File: Complex.pod

package info (click to toggle)
libmath-gsl-perl 0.45-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 192,156 kB
  • sloc: ansic: 895,524; perl: 24,682; makefile: 12
file content (532 lines) | stat: -rw-r--r-- 13,366 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
%perlcode %{
use Scalar::Util 'blessed';
use Math::GSL::Errno qw/$GSL_SUCCESS gsl_strerror/;
use Data::Dumper;

use strict;
use warnings;
use Carp qw/croak/;
use Scalar::Util 'blessed';

use overload
    '*'      => \&_multiplication,
    '/'      => \&_division,
    '+'      => \&_addition,
    '-'      => \&_subtract,
    '=='     => \&_equal,
    '!='     => \&_not_equal,
    fallback => 1;

our @EXPORT_OK = qw(
    gsl_complex_arg gsl_complex_abs gsl_complex_rect gsl_complex_polar doubleArray_getitem
    gsl_complex_rect gsl_complex_polar gsl_complex_arg gsl_complex_abs gsl_complex_abs2
    gsl_complex_logabs gsl_complex_add gsl_complex_sub gsl_complex_mul gsl_complex_div
    gsl_complex_add_real gsl_complex_sub_real gsl_complex_mul_real gsl_complex_div_real
    gsl_complex_add_imag gsl_complex_sub_imag gsl_complex_mul_imag gsl_complex_div_imag
    gsl_complex_conjugate gsl_complex_inverse gsl_complex_negative gsl_complex_sqrt
    gsl_complex_sqrt_real gsl_complex_pow gsl_complex_pow_real gsl_complex_exp
    gsl_complex_log gsl_complex_log10 gsl_complex_log_b gsl_complex_sin
    gsl_complex_cos gsl_complex_sec gsl_complex_csc gsl_complex_tan
    gsl_complex_cot gsl_complex_arcsin gsl_complex_arcsin_real gsl_complex_arccos
    gsl_complex_arccos_real gsl_complex_arcsec gsl_complex_arcsec_real gsl_complex_arccsc
    gsl_complex_arccsc_real gsl_complex_arctan gsl_complex_arccot gsl_complex_sinh
    gsl_complex_cosh gsl_complex_sech gsl_complex_csch gsl_complex_tanh
    gsl_complex_coth gsl_complex_arcsinh gsl_complex_arccosh gsl_complex_arccosh_real
    gsl_complex_arcsech gsl_complex_arccsch gsl_complex_arctanh gsl_complex_arctanh_real
    gsl_complex_arccoth new_doubleArray delete_doubleArray doubleArray_setitem
    gsl_real gsl_imag gsl_parts
    gsl_complex_eq gsl_set_real gsl_set_imag gsl_set_complex
    $GSL_COMPLEX_ONE $GSL_COMPLEX_ZERO $GSL_COMPLEX_NEGONE
);
# macros to implement
# gsl_set_complex gsl_set_complex_packed
our ($GSL_COMPLEX_ONE, $GSL_COMPLEX_ZERO, $GSL_COMPLEX_NEGONE) = map { gsl_complex_rect($_, 0) } qw(1 0 -1);


our %EXPORT_TAGS = ( all => [ @EXPORT_OK ] );

=encoding utf8

=head2 copy()

Returns a copy of the Complex number, which resides at a different location in
memory.

    my $z    = Math::GSL::Complex->new([10,5]);
    my $copy = $z->copy;

=cut


sub copy {
    my $self = shift;
    my $copy = Math::GSL::Complex->new(
            gsl_real($self->raw), gsl_imag($self->raw)
    );

    return $copy;
}

sub _not_equal {
    my ($left, $right) = @_;
    return ! _equal($left, $right);
}

sub _equal {
    my ($left, $right) = @_;

    if ( blessed $right && $right->isa('Math::GSL::Complex') && blessed $left && $left->isa('Math::GSL::Complex') ) {
        return gsl_complex_eq($left->raw, $right->raw);
    } else {
        # If both are not Complex objects, they can't be the same
        return 0;
    }
}

sub _division {
    my ($left, $right) = @_;
    my $raw;

    if ( blessed $right && $right->isa('Math::GSL::Complex') && blessed $left && $left->isa('Math::GSL::Complex') ) {
        my $rcopy = $right->copy;
        $raw = gsl_complex_div($left->raw, $right->raw);
        $rcopy->set_raw( $raw );
        return $rcopy;
    } else {
        my $lcopy = $left->copy;
        $raw = gsl_complex_div_real($lcopy->raw, $right);
        $lcopy->set_raw($raw);
        return $lcopy;
    }
}

sub _multiplication {
    my ($left, $right) = @_;
    my $raw;

    if ( blessed $right && $right->isa('Math::GSL::Complex') && blessed $left && $left->isa('Math::GSL::Complex') ) {
        my $rcopy = $right->copy;
        $raw = gsl_complex_mul($left->raw, $right->raw);
        $rcopy->set_raw( $raw );
        return $rcopy;
    } else {
        my $lcopy = $left->copy;
        $raw = gsl_complex_mul_real($lcopy->raw, $right);
        $lcopy->set_raw($raw);
        return $lcopy;
    }
}

sub _subtract {
    my ($left, $right) = @_;
    my $rcopy = $right->copy;
    my $raw   = gsl_complex_negative($right->raw);

    $rcopy->set_raw($raw);

    return _addition($left, $rcopy);
}

sub _addition {
    my ($left, $right) = @_;

    my $lcopy = $left->copy;
    my $raw;

    if ( blessed $right && $right->isa('Math::GSL::Complex') && blessed $left && $left->isa('Math::GSL::Complex') ) {
        $raw = gsl_complex_add($lcopy->raw, $right->raw);
    } else {
        $raw = gsl_complex_add_constant($lcopy->raw, $right);
    }
    $lcopy->set_raw($raw);
    return $lcopy;
}

sub set_raw {
    my ($self, $raw) = @_;
    $self->{_complex} = $raw;
    return $self;
}

sub new {
    my ($class, @values) = @_;
    my $this = {};
    $this->{_complex} = gsl_complex_rect($values[0], $values[1]);
    bless $this, $class;
}
sub real {
    my ($self) = @_;
    gsl_real($self->raw);
}

sub imag {
    my ($self) = @_;
    gsl_imag($self->raw);
}

sub parts {
    my ($self) = @_;
    gsl_parts($self->raw);
}

sub raw  { (shift)->{_complex} }


### some important macros that are in gsl_complex.h
sub gsl_complex_eq {
    my ($z,$w) = @_;
    gsl_real($z) == gsl_real($w) && gsl_imag($z) == gsl_imag($w) ? 1 : 0;
}

sub gsl_set_real {
    my ($z,$r) = @_;
    doubleArray_setitem($z->{dat}, 0, $r);
}

sub gsl_set_imag {
    my ($z,$i) = @_;
    doubleArray_setitem($z->{dat}, 1, $i);
}

sub gsl_real {
    my $z = shift;
    return doubleArray_getitem($z->{dat}, 0 );
}

sub gsl_imag {
    my $z = shift;
    return doubleArray_getitem($z->{dat}, 1 );
}

sub gsl_parts {
    my $z = shift;
    return (gsl_real($z), gsl_imag($z));
}

sub gsl_set_complex {
    my ($z, $r, $i) = @_;
    gsl_set_real($z, $r);
    gsl_set_imag($z, $i);
}

=head1 NAME

Math::GSL::Complex - Complex Numbers

=head1 SYNOPSIS

    use Math::GSL::Complex qw/:all/;
    my $complex = Math::GSL::Complex->new([3,2]); # creates a complex number 3+2*i
    my $real = $complex->real;                    # returns the real part
    my $imag = $complex->imag;                    # returns the imaginary part
    $complex->gsl_set_real(5);                    # changes the real part to 5
    $complex->gsl_set_imag(4);                    # changes the imaginary part to 4
    $complex->gsl_set_complex(7,6);               # changes it to 7 + 6*i
    ($real, $imag) = $complex->parts;             # get both at once

=head1 DESCRIPTION

Here is a list of all the functions included in this module :

=over 1

=item C<gsl_complex_arg($z)>

Return the argument of the complex number $z

=item C<gsl_complex_abs($z)>

Return |$z|, the magnitude of the complex number $z

=item C<gsl_complex_rect($x,$y)>

Create a complex number in cartesian form $x + $y*i

=item C<gsl_complex_polar($r,$theta)>

Create a complex number in polar form $r*exp(i*$theta)

=item C<gsl_complex_abs2($z)>

Return |$z|^2, the squared magnitude of the complex number $z

=item C<gsl_complex_logabs($z)>

Return log(|$z|), the natural logarithm of the magnitude of the complex number $z

=item C<gsl_complex_add($c1, $c2)>

Return a complex number which is the sum of the complex numbers $c1 and $c2

=item C<gsl_complex_sub($c1, $c2)>

Return a complex number which is the difference between $c1 and $c2 ($c1 - $c2)

=item C<gsl_complex_mul($c1, $c2)>

Return a complex number which is the product of the complex numbers $c1 and $c2

=item C<gsl_complex_div($c1, $c2)>

Return a complex number which is the quotient of the complex numbers $c1 and $c2 ($c1 / $c2)

=item C<gsl_complex_add_real($c, $x)>

Return the sum of the complex number $c and the real number $x

=item C<gsl_complex_sub_real($c, $x)>

Return the difference of the complex number $c and the real number $x

=item C<gsl_complex_mul_real($c, $x)>

Return the product of the complex number $c and the real number $x

=item C<gsl_complex_div_real($c, $x)>

Return the quotient of the complex number $c and the real number $x

=item C<gsl_complex_add_imag($c, $y)>

Return sum of the complex number $c and the imaginary number i*$x

=item C<gsl_complex_sub_imag($c, $y)>

Return the diffrence of the complex number $c and the imaginary number i*$x

=item C<gsl_complex_mul_imag($c, $y)>

Return the product of the complex number $c and the imaginary number i*$x

=item C<gsl_complex_div_imag($c, $y)>

Return the quotient of the complex number $c and the imaginary number i*$x

=item C<gsl_complex_conjugate($c)>

Return the conjugate of the of the complex number $c (x - i*y)

=item C<gsl_complex_inverse($c)>

Return the inverse, or reciprocal of the complex number $c (1/$c)

=item C<gsl_complex_negative($c)>

Return the negative of the complex number $c (-x -i*y)

=item C<gsl_complex_sqrt($c)>

Return the square root of the complex number $c

=item C<gsl_complex_sqrt_real($x)>

Return the complex square root of the real number $x, where $x may be negative

=item C<gsl_complex_pow($c1, $c2)>

Return the complex number $c1 raised to the complex power $c2

=item C<gsl_complex_pow_real($c, $x)>

Return the complex number raised to the real power $x

=item C<gsl_complex_exp($c)>

Return the complex exponential of the complex number $c

=item C<gsl_complex_log($c)>

Return the complex natural logarithm (base e) of the complex number $c

=item C<gsl_complex_log10($c)>

Return the complex base-10 logarithm of the complex number $c

=item C<gsl_complex_log_b($c, $b)>

Return the complex base-$b of the complex number $c

=item C<gsl_complex_sin($c)>

Return the complex sine of the complex number $c

=item C<gsl_complex_cos($c)>

Return the complex cosine of the complex number $c

=item C<gsl_complex_sec($c)>

Return the complex secant of the complex number $c

=item C<gsl_complex_csc($c)>

Return the complex cosecant of the complex number $c

=item C<gsl_complex_tan($c)>

Return the complex tangent of the complex number $c

=item C<gsl_complex_cot($c)>

Return the complex cotangent of the complex number $c

=item C<gsl_complex_arcsin($c)>

Return the complex arcsine of the complex number $c

=item C<gsl_complex_arcsin_real($x)>

Return the complex arcsine of the real number $x

=item C<gsl_complex_arccos($c)>

Return the complex arccosine of the complex number $c

=item C<gsl_complex_arccos_real($x)>

Return the complex arccosine of the real number $x

=item C<gsl_complex_arcsec($c)>

Return the complex arcsecant of the complex number $c

=item C<gsl_complex_arcsec_real($x)>

Return the complex arcsecant of the real number $x

=item C<gsl_complex_arccsc($c)>

Return the complex arccosecant of the complex number $c

=item C<gsl_complex_arccsc_real($x)>

Return the complex arccosecant of the real number $x

=item C<gsl_complex_arctan($c)>

Return the complex arctangent of the complex number $c

=item C<gsl_complex_arccot($c)>

Return the complex arccotangent of the complex number $c

=item C<gsl_complex_sinh($c)>

Return the complex hyperbolic sine of the complex number $c

=item C<gsl_complex_cosh($c)>

Return the complex hyperbolic cosine of the complex number $cy

=item C<gsl_complex_sech($c)>

Return the complex hyperbolic secant of the complex number $c

=item C<gsl_complex_csch($c)>

Return the complex hyperbolic cosecant of the complex number $c

=item C<gsl_complex_tanh($c)>

Return the complex hyperbolic tangent of the complex number $c

=item C<gsl_complex_coth($c)>

Return the complex hyperbolic cotangent of the complex number $c

=item C<gsl_complex_arcsinh($c)>

Return the complex hyperbolic arcsine of the complex number $c

=item C<gsl_complex_arccosh($c)>

Return the complex hyperbolic arccosine of the complex number $c

=item C<gsl_complex_arccosh_real($x)>

Return the complex hyperbolic arccosine of the real number $x

=item C<gsl_complex_arcsech($c)>

Return the complex hyperbolic arcsecant of the complex number $c

=item C<gsl_complex_arccsch($c)>

Return the complex hyperbolic arccosecant of the complex number $c

=item C<gsl_complex_arctanh($c)>

Return the complex hyperbolic arctangent of the complex number $c

=item C<gsl_complex_arctanh_real($x)>

Return the complex hyperbolic arctangent of the real number $x

=item C<gsl_complex_arccoth($c)>

Return the complex hyperbolic arccotangent of the complex number $c

=item C<gsl_real($z)>

Return the real part of $z

=item C<gsl_imag($z)>

Return the imaginary part of $z

=item C<gsl_parts($z)>

Return a list of the real and imaginary parts of $z

=item C<gsl_set_real($z, $x)>

Sets the real part of $z to $x

=item C<gsl_set_imag($z, $y)>

Sets the imaginary part of $z to $y

=item C<gsl_set_complex($z, $x, $h)>

Sets the real part of $z to $x and the imaginary part to $y

=back

=head1 EXAMPLES

This code defines $z as 6 + 4*i, takes the complex conjugate of that number, then prints it out.

=over 1

    my $z = gsl_complex_rect(6,4);
    my $y = gsl_complex_conjugate($z);
    my ($real, $imag) = gsl_parts($y);
    print "z = $real + $imag*i\n";

=back

This code defines $z as 5 + 3*i, multiplies it by 2 and then prints it out.

=over 1

    my $x = gsl_complex_rect(5,3);
    my $z = gsl_complex_mul_real($x, 2);
    my $real = gsl_real($z);
    my $imag = gsl_imag($z);
    print "Re(\$z) = $real\n";

=back

=head1 AUTHORS

Jonathan "Duke" Leto <jonathan@leto.net> and Thierry Moisan <thierry.moisan@gmail.com>

=head1 COPYRIGHT AND LICENSE

Copyright (C) 2008-2024 Jonathan "Duke" Leto and Thierry Moisan

This program is free software; you can redistribute it and/or modify it
under the same terms as Perl itself.

=cut
%}