.org).
# Version 4.2.0
#
# Do not make changes to this file unless you know what you are doing - modify
# the SWIG interface file instead.
package Math::GSL::Sys;
use base qw(Exporter);
use base qw(DynaLoader);
package Math::GSL::Sysc;
bootstrap Math::GSL::Sys;
package Math::GSL::Sys;
@EXPORT = qw();
# ---------- BASE METHODS -------------
package Math::GSL::Sys;
sub TIEHASH {
my ($classname,$obj) = @_;
return bless $obj, $classname;
}
sub CLEAR { }
sub FIRSTKEY { }
sub NEXTKEY { }
sub FETCH {
my ($self,$field) = @_;
my $member_func = "swig_${field}_get";
$self->$member_func();
}
sub STORE {
my ($self,$field,$newval) = @_;
my $member_func = "swig_${field}_set";
$self->$member_func($newval);
}
sub this {
my $ptr = shift;
return tied(%$ptr);
}
# ------- FUNCTION WRAPPERS --------
package Math::GSL::Sys;
*gsl_error = *Math::GSL::Sysc::gsl_error;
*gsl_stream_printf = *Math::GSL::Sysc::gsl_stream_printf;
*gsl_strerror = *Math::GSL::Sysc::gsl_strerror;
*gsl_set_error_handler = *Math::GSL::Sysc::gsl_set_error_handler;
*gsl_set_error_handler_off = *Math::GSL::Sysc::gsl_set_error_handler_off;
*gsl_set_stream_handler = *Math::GSL::Sysc::gsl_set_stream_handler;
*gsl_set_stream = *Math::GSL::Sysc::gsl_set_stream;
*gsl_log1p = *Math::GSL::Sysc::gsl_log1p;
*gsl_expm1 = *Math::GSL::Sysc::gsl_expm1;
*gsl_hypot = *Math::GSL::Sysc::gsl_hypot;
*gsl_hypot3 = *Math::GSL::Sysc::gsl_hypot3;
*gsl_acosh = *Math::GSL::Sysc::gsl_acosh;
*gsl_asinh = *Math::GSL::Sysc::gsl_asinh;
*gsl_atanh = *Math::GSL::Sysc::gsl_atanh;
*gsl_isnan = *Math::GSL::Sysc::gsl_isnan;
*gsl_isinf = *Math::GSL::Sysc::gsl_isinf;
*gsl_finite = *Math::GSL::Sysc::gsl_finite;
*gsl_nan = *Math::GSL::Sysc::gsl_nan;
*gsl_posinf = *Math::GSL::Sysc::gsl_posinf;
*gsl_neginf = *Math::GSL::Sysc::gsl_neginf;
*gsl_fdiv = *Math::GSL::Sysc::gsl_fdiv;
*gsl_coerce_double = *Math::GSL::Sysc::gsl_coerce_double;
*gsl_coerce_float = *Math::GSL::Sysc::gsl_coerce_float;
*gsl_coerce_long_double = *Math::GSL::Sysc::gsl_coerce_long_double;
*gsl_ldexp = *Math::GSL::Sysc::gsl_ldexp;
*gsl_frexp = *Math::GSL::Sysc::gsl_frexp;
*gsl_fcmp = *Math::GSL::Sysc::gsl_fcmp;
# ------- VARIABLE STUBS --------
package Math::GSL::Sys;
*GSL_VERSION = *Math::GSL::Sysc::GSL_VERSION;
*GSL_MAJOR_VERSION = *Math::GSL::Sysc::GSL_MAJOR_VERSION;
*GSL_MINOR_VERSION = *Math::GSL::Sysc::GSL_MINOR_VERSION;
*GSL_POSZERO = *Math::GSL::Sysc::GSL_POSZERO;
*GSL_NEGZERO = *Math::GSL::Sysc::GSL_NEGZERO;
*GSL_SUCCESS = *Math::GSL::Sysc::GSL_SUCCESS;
*GSL_FAILURE = *Math::GSL::Sysc::GSL_FAILURE;
*GSL_CONTINUE = *Math::GSL::Sysc::GSL_CONTINUE;
*GSL_EDOM = *Math::GSL::Sysc::GSL_EDOM;
*GSL_ERANGE = *Math::GSL::Sysc::GSL_ERANGE;
*GSL_EFAULT = *Math::GSL::Sysc::GSL_EFAULT;
*GSL_EINVAL = *Math::GSL::Sysc::GSL_EINVAL;
*GSL_EFAILED = *Math::GSL::Sysc::GSL_EFAILED;
*GSL_EFACTOR = *Math::GSL::Sysc::GSL_EFACTOR;
*GSL_ESANITY = *Math::GSL::Sysc::GSL_ESANITY;
*GSL_ENOMEM = *Math::GSL::Sysc::GSL_ENOMEM;
*GSL_EBADFUNC = *Math::GSL::Sysc::GSL_EBADFUNC;
*GSL_ERUNAWAY = *Math::GSL::Sysc::GSL_ERUNAWAY;
*GSL_EMAXITER = *Math::GSL::Sysc::GSL_EMAXITER;
*GSL_EZERODIV = *Math::GSL::Sysc::GSL_EZERODIV;
*GSL_EBADTOL = *Math::GSL::Sysc::GSL_EBADTOL;
*GSL_ETOL = *Math::GSL::Sysc::GSL_ETOL;
*GSL_EUNDRFLW = *Math::GSL::Sysc::GSL_EUNDRFLW;
*GSL_EOVRFLW = *Math::GSL::Sysc::GSL_EOVRFLW;
*GSL_ELOSS = *Math::GSL::Sysc::GSL_ELOSS;
*GSL_EROUND = *Math::GSL::Sysc::GSL_EROUND;
*GSL_EBADLEN = *Math::GSL::Sysc::GSL_EBADLEN;
*GSL_ENOTSQR = *Math::GSL::Sysc::GSL_ENOTSQR;
*GSL_ESING = *Math::GSL::Sysc::GSL_ESING;
*GSL_EDIVERGE = *Math::GSL::Sysc::GSL_EDIVERGE;
*GSL_EUNSUP = *Math::GSL::Sysc::GSL_EUNSUP;
*GSL_EUNIMPL = *Math::GSL::Sysc::GSL_EUNIMPL;
*GSL_ECACHE = *Math::GSL::Sysc::GSL_ECACHE;
*GSL_ETABLE = *Math::GSL::Sysc::GSL_ETABLE;
*GSL_ENOPROG = *Math::GSL::Sysc::GSL_ENOPROG;
*GSL_ENOPROGJ = *Math::GSL::Sysc::GSL_ENOPROGJ;
*GSL_ETOLF = *Math::GSL::Sysc::GSL_ETOLF;
*GSL_ETOLX = *Math::GSL::Sysc::GSL_ETOLX;
*GSL_ETOLG = *Math::GSL::Sysc::GSL_ETOLG;
*GSL_EOF = *Math::GSL::Sysc::GSL_EOF;
our @EXPORT = qw();
our @EXPORT_OK = qw/
gsl_log1p
gsl_expm1
gsl_hypot
gsl_hypot3
gsl_acosh
gsl_asinh
gsl_atanh
gsl_isnan
gsl_isinf
gsl_finite
gsl_posinf
gsl_neginf
gsl_fdiv
gsl_coerce_double
gsl_coerce_float
gsl_coerce_long_double
gsl_ldexp
gsl_frexp
gsl_fcmp
gsl_nan
gsl_isnan
gsl_inf
$GSL_NAN
$GSL_POSINF
$GSL_NEGINF
/;
our %EXPORT_TAGS = ( all => \@EXPORT_OK );
our $GSL_NAN = gsl_nan();
our $GSL_POSINF = gsl_posinf();
our $GSL_NEGINF = gsl_neginf();
__END__
=encoding utf8
=head1 NAME
Math::GSL::Sys - Misc Math Functions
=head1 SYNOPSIS
use Math::GSL::Sys qw/:all/;
=head1 DESCRIPTION
This module contains various useful math functions that are not usually
provided by standard libraries.
=over
=item * C<gsl_log1p($x)>
This function computes the value of \log(1+$x) in a way that is accurate for
small $x. It provides an alternative to the BSD math function log1p(x).
=item * C<gsl_expm1($x)>
This function computes the value of \exp($x)-1 in a way that is accurate for
small $x. It provides an alternative to the BSD math function expm1(x).
=item * C<gsl_hypot($x, $y)>
This function computes the value of \sqrt{$x^2 + $y^2} in a way that avoids
overflow. It provides an alternative to the BSD math function hypot($x,$y).
=item * C<gsl_hypot3($x, $y, $z)>
This function computes the value of \sqrt{$x^2 + $y^2 + $z^2} in a way that
avoids overflow.
=item * C<gsl_acosh($x)>
This function computes the value of \arccosh($x). It provides an alternative to
the standard math function acosh($x).
=item * C<gsl_asinh($x)>
This function computes the value of \arcsinh($x). It provides an alternative to
the standard math function asinh($x).
=item * C<gsl_atanh($x)>
This function computes the value of \arctanh($x). It provides an alternative to
the standard math function atanh($x).
=item * C<gsl_isnan($x)>
This function returns 1 if $x is not-a-number.
=item * C<gsl_isinf($x)>
This function returns +1 if $x is positive infinity, -1 if $x is negative
infinity and 0 otherwise.
=item * C<gsl_finite($x)>
This function returns 1 if $x is a real number, and 0 if it is infinite or not-a-number.
=item * C<gsl_posinf >
=item * C<gsl_neginf >
=item * C<gsl_fdiv >
=item * C<gsl_coerce_double >
=item * C<gsl_coerce_float >
=item * C<gsl_coerce_long_double >
=item * C<gsl_ldexp($x, $e)>
This function computes the value of $x * 2**$e. It provides an alternative to
the standard math function ldexp($x,$e).
=item * C<gsl_frexp($x)>
This function splits the number $x into its normalized fraction f and exponent
e, such that $x = f * 2^e and 0.5 <= f < 1. The function returns f and then the
exponent in e. If $x is zero, both f and e are set to zero. This function
provides an alternative to the standard math function frexp(x, e).
=item * C<gsl_fcmp($x, $y, $epsilon)>
This function determines whether $x and $y are approximately equal to a
relative accuracy $epsilon. The relative accuracy is measured using an interval
of size 2 \delta, where \delta = 2^k \epsilon and k is the maximum base-2
exponent of $x and $y as computed by the function frexp. If $x and $y lie
within this interval, they are considered approximately equal and the function
returns 0. Otherwise if $x < $y, the function returns -1, or if $x > $y, the
function returns +1. Note that $x and $y are compared to relative accuracy, so
this function is not suitable for testing whether a value is approximately
zero. The implementation is based on the package fcmp by T.C. Belding.
=back
For more information on the functions, we refer you to the GSL official
documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
=head1 AUTHORS
Jonathan "Duke" Leto <jonathan@leto.net> and Thierry Moisan <thierry.moisan@gmail.com>
=head1 COPYRIGHT AND LICENSE
Copyright (C) 2008-2024 Jonathan "Duke" Leto and Thierry Moisan
This program is free software; you can redistribute it and/or modify it
under the same terms as Perl itself.
=cut
1;
|