1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
|
%perlcode %{
use strict;
use warnings;
use Carp qw/croak/;
use Scalar::Util 'blessed';
use Math::GSL qw/:all/;
use Math::GSL::Errno qw/:all/;
use Math::GSL::Eigen qw/:all/;
use Math::GSL::Vector qw/:all/;
use Math::GSL::Complex qw/:all/;
use Math::GSL::Test qw/is_similar/;
use Math::GSL::BLAS qw/gsl_blas_dgemm/;
use Math::GSL::CBLAS qw/$CblasNoTrans/;
use Math::GSL::Permutation;
use Math::GSL::Linalg qw/
gsl_linalg_LU_decomp
gsl_linalg_LU_det
gsl_linalg_LU_lndet
gsl_linalg_LU_invert
/;
# should only include needed methods
use Math::GSL::MatrixComplex qw/:all/;
use Math::GSL::VectorComplex qw/:all/;
use Data::Dumper;
use overload
'*' => \&_multiplication,
'+' => \&_addition,
'-' => \&_subtract,
'==' => \&_equal,
'!=' => \&_not_equal,
fallback => 1;
our @EXPORT_OK = qw/
gsl_matrix_alloc gsl_matrix_calloc gsl_matrix_alloc_from_block
gsl_matrix_alloc_from_matrix gsl_vector_alloc_row_from_matrix
gsl_vector_alloc_col_from_matrix gsl_matrix_free gsl_matrix_submatrix
gsl_matrix_row gsl_matrix_column gsl_matrix_diagonal
gsl_matrix_subdiagonal gsl_matrix_superdiagonal gsl_matrix_subrow
gsl_matrix_subcolumn gsl_matrix_view_array
gsl_matrix_view_array_with_tda gsl_matrix_view_vector
gsl_matrix_view_vector_with_tda gsl_matrix_const_submatrix
gsl_matrix_const_row gsl_matrix_const_column gsl_matrix_const_diagonal
gsl_matrix_const_subdiagonal gsl_matrix_const_superdiagonal
gsl_matrix_const_subrow gsl_matrix_const_subcolumn
gsl_matrix_const_view_array gsl_matrix_const_view_array_with_tda
gsl_matrix_const_view_vector gsl_matrix_const_view_vector_with_tda
gsl_matrix_get gsl_matrix_set gsl_matrix_ptr gsl_matrix_const_ptr
gsl_matrix_set_zero gsl_matrix_set_identity gsl_matrix_set_all
gsl_matrix_fread gsl_matrix_fwrite gsl_matrix_fscanf gsl_matrix_fprintf
gsl_matrix_memcpy gsl_matrix_swap gsl_matrix_swap_rows
gsl_matrix_swap_columns gsl_matrix_swap_rowcol gsl_matrix_transpose
gsl_matrix_transpose_memcpy gsl_matrix_max gsl_matrix_min
gsl_matrix_minmax gsl_matrix_max_index gsl_matrix_min_index
gsl_matrix_minmax_index gsl_matrix_isnull gsl_matrix_ispos
gsl_matrix_isneg gsl_matrix_isnonneg gsl_matrix_add gsl_matrix_sub
gsl_matrix_mul_elements gsl_matrix_div_elements gsl_matrix_scale
gsl_matrix_add_constant gsl_matrix_add_diagonal
gsl_matrix_char_alloc gsl_matrix_char_calloc gsl_matrix_char_alloc_from_block
gsl_matrix_char_alloc_from_matrix gsl_vector_char_alloc_row_from_matrix gsl_vector_char_alloc_col_from_matrix
gsl_matrix_char_free gsl_matrix_char_submatrix
gsl_matrix_char_row gsl_matrix_char_column
gsl_matrix_char_diagonal gsl_matrix_char_subdiagonal gsl_matrix_char_superdiagonal
gsl_matrix_char_subrow gsl_matrix_char_subcolumn gsl_matrix_char_view_array
gsl_matrix_char_view_array_with_tda gsl_matrix_char_view_vector gsl_matrix_char_view_vector_with_tda
gsl_matrix_char_const_submatrix gsl_matrix_char_const_row gsl_matrix_char_const_column
gsl_matrix_char_const_diagonal gsl_matrix_char_const_subdiagonal gsl_matrix_char_const_superdiagonal
gsl_matrix_char_const_subrow gsl_matrix_char_const_subcolumn gsl_matrix_char_const_view_array
gsl_matrix_char_const_view_array_with_tda gsl_matrix_char_const_view_vector gsl_matrix_char_const_view_vector_with_tda
gsl_matrix_char_get gsl_matrix_char_set gsl_matrix_char_ptr gsl_matrix_char_const_ptr
gsl_matrix_char_set_zero gsl_matrix_char_set_identity
gsl_matrix_char_set_all gsl_matrix_char_fread
gsl_matrix_char_fwrite gsl_matrix_char_fscanf gsl_matrix_char_fprintf
gsl_matrix_char_memcpy gsl_matrix_char_swap
gsl_matrix_char_swap_rows gsl_matrix_char_swap_columns
gsl_matrix_char_swap_rowcol gsl_matrix_char_transpose gsl_matrix_char_transpose_memcpy
gsl_matrix_char_max gsl_matrix_char_min
gsl_matrix_char_minmax gsl_matrix_char_max_index
gsl_matrix_char_min_index gsl_matrix_char_minmax_index
gsl_matrix_char_isnull gsl_matrix_char_ispos gsl_matrix_char_isneg
gsl_matrix_char_isnonneg gsl_matrix_char_add
gsl_matrix_char_sub gsl_matrix_char_mul_elements gsl_matrix_char_div_elements
gsl_matrix_char_scale gsl_matrix_char_add_constant gsl_matrix_char_add_diagonal
gsl_matrix_int_alloc gsl_matrix_int_calloc gsl_matrix_int_alloc_from_block
gsl_matrix_int_alloc_from_matrix gsl_vector_int_alloc_row_from_matrix gsl_vector_int_alloc_col_from_matrix
gsl_matrix_int_free gsl_matrix_int_submatrix gsl_matrix_int_row
gsl_matrix_int_column gsl_matrix_int_diagonal gsl_matrix_int_subdiagonal
gsl_matrix_int_superdiagonal gsl_matrix_int_subrow gsl_matrix_int_subcolumn gsl_matrix_int_view_array
gsl_matrix_int_view_array_with_tda gsl_matrix_int_view_vector gsl_matrix_int_view_vector_with_tda
gsl_matrix_int_const_submatrix gsl_matrix_int_const_row gsl_matrix_int_const_column
gsl_matrix_int_const_diagonal gsl_matrix_int_const_subdiagonal gsl_matrix_int_const_superdiagonal
gsl_matrix_int_const_subrow gsl_matrix_int_const_subcolumn gsl_matrix_int_const_view_array
gsl_matrix_int_const_view_array_with_tda gsl_matrix_int_const_view_vector gsl_matrix_int_const_view_vector_with_tda
gsl_matrix_int_get gsl_matrix_int_set
gsl_matrix_int_ptr gsl_matrix_int_const_ptr
gsl_matrix_int_set_zero gsl_matrix_int_set_identity gsl_matrix_int_set_all
gsl_matrix_int_fread gsl_matrix_int_fwrite
gsl_matrix_int_fscanf gsl_matrix_int_fprintf
gsl_matrix_int_memcpy gsl_matrix_int_swap
gsl_matrix_int_swap_rows gsl_matrix_int_swap_columns gsl_matrix_int_swap_rowcol
gsl_matrix_int_transpose gsl_matrix_int_transpose_memcpy
gsl_matrix_int_max gsl_matrix_int_min gsl_matrix_int_minmax
gsl_matrix_int_max_index gsl_matrix_int_min_index
gsl_matrix_int_minmax_index gsl_matrix_int_isnull
gsl_matrix_int_ispos gsl_matrix_int_isneg gsl_matrix_int_isnonneg
gsl_matrix_int_add gsl_matrix_int_sub
gsl_matrix_int_mul_elements gsl_matrix_int_div_elements gsl_matrix_int_scale
gsl_matrix_int_add_constant gsl_matrix_int_add_diagonal
gsl_matrix_get_row gsl_matrix_get_col gsl_matrix_set_row gsl_matrix_set_col
/;
our %EXPORT_TAGS = ( all => [ @EXPORT_OK ],
char => [ qw/
gsl_matrix_char_alloc
gsl_matrix_char_calloc
gsl_matrix_char_alloc_from_block
gsl_matrix_char_alloc_from_matrix
gsl_vector_char_alloc_row_from_matrix
gsl_vector_char_alloc_col_from_matrix
gsl_matrix_char_free
gsl_matrix_char_submatrix
gsl_matrix_char_row
gsl_matrix_char_column
gsl_matrix_char_diagonal
gsl_matrix_char_subdiagonal
gsl_matrix_char_superdiagonal
gsl_matrix_char_subrow
gsl_matrix_char_subcolumn
gsl_matrix_char_view_array
gsl_matrix_char_view_array_with_tda
gsl_matrix_char_view_vector
gsl_matrix_char_view_vector_with_tda
gsl_matrix_char_const_submatrix
gsl_matrix_char_const_row
gsl_matrix_char_const_column
gsl_matrix_char_const_diagonal
gsl_matrix_char_const_subdiagonal
gsl_matrix_char_const_superdiagonal
gsl_matrix_char_const_subrow
gsl_matrix_char_const_subcolumn
gsl_matrix_char_const_view_array
gsl_matrix_char_const_view_array_with_tda
gsl_matrix_char_const_view_vector
gsl_matrix_char_const_view_vector_with_tda
gsl_matrix_char_get
gsl_matrix_char_set
gsl_matrix_char_ptr
gsl_matrix_char_const_ptr
gsl_matrix_char_set_zero
gsl_matrix_char_set_identity
gsl_matrix_char_set_all
gsl_matrix_char_fread
gsl_matrix_char_fwrite
gsl_matrix_char_fscanf
gsl_matrix_char_fprintf
gsl_matrix_char_memcpy
gsl_matrix_char_swap
gsl_matrix_char_swap_rows
gsl_matrix_char_swap_columns
gsl_matrix_char_swap_rowcol
gsl_matrix_char_transpose
gsl_matrix_char_transpose_memcpy
gsl_matrix_char_max
gsl_matrix_char_min
gsl_matrix_char_minmax
gsl_matrix_char_max_index
gsl_matrix_char_min_index
gsl_matrix_char_minmax_index
gsl_matrix_char_isnull
gsl_matrix_char_ispos
gsl_matrix_char_isneg
gsl_matrix_char_isnonneg
gsl_matrix_char_add
gsl_matrix_char_sub
gsl_matrix_char_mul_elements
gsl_matrix_char_div_elements
gsl_matrix_char_scale
gsl_matrix_char_add_constant
gsl_matrix_char_add_diagonal
/],
double => [ qw/
gsl_matrix_alloc
gsl_matrix_calloc
gsl_matrix_alloc_from_block
gsl_matrix_alloc_from_matrix
gsl_vector_alloc_row_from_matrix
gsl_vector_alloc_col_from_matrix
gsl_matrix_free
gsl_matrix_submatrix
gsl_matrix_row
gsl_matrix_column
gsl_matrix_diagonal
gsl_matrix_subdiagonal
gsl_matrix_superdiagonal
gsl_matrix_subrow
gsl_matrix_subcolumn
gsl_matrix_view_array
gsl_matrix_view_array_with_tda
gsl_matrix_view_vector
gsl_matrix_view_vector_with_tda
gsl_matrix_const_submatrix
gsl_matrix_const_row
gsl_matrix_const_column
gsl_matrix_const_diagonal
gsl_matrix_const_subdiagonal
gsl_matrix_const_superdiagonal
gsl_matrix_const_subrow
gsl_matrix_const_subcolumn
gsl_matrix_const_view_array
gsl_matrix_const_view_array_with_tda
gsl_matrix_const_view_vector
gsl_matrix_const_view_vector_with_tda
gsl_matrix_get
gsl_matrix_set
gsl_matrix_ptr
gsl_matrix_const_ptr
gsl_matrix_set_zero
gsl_matrix_set_identity
gsl_matrix_set_all
gsl_matrix_fread
gsl_matrix_fwrite
gsl_matrix_fscanf
gsl_matrix_fprintf
gsl_matrix_memcpy
gsl_matrix_swap
gsl_matrix_swap_rows
gsl_matrix_swap_columns
gsl_matrix_swap_rowcol
gsl_matrix_transpose
gsl_matrix_transpose_memcpy
gsl_matrix_max
gsl_matrix_minmax
gsl_matrix_max_index
gsl_matrix_min_index
gsl_matrix_minmax_index
gsl_matrix_isnull
gsl_matrix_ispos
gsl_matrix_isneg
gsl_matrix_isnonneg
gsl_matrix_add
gsl_matrix_mul_elements
gsl_matrix_div_elements
gsl_matrix_scale
gsl_matrix_add_constant
gsl_matrix_add_diagonal
/],
int => [ qw/
gsl_matrix_int_alloc
gsl_matrix_int_alloc_from_matrix
gsl_matrix_int_free
gsl_matrix_int_column
gsl_matrix_int_superdiagonal
gsl_matrix_int_view_array_with_tda
gsl_matrix_int_const_submatrix
gsl_matrix_int_const_diagonal
gsl_matrix_int_const_subrow
gsl_matrix_int_const_view_array_with_tda
gsl_matrix_int_get
gsl_matrix_int_ptr
gsl_matrix_int_set_zero
gsl_matrix_int_fread
gsl_matrix_int_fscanf
gsl_matrix_int_memcpy
gsl_matrix_int_swap_rows
gsl_matrix_int_transpose
gsl_matrix_int_max
gsl_matrix_int_max_index
gsl_matrix_int_minmax_index
gsl_matrix_int_ispos
gsl_matrix_int_add
gsl_matrix_int_mul_elements
gsl_matrix_int_add_constant
/],
);
=encoding utf8
=head1 NAME
Math::GSL::Matrix - Mathematical functions concerning Matrices
=head1 SYNOPSIS
use Math::GSL::Matrix qw/:all/;
my $matrix1 = Math::GSL::Matrix->new(5,5); # OO interface
my $matrix2 = $matrix1 + 4; # You can add or subtract values or matrices to OO matrices
my $matrix3 = $matrix1 - 4;
my $matrix4 = $matrix2 + $matrix1;
my $matrix5 = $matrix2 . $matrix1; # This is a scalar product, it simply multiply each element
# with the element of $matrix1 that have the same position
# See Math::GSL::BLAS if you want scalar product
my $matrix6 = $matrix2 . 8; # Multiply every elements of $matrix2 by 8
my $matrix7 = $matrix2 * $matrix1; # scalar product of two matrices
if($matrix1 == $matrix4) ...
if($matrix1 != $matrix3) ...
my $matrix8 = gsl_matrix_alloc(5,5); # standard interface
=head1 DESCRIPTION
This module is part of the L<Math::GSL> distribution. It defines a Perl insterface
to GNU Scientific Library matrices.
There are two different (but not exclusive) ways to use this module: using the
OO API, built manually over the GSL functions, or using directly the
functions defined by GSL library.
=head1 OBJECT ORIENTED API
=head2 Constructor
=head3 Math::GSL::Matrix->new()
Creates a new Matrix of the given size.
my $matrix = Math::GSL::Matrix->new(10,10);
If by any chance you already have a gsl_matrix and want to "objectify" it, you
can use the following constructor:
my $m = gsl_matrix_alloc(10, 20);
# ... something
my $matrix = Math::GSL::Matrix->new($m);
Note that C<$m> is B<NOT> copied. The new object will just refer to the old gsl_matrix.
=cut
sub new {
return _new_from_matrix(@_) if @_ == 2;
return _new_from_dims(@_) if @_ == 3;
croak( __PACKAGE__ .
sprintf("::new(...) - unknown Matrix constructor with %d args", scalar(@_)));
}
sub _new_from_matrix
{
my ($class, $m) = @_;
if (!defined($m) || !blessed($m) || ref($m) ne "Math::GSL::Matrix::gsl_matrix") {
croak( __PACKAGE__.'::new($m) - $m should be a gsl_matrix');
}
return bless {
_rows => $m->swig_size1_get(),
_cols => $m->swig_size2_get(),
_matrix => $m,
}, $class;
}
sub _new_from_dims
{
my ($class, $rows, $cols) = @_;
my $this = {};
my $matrix;
if ( defined $rows && defined $cols &&
$rows > 0 && $cols > 0 &&
(int $rows == $rows) && (int $cols == $cols)){
$matrix = gsl_matrix_alloc($rows,$cols);
} else {
croak( __PACKAGE__.'::new($x,$y) - $x and $y must be positive integers');
}
gsl_matrix_set_zero($matrix);
$this->{_matrix} = $matrix;
($this->{_rows}, $this->{_cols}) = ($rows,$cols);
bless $this, $class;
}
=head2 Getters
=head3 raw()
Get the underlying GSL matrix object created by SWIG, useful for using gsl_matrix_* functions which do not have an OO counterpart.
my $matrix = Math::GSL::Matrix->new(3,3);
my $gsl_matrix = $matrix->raw;
my $stuff = gsl_matrix_get($gsl_matrix, 1, 2);
=cut
sub raw { (shift)->{_matrix} }
=head3 dim()
Returns the number of rows and columns in a matrix as an array.
my ($rows, $cols) = $matrix->dim;
Basically a shortcut to C<rows> and C<cols> methods.
=cut
sub dim { ($_[0]->rows, $_[0]->cols) }
=head3 rows()
Returns the number of rows in the matrix.
my $rows = $matrix->rows;
=cut
sub rows { (shift)->{_rows} }
=head3 cols()
Returns the number of columns in the matrix.
my $cols = $matrix->cols;
=cut
sub cols { (shift)->{_cols} }
=head3 as_list()
Get the contents of a Math::GSL::Matrix object as a Perl list.
my $matrix = Math::GSL::Matrix->new(3,3);
...
my @matrix = $matrix->as_list;
=cut
sub as_list($)
{
my $self = shift;
my @matrix;
for my $row ( 0 .. $self->rows-1) {
push @matrix, map { gsl_matrix_get($self->raw, $row, $_) } (0 .. $self->cols-1 );
}
return @matrix;
}
=head3 as_vector()
Returns a 1xN or Nx1 matrix as a Math::GSL::Vector object. Dies if called on a matrix that is not a single row or column. Useful for turning the output of C<col()> or C<row()> into a vector, like so:
my $vector1 = $matrix->col(0)->as_vector;
my $vector2 = $matrix->row(1)->as_vector;
=cut
sub as_vector($)
{
my ($self) = @_;
croak(__PACKAGE__.'::as_vector() - must be a single row or column matrix') unless ($self->cols == 1 or $self->rows == 1);
# TODO: there is a faster way to do this
return Math::GSL::Vector->new([ $self->as_list ] );
}
=head3 get_elem()
Returns an element of a matrix.
my $matrix = Math::GSL::Matrix->new(3,3);
...
my $middle = $matrix->get_elem(1,1);
B<NOTE:> just like any other method on this module, rows and arrays start
with indice 0.
=cut
sub get_elem {
my ($self, $row, $col) = @_;
die __PACKAGE__.'::get_elem($x, $y, $v) - $x must be a valid row number'
if ($row < 0 || $row >= $self->rows);
die __PACKAGE__.'::get_elem($x, $y, $v) - $y must be a valid column number'
if ($col < 0 || $col >= $self->cols);
return gsl_matrix_get($self->raw, $row, $col);
}
=head3 row()
Returns a row matrix of the row you enter.
my $matrix = Math::GSL::Matrix->new(3,3);
...
my $matrix_row = $matrix->row(0);
=cut
sub row
{
my ($self, $row) = @_;
croak (__PACKAGE__.'::$matrix->row($row) - invalid $row value')
unless (($row < $self->rows) and $row >= 0);
my $rowmat = Math::GSL::Matrix->new(1,$self->cols);
for my $n (0 .. $self->cols-1) {
gsl_matrix_set( $rowmat->raw, 0, $n,
gsl_matrix_get($self->raw, $row, $n)
);
}
return $rowmat;
}
=head3 col()
Returns a col matrix of the column you enter.
my $matrix = Math::GSL::Matrix->new(3,3);
...
my $matrix_col = $matrix->col(0);
=cut
sub col
{
my ($self, $col) = @_;
croak (__PACKAGE__."::\$matrix->col(\$col) - $col not a valid column")
unless ($col < $self->cols and $col >= 0);
my $colmat = Math::GSL::Matrix->new($self->rows, 1);
map { gsl_matrix_set($colmat->raw, $_, 0,
gsl_matrix_get($self->raw, $_, $col),
)
} (0 .. $self->rows-1);
return $colmat;
}
=head3 max()
Computes the maximum value of a matrix. In array context returns the maximum
value and the position of that element in the matrix. If the matrix is a
vector (being it vertical or horizontal) only one coordinate is returned: the
position of the element in the vector.
$max = $matrix->max();
($max, $i, $j) = $matrix->max();
=cut
sub max {
my $matrix = shift;
my $max = gsl_matrix_max($matrix->raw);
if (wantarray) {
my ($i, $j) = gsl_matrix_max_index($matrix->raw);
return ($max, $j) if $matrix->rows == 1;
return ($max, $i) if $matrix->cols == 1;
return ($max, $i, $j);
} else {
return $max;
}
}
=head3 min()
Computes the minimum value of a matrix. In array context returns the minimum
value and the position of that element in the matrix. If the matrix is a
vector (being it vertical or horizontal) only one coordinate is returned: the
position of the element in the vector.
$min = $matrix->min();
($min, $i, $j) = $matrix->min();
=cut
sub min {
my $matrix = shift;
my $min = gsl_matrix_min($matrix->raw);
if (wantarray) {
my ($i, $j) = gsl_matrix_min_index($matrix->raw);
return ($min, $j) if $matrix->rows == 1;
return ($min, $i) if $matrix->cols == 1;
return ($min, $i, $j);
} else {
return $min;
}
}
=head2 Setters
=head3 identity()
Set a matrix to the identity matrix, i.e. one on the diagonal and zero elsewhere.
my $I = $matrix->identity;
=cut
sub identity
{
my $self=shift;
gsl_matrix_set_identity($self->raw);
return $self;
}
=head3 zero()
Set a matrix to the zero matrix.
$matrix->zero;
=cut
sub zero # brrr!
{
my $self=shift;
gsl_matrix_set_zero($self->raw);
return $self;
}
=head3 set_elem()
Sets a specific value in the matrix.
my $matrix = Math::GSL::Matrix->new(2,2);
$matrix->set_elem(0, 0, $value);
You can set multiple elements at once with chained calls:
$matrix->set_elem(0,0,1)->set_elem(1,1,1);
B<NOTE:> just like any other method on this module, rows and arrays start
with indice 0.
=cut
sub set_elem {
my ($self, $row, $col, $value) = @_;
die __PACKAGE__.'::set_elem($x, $y, $v) - $x must be a valid row number'
if ($row < 0 || $row >= $self->rows);
die __PACKAGE__.'::set_elem($x, $y, $v) - $y must be a valid column number'
if ($col < 0 || $col >= $self->cols);
gsl_matrix_set($self->raw, $row, $col, $value);
return $self;
}
=head3 set_row()
Sets a the values of a row with the elements of an array.
my $matrix = Math::GSL::Matrix->new(3,3);
$matrix->set_row(0, [8, 6, 2]);
You can also set multiple rows at once with chained calls:
my $matrix = Math::GSL::Matrix->new(3,3);
$matrix->set_row(0, [8, 6, 2])
->set_row(1, [2, 4, 1]);
...
=cut
sub set_row {
my ($self, $row, $values) = @_;
my $length = $#$values;
die __PACKAGE__.'::set_row($x, $values) - $values must be a nonempty array reference' if $length == -1;
die __PACKAGE__.'::set_row($x, $values) - $x must be a valid row number'
if ($row < 0 || $row >= $self->rows);
die __PACKAGE__.'::set_row($x, $values) - $values must contains the same number of elements as there is columns in the matrix'
if($length != $self->cols-1);
map { gsl_matrix_set($self->raw, $row, $_, $values->[$_]) } (0..$length);
return $self;
}
=head3 set_col()
Sets a the values of a column with the elements of an array.
my $matrix = Math::GSL::Matrix->new(3,3);
$matrix->set_col(0, [8, 6, 2]);
You can also set multiple columns at once with chained calls:
my $matrix = Math::GSL::Matrix->new(3,3);
$matrix->set_col(0, [8, 6, 2])
->set_col(1, [2, 4, 1]);
...
=cut
sub set_col {
my ($self, $col, $values) = @_;
my $length = $#$values;
die __PACKAGE__.'::set_col($x, $values) - $values must be a nonempty array reference' if $length == -1;
die __PACKAGE__.'::set_col($x, $values) - $x must be a valid column number'
if ($col < 0 || $col >= $self->cols);
die __PACKAGE__.'::set_col($x, $values) - $values must contains the same number of elements as there is rowss in the matrix'
if($length != $self->rows-1);
map { gsl_matrix_set($self->raw, $_, $col, $values->[$_]) } (0..$length);
return $self;
}
=head2 Utility Functions
=head3 copy()
Returns a copy of the matrix, which has the same size and values but resides at a different location in memory.
my $matrix = Math::GSL::Matrix->new(5,5);
my $copy = $matrix->copy;
=cut
sub copy {
my $self = shift;
my $copy = Math::GSL::Matrix->new( $self->rows, $self->cols );
if ( gsl_matrix_memcpy($copy->raw, $self->raw) != $GSL_SUCCESS ) {
croak "Math::GSL - error copying memory, aborting";
}
return $copy;
}
=head3 is_square()
Returns true if a matrix is square, i.e. it has the same number of rows as columns, false otherwise.
=cut
sub is_square($)
{
my $self = shift;
return ($self->rows == $self->cols) ? 1 : 0 ;
}
=head3 det()
Returns the determinant of a matrix (computed by LU decomposition) or dies if called on a non-square matrix.
my $det = $matrix->det();
=cut
sub det($)
{
my $self = shift;
croak(__PACKAGE__."- determinant only exists for square matrices") unless $self->is_square;
my $p = Math::GSL::Permutation->new( $self->rows );
my $LU = $self->copy;
my ($result, $s) = gsl_linalg_LU_decomp($LU->raw, $p->raw);
return gsl_linalg_LU_det($LU->raw, $s );
}
=head3 write
Saves B<ONE> matrix into a file using the GSL binary format.
$matrix->save("matrix.dat");
Note that this method always overwrite the file if it exists. In case more
than one GSL object will be written to the file, please use the C<gsl_fopen>,
C<gsl_matrix_fwrite> and C<gsl_fclose> manually. Future versions might include
helper for this task.
B<NOTE>: in order to allow the read of one of these files without needing
to know in advance the size of the matrix, an horizontal matrix with two
elements is saved in the beginning of the file with the number of rows
and columns of the saved matrix.
=cut
sub write
{
my ($self, $filename) = @_;
my $fh = gsl_fopen($filename, "w");
croak __PACKAGE__."::write - error opening file $filename for writing" unless $fh;
# create a temporary matrix with the main matrix dimensions
my $dim = gsl_matrix_alloc(1, 2);
my ($rows, $cols) = $self->dim;
gsl_matrix_set($dim, 0, 0, $rows);
gsl_matrix_set($dim, 0, 1, $cols);
my $err = gsl_matrix_fwrite($fh, $dim);
croak __PACKAGE__."::write - error writing matrix" if $err;
gsl_matrix_free($dim);
$err = gsl_matrix_fwrite($fh, $self->raw);
croak __PACKAGE__."::write - error writing matrix" if $err;
gsl_fclose($fh);
}
=head3 read
Loads a matrix from a GSL binary file (saved using the C<save> method,
as it stores some extra information on the file).
my $matrix = Math::GSL::Matrix->read("matrix.dat");
=cut
sub read
{
my ($class, $filename) = @_;
croak __PACKAGE__."::read - $filename does not exist" unless -f $filename;
my $fh = gsl_fopen($filename, "r");
croak __PACKAGE__."::read - error opening file $filename for reading" unless $fh;
my $dim = gsl_matrix_alloc(1, 2);
my $err = gsl_matrix_fread($fh, $dim);
croak __PACKAGE__."::read - error reading matrix" if $err;
my $m = gsl_matrix_alloc(gsl_matrix_get($dim, 0, 0),
gsl_matrix_get($dim, 0, 1));
$err = gsl_matrix_fread($fh, $m);
croak __PACKAGE__."::read - error reading matrix" if $err;
gsl_matrix_free($dim);
gsl_fclose($fh);
return Math::GSL::Matrix->new($m);
}
=head3 lndet()
Returns the natural log of the absolute value of the determinant of a matrix (computed by LU decomposition) or dies if called on a non-square matrix.
my $lndet = $matrix->lndet();
=cut
sub lndet($)
{
my $self = shift;
croak(__PACKAGE__."- log determinant only exists for square matrices") unless $self->is_square;
my $p = Math::GSL::Permutation->new( $self->rows );
my $LU = $self->copy;
gsl_linalg_LU_decomp($LU->raw, $p->raw);
return gsl_linalg_LU_lndet($LU->raw);
}
=head3 inverse()
Returns the inverse of a matrix or dies when called on a non-square matrix.
my $inverse = $matrix->inverse;
=cut
sub inverse($)
{
my $self = shift;
croak(__PACKAGE__."- inverse only exists for square matrices") unless $self->is_square;
my $p = Math::GSL::Permutation->new( $self->rows );
my $LU = $self->copy;
my $inverse = $self->copy;
# should check return status
gsl_linalg_LU_decomp($LU->raw, $p->raw);
gsl_linalg_LU_invert($LU->raw, $p->raw,$inverse->raw);
return $inverse;
}
=head3 transpose()
Returns the transpose of a matrix or dies when called on a non-square matrix.
my $transposed = $matrix->transpose;
=cut
sub transpose($)
{
my $self = shift;
croak(__PACKAGE__."- transpose only exists for square matrices") unless $self->is_square;
my $copy = $self->copy;
# should check return status
gsl_matrix_transpose($copy->raw);
return $copy;
}
=head3 eigenvalues()
Computes the a matrix eigen values.
=cut
sub eigenvalues($)
{
my $self=shift;
my ($r,$c) = ($self->rows,$self->cols);
croak "Math::GSL::Matrix : \$matrix->eigenvalues - \$matrix must be square" unless ($r == $c);
my $evec = gsl_matrix_complex_alloc($r,$c);
my $eigen = gsl_eigen_nonsymmv_alloc($r);
my $vector = gsl_vector_complex_alloc($r);
gsl_eigen_nonsymmv($self->raw, $vector, $evec, $eigen);
my $x = gsl_vector_complex_real($vector); # vector of real components
my $y = gsl_vector_complex_imag($vector); # vector of imaginary components
return map {
_as_complex( gsl_vector_get($x->{vector}, $_) ,
gsl_vector_get($y->{vector}, $_) )
} (0 .. $r-1);
}
=head3 eigenpair()
=cut
sub eigenpair($)
{
my $self=shift;
my ($r,$c) = ($self->rows,$self->cols);
croak "Math::GSL::Matrix : \$matrix->eigenvalues - \$matrix must be square" unless ($r == $c);
my $evec = Math::GSL::MatrixComplex->new($r,$c);
my $eigen = gsl_eigen_nonsymmv_alloc($r);
my $vector = Math::GSL::VectorComplex->new($r);
gsl_eigen_nonsymmv($self->raw, $vector->raw, $evec->raw, $eigen);
my $eigenvectors = [ map { $evec->col($_)->as_vector } (0 .. $r-1) ];
my $x = gsl_vector_complex_real($vector->raw); # vector of real components
my $y = gsl_vector_complex_imag($vector->raw); # vector of imaginary components
my $eigenvalues = [
map {
_as_complex( gsl_vector_get($x->{vector}, $_) ,
gsl_vector_get($y->{vector}, $_) )
} (0 .. $r-1)
];
return ($eigenvalues, $eigenvectors);
}
sub _as_complex {
my ($w,$v) = @_;
my ($x,$y) = ($w,$v);
if( ref $w eq 'Math::GSL::Complex') {
($x,$y) = (gsl_real($w),gsl_imag($w));
}
my $z = Math::Complex->make( $x, $y);
}
=head3 ieach()
Applied a function to each element of a matrix.
# compute exp to each element of matrix
$matrix->ieach( sub { exp(shift) });
This method B<changes> the original matrix. See C<each> for a
non destructive method.
=cut
sub ieach($&) {
my ($matrix, $func) = @_;
die __PACKAGE__.'::ieach($func) - $func must be a code reference'
unless ref($func) eq "CODE";
for my $i (0 .. $matrix->rows-1) {
for my $j (0 .. $matrix->cols-1) {
# should be faster than use ->set_elem and ->get_elem
gsl_matrix_set($matrix->raw, $i, $j,
$func->(gsl_matrix_get($matrix->raw, $i, $j)));
}
}
return $matrix;
}
=head3 each()
Applied a function to each element of a matrix.
# compute exp to each element of matrix
$matrix->each( sub { exp(shift) });
This method returns a B<new> matrix.
=cut
sub each($&) {
my ($matrix, $func) = @_;
die __PACKAGE__.'::each($func) - $func must be a code reference'
unless ref($func) eq "CODE";
my $result = Math::GSL::Matrix->new($matrix->rows, $matrix->cols);
for my $i (0 .. $matrix->rows-1) {
for my $j (0 .. $matrix->cols-1) {
# should be faster than use ->set_elem and ->get_elem
gsl_matrix_set($result->raw, $i, $j,
$func->(gsl_matrix_get($matrix->raw, $i, $j)));
}
}
return $result;
}
=head3 vconcat ()
Concatenates vertically a new matrix with the object matrix, where the
object matrix is above in the final matrix.
Note that both matrices need to have the same number of columns.
The method returns a B<new> matrix.
my $final = $m1->vconcat($m2);
# $final is $m1 on top of $m2
=cut
sub vconcat {
my ($self, $b) = @_;
die __PACKAGE__.'::vconcat($m) - $m must be a Math::GSL::Matrix object'
unless blessed($b) && $b->isa('Math::GSL::Matrix');
die __PACKAGE__.'::vconcat($m) - $self and $m should have same number of columns'
unless $self->cols == $b->cols;
bless {
_matrix => gsl_matrix_vconcat($self->raw, $b->raw),
_rows => $self->rows + $b->rows,
_cols => $self->cols
}, 'Math::GSL::Matrix'
}
=head3 hconcat ()
Concatenates horizontally a new matrix with the object matrix, where the
object matrix is at the left in the final matrix.
Note that both matrices need to have the same number of rows.
The method returns a B<new> matrix.
my $final = $m1->hconcat($m2);
# $final is $m1 at the left of $m2
=cut
sub hconcat {
my ($self, $b) = @_;
die __PACKAGE__.'::hconcat($m) - $m must be a Math::GSL::Matrix object'
unless blessed($b) && $b->isa('Math::GSL::Matrix');
die __PACKAGE__.'::hconcat($m) - $self and $m should have same number of rows'
unless $self->rows == $b->rows;
bless {
_matrix => gsl_matrix_hconcat($self->raw, $b->raw),
_rows => $self->rows,
_cols => $self->cols + $b->cols,
}, 'Math::GSL::Matrix'
}
=head3 random ()
Fills a matrix with random values between 0 and 1
=cut
sub random {
my ($self) = @_;
gsl_matrix_random($self->raw);
return $self;
}
sub _addition {
my ($left, $right) = @_;
my $lcopy = $left->copy;
if ( blessed $right && $right->isa('Math::GSL::Matrix') && blessed $left && $left->isa('Math::GSL::Matrix') ) {
if ( $left->cols == $right->cols && $left->rows == $right->rows ) {
gsl_matrix_add($lcopy->raw, $right->raw);
} else {
croak "Math::GSL - addition of matrices must be called with two objects matrices and must have the same number of columns and rows";
}
} else {
gsl_matrix_add_constant($lcopy->raw, $right);
}
return $lcopy;
}
sub _subtract {
my ($left, $right) = @_;
my $lcopy = $left->copy;
if ( blessed $right && $right->isa('Math::GSL::Matrix') && blessed $left && $left->isa('Math::GSL::Matrix') ) {
if ( $left->cols == $right->cols && $left->rows == $right->rows ) {
gsl_matrix_sub($lcopy->raw, $right->raw);
} else {
croak "Math::GSL - subtraction of matrices must be called with two objects matrices and must have the same number of columns and rows";
}
} else {
gsl_matrix_add_constant($lcopy->raw, $right*-1);
}
return $lcopy;
}
sub _multiplication {
my ($left,$right) = @_;
my $lcopy = $left->copy;
if ( blessed $right && $right->isa('Math::GSL::Matrix') ) {
return _dot_product($left,$right);
} else {
gsl_matrix_scale($lcopy->raw, $right);
}
return $lcopy;
}
sub _equal {
my ($left, $right) = @_;
return is_similar( [ $left->as_list ], [ $right->as_list ] );
}
sub _not_equal {
my ($left, $right) = @_;
return !is_similar( [ $left->as_list ], [ $right->as_list ] );
}
sub _dot_product {
my ($left,$right) = @_;
croak "Math::GSL::Matrix - incompatible matrices in multiplication"
unless ( blessed $right && $right->isa('Math::GSL::Matrix') and $left->cols == $right->rows );
my $C = Math::GSL::Matrix->new($left->rows, $right->cols);
gsl_blas_dgemm($CblasNoTrans, $CblasNoTrans, 1, $left->raw, $right->raw, 0, $C->raw);
return $C;
}
sub DESTROY {
my $self = shift;
# during global phase of destruction there is no
# sure that objects are destroyed in order. So, when
# going out, just do not destroy anything. The Operating
# System should do us for us.
return if defined(${^GLOBAL_PHASE}) && ${^GLOBAL_PHASE} eq 'DESTRUCT';
gsl_matrix_free($self->raw) if defined($self->raw);
}
=head1 GSL FUNCTION INTERFACE
Here is a list of all the functions included in this module :
=over 1
=item C<gsl_matrix_alloc($i, $j)> - Return a gsl_matrix of $i rows and $j columns
=item C<gsl_matrix_calloc($i, $j)> - Return a gsl_matrix of $i rows and $j columns and initialize all of the elements of the matrix to zero
=item C<gsl_matrix_alloc_from_block> -
=item C<gsl_matrix_free> -
=item C<gsl_matrix_alloc_from_matrix > -
=item C<gsl_vector_alloc_row_from_matrix> -
=item C<gsl_vector_alloc_col_from_matrix > -
=item C<gsl_matrix_submatrix($m, $k1, $k2, $n1, $n2)> - Return a matrix view of the matrix $m. The upper-left element of the submatrix is the element ($k1,$k2) of the original matrix. The submatrix has $n1 rows and $n2 columns.
=item C<gsl_matrix_row($m , $i)> - Return a vector view of the $i-th row of the matrix $m
=item C<gsl_matrix_column($m, $j)> - Return a vector view of the $j-th column of the matrix $m
=item C<gsl_matrix_diagonal($m)> - Return a vector view of the diagonal of the vector. The matrix doesn't have to be square.
=item C<gsl_matrix_subdiagonal($m, $k)> - Return a vector view of the $k-th subdiagonal of the matrix $m. The diagonal of the matrix corresponds to k=0.
=item C<gsl_matrix_superdiagonal($m, $k)> - Return a vector view of the $k-th superdiagonal of the matrix $m. The matrix doesn't have to be square.
=item C<gsl_matrix_subrow($m, $i, $offset, $n)> - Return a vector view of the $i-th row of the matrix $m beginning at offset elements and containing n elements.
=item C<gsl_matrix_subcolumn($m, $j, $offset, $n)> - Return a vector view of the $j-th column of the matrix $m beginning at offset elements and containing n elements.
=item C<gsl_matrix_view_array($base, $n1, $n2)> - This function returns a matrix view of the array reference $base. The matrix has $n1 rows and $n2 columns. The physical number of columns in memory is also given by $n2. Mathematically, the (i,j)-th element of the new matrix is given by, m'(i,j) = $base->[i*$n2 + j] where the index i runs from 0 to $n1-1 and the index j runs from 0 to $n2-1. The new matrix is only a view of the array reference $base. When the view goes out of scope the original array reference $base will continue to exist. The original memory can only be deallocated by freeing the original array. Of course, the original array should not be deallocated while the view is still in use.
=item C<gsl_matrix_view_array_with_tda($base, $n1, $n2, $tda)> - This function returns a matrix view of the array reference $base with a physical number of columns $tda which may differ from the corresponding dimension of the matrix. The matrix has $n1 rows and $n2 columns, and the physical number of columns in memory is given by $tda. Mathematically, the (i,j)-th element of the new matrix is given by, m'(i,j) = $base->[i*$tda + j] where the index i runs from 0 to $n1-1 and the index j runs from 0 to $n2-1. The new matrix is only a view of the array reference $base. When the view goes out of scope the original array reference $base will continue to exist. The original memory can only be deallocated by freeing the original array. Of course, the original array should not be deallocated while the view is still in use.
=item C<gsl_matrix_view_vector> -
=item C<gsl_matrix_view_vector_with_tda> -
=item C<gsl_matrix_const_submatrix> -
=item C<gsl_matrix_get($m, $i, $j)> - Return the (i,j)-th element of the matrix $m
=item C<gsl_matrix_set($m, $i, $j, $x)> - Set the value of the (i,j)-th element of the matrix $m to $x
=item C<gsl_matrix_ptr> -
=item C<gsl_matrix_const_ptr> -
=item C<gsl_matrix_set_zero($m)> - Set all the elements of the matrix $m to zero
=item C<gsl_matrix_set_identity($m)> - Set the elements of the matrix $m to the corresponding elements of the identity matrix
=item C<gsl_matrix_set_all($m, $x)> - Set all the elements of the matrix $m to the value $x
=item C<gsl_matrix_fread($fh, $m)> - Read a file which has been written with gsl_matrix_fwrite from the stream $fh opened with the gsl_fopen function from the Math::GSL module and stores the data inside the matrix $m
=item C<gsl_matrix_fwrite($fh, $m)> - Write the elements of the matrix $m in binary format to a stream $fh opened with the gsl_fopen function from the Math::GSL module
=item C<gsl_matrix_fscanf($fh, $m)> - Read a file which has been written with gsl_matrix_fprintf from the stream $fh opened with the gsl_fopenfunction from the Math::GSL module and stores the data inside the matrix $m
=item C<gsl_matrix_fprintf($fh, $m, $format)> - Write the elements of the matrix $m in the format $format (for example "%f" is the format for double) to a stream $fh opened with the gsl_fopen function from the Math::GSL module
=item C<gsl_matrix_memcpy($dest, $src)> - Copy the elements of the matrix $src to the matrix $dest. The two matrices must have the same size.
=item C<gsl_matrix_swap($m1, $m2)> - Exchange the elements of the matrices $m1 and $m2 by copying. The two matrices must have the same size.
=item C<gsl_matrix_swap_rows($m, $i, $j)> - Exchange the $i-th and $j-th row of the matrix $m. The function returns 0 if the operation succeeded, 1 otherwise.
=item C<gsl_matrix_swap_columns($m, $i, $j)> - Exchange the $i-th and $j-th column of the matrix $m. The function returns 0 if the operation succeeded, 1 otherwise.
=item C<gsl_matrix_swap_rowcol($m, $i, $j)> - Exchange the $i-th row and the $j-th column of the matrix $m. The matrix must be square. The function returns 0 if the operation succeeded, 1 otherwise.
=item C<gsl_matrix_transpose($m)> - This function replaces the matrix m by its transpose by copying the elements of the matrix in-place. The matrix must be square for this operation to be possible.
=item C<gsl_matrix_transpose_memcpy($dest, $src)> - Make the matrix $dest the transpose of the matrix $src. This function works for all matrices provided that the dimensions of the matrix dest match the transposed dimensions of the matrix src.
=item C<gsl_matrix_max($m)> - Return the maximum value in the matrix $m
=item C<gsl_matrix_min($m)> - Return the minimum value in the matrix $m
=item C<gsl_matrix_minmax($m)> - Return two values, the first is the minimum value of the Matrix $m and the second is the maximum of the same the same matrix.
=item C<gsl_matrix_max_index($m)> - Return two values, the first is the the i indice of the maximum value of the matrix $m and the second is the j indice of the same value.
=item C<gsl_matrix_min_index($m)> - Return two values, the first is the the i indice of the minimum value of the matrix $m and the second is the j indice of the same value.
=item C<gsl_matrix_minmax_index($m)> - Return four values, the first is the i indice of the minimum of the matrix $m, the second is the j indice of the same value, the third is the i indice of the maximum of the matrix $m and the fourth is the j indice of the same value
=item C<gsl_matrix_isnull($m)> - Return 1 if all the elements of the matrix $m are zero, 0 otherwise
=item C<gsl_matrix_ispos($m)> - Return 1 if all the elements of the matrix $m are strictly positive, 0 otherwise
=item C<gsl_matrix_isneg($m)> - Return 1 if all the elements of the matrix $m are strictly negative, 0 otherwise
=item C<gsl_matrix_isnonneg($m)> - Return 1 if all the elements of the matrix $m are non-negatuive, 0 otherwise
=item C<gsl_matrix_add($a, $b)> - Add the elements of matrix $b to the elements of matrix $a
=item C<gsl_matrix_sub($a, $b)> - Subtract the elements of matrix $b from the elements of matrix $a
=item C<gsl_matrix_mul_elements($a, $b)> - Multiplie the elements of matrix $a by the elements of matrix $b
=item C<gsl_matrix_div_elements($a, $b)> - Divide the elements of matrix $a by the elements of matrix $b
=item C<gsl_matrix_scale($a, $x)> - Multiplie the elements of matrix $a by the constant factor $x
=item C<gsl_matrix_add_constant($a, $x)> - Add the constant value $x to the elements of the matrix $a
=item C<gsl_matrix_add_diagonal($a, $x)> - Add the constant value $x to the elements of the diagonal of the matrix $a
=item C<gsl_matrix_get_row($v, $m, $i)> - Copy the elements of the $i-th row of the matrix $m into the vector $v. The length of the vector must be of the same as the length of the row. The function returns 0 if it succeeded, 1 otherwise.
=item C<gsl_matrix_get_col($v, $m, $i)> - Copy the elements of the $j-th column of the matrix $m into the vector $v. The length of the vector must be of the same as the length of the column. The function returns 0 if it succeeded, 1 otherwise.
=item C<gsl_matrix_set_row($m, $i, $v)> - Copy the elements of vector $v into the $i-th row of the matrix $m The length of the vector must be of the same as the length of the row. The function returns 0 if it succeeded, 1 otherwise.
=item C<gsl_matrix_set_col($m, $j, $v)> - Copy the elements of vector $v into the $j-th row of the matrix $m The length of the vector must be of the same as the length of the column. The function returns 0 if it succeeded, 1 otherwise.
=back
These are related to constant views of a matrix.
=over 1
=item C<gsl_matrix_const_row>
=item C<gsl_matrix_const_column>
=item C<gsl_matrix_const_diagonal>
=item C<gsl_matrix_const_subdiagonal>
=item C<gsl_matrix_const_superdiagonal>
=item C<gsl_matrix_const_subrow>
=item C<gsl_matrix_const_subcolumn>
=item C<gsl_matrix_const_view_array>
=item C<gsl_matrix_const_view_array_with_tda>
=back
The following functions are similar to those above but work with C<char>'s and C<int>'s. We are not quite
sure if anyone wants these. Please speak up if you do and/or submit some patches to this documentation, please!
=over 1
=item gsl_matrix_const_view_vector
=item gsl_matrix_const_view_vector_with_tda
=item gsl_matrix_char_alloc
=item gsl_matrix_char_calloc
=item gsl_matrix_char_alloc_from_block
=item gsl_matrix_char_alloc_from_matrix
=item gsl_vector_char_alloc_row_from_matrix
=item gsl_vector_char_alloc_col_from_matrix
=item gsl_matrix_char_free
=item gsl_matrix_char_submatrix
=item gsl_matrix_char_row
=item gsl_matrix_char_column
=item gsl_matrix_char_diagonal
=item gsl_matrix_char_subdiagonal
=item gsl_matrix_char_superdiagonal
=item gsl_matrix_char_subrow
=item gsl_matrix_char_subcolumn
=item gsl_matrix_char_view_array
=item gsl_matrix_char_view_array_with_tda
=item gsl_matrix_char_view_vector
=item gsl_matrix_char_view_vector_with_tda
=item gsl_matrix_char_const_submatrix
=item gsl_matrix_char_const_row
=item gsl_matrix_char_const_column
=item gsl_matrix_char_const_diagonal
=item gsl_matrix_char_const_subdiagonal
=item gsl_matrix_char_const_superdiagonal
=item gsl_matrix_char_const_subrow
=item gsl_matrix_char_const_subcolumn
=item gsl_matrix_char_const_view_array
=item gsl_matrix_char_const_view_array_with_tda
=item gsl_matrix_char_const_view_vector
=item gsl_matrix_char_const_view_vector_with_tda
=item gsl_matrix_char_get
=item gsl_matrix_char_set
=item gsl_matrix_char_ptr
=item gsl_matrix_char_const_ptr
=item gsl_matrix_char_set_zero
=item gsl_matrix_char_set_identity
=item gsl_matrix_char_set_all
=item gsl_matrix_char_fread
=item gsl_matrix_char_fwrite
=item gsl_matrix_char_fscanf
=item gsl_matrix_char_fprintf
=item gsl_matrix_char_memcpy
=item gsl_matrix_char_swap
=item gsl_matrix_char_swap_rows
=item gsl_matrix_char_swap_columns
=item gsl_matrix_char_swap_rowcol
=item gsl_matrix_char_transpose
=item gsl_matrix_char_transpose_memcpy
=item gsl_matrix_char_max
=item gsl_matrix_char_min
=item gsl_matrix_char_minmax
=item gsl_matrix_char_max_index
=item gsl_matrix_char_min_index
=item gsl_matrix_char_minmax_index
=item gsl_matrix_char_isnull
=item gsl_matrix_char_ispos
=item gsl_matrix_char_isneg
=item gsl_matrix_char_isnonneg
=item gsl_matrix_char_add
=item gsl_matrix_char_sub
=item gsl_matrix_char_mul_elements
=item gsl_matrix_char_div_elements
=item gsl_matrix_char_scale
=item gsl_matrix_char_add_constant
=item gsl_matrix_char_add_diagonal
=item gsl_matrix_int_alloc
=item gsl_matrix_int_calloc
=item gsl_matrix_int_alloc_from_block
=item gsl_matrix_int_alloc_from_matrix
=item gsl_vector_int_alloc_row_from_matrix
=item gsl_vector_int_alloc_col_from_matrix
=item gsl_matrix_int_free
=item gsl_matrix_int_submatrix
=item gsl_matrix_int_row
=item gsl_matrix_int_column
=item gsl_matrix_int_diagonal
=item gsl_matrix_int_subdiagonal
=item gsl_matrix_int_superdiagonal
=item gsl_matrix_int_subrow
=item gsl_matrix_int_subcolumn
=item gsl_matrix_int_view_array
=item gsl_matrix_int_view_array_with_tda
=item gsl_matrix_int_view_vector
=item gsl_matrix_int_view_vector_with_tda
=item gsl_matrix_int_const_submatrix
=item gsl_matrix_int_const_row
=item gsl_matrix_int_const_column
=item gsl_matrix_int_ptr
=item gsl_matrix_int_const_ptr
=item gsl_matrix_int_set_zero
=item gsl_matrix_int_set_identity
=item gsl_matrix_int_set_all
=item gsl_matrix_int_fread
=item gsl_matrix_int_fwrite
=item gsl_matrix_int_fscanf
=item gsl_matrix_int_fprintf
=item gsl_matrix_int_memcpy
=item gsl_matrix_int_swap
=item gsl_matrix_int_swap_rows
=item gsl_matrix_int_swap_columns
=item gsl_matrix_int_swap_rowcol
=item gsl_matrix_int_transpose
=item gsl_matrix_int_transpose_memcpy
=item gsl_matrix_int_max
=item gsl_matrix_int_min
=item gsl_matrix_int_minmax
=item gsl_matrix_int_max_index
=item gsl_matrix_int_min_index
=item gsl_matrix_int_minmax_index
=item gsl_matrix_int_isnull
=item gsl_matrix_int_ispos
=item gsl_matrix_int_isneg
=item gsl_matrix_int_isnonneg
=item gsl_matrix_int_add
=item gsl_matrix_int_sub
=item gsl_matrix_int_mul_elements
=item gsl_matrix_int_div_elements
=item gsl_matrix_int_scale
=item gsl_matrix_int_add_constant
=item gsl_matrix_int_add_diagonal
=back
You have to add the functions you want to use inside the qw /put_function_here /.
You can also write use Math::GSL::Matrix qw/:all/ to use all available functions of the module.
Other tags are also available, here is a complete list of all tags for this module :
=over 1
=item C<all>
=item C<int>
=item C<double>
=item C<char>
=item C<complex>
=back
For more information on the functions, we refer you to the GSL official documentation
L<http://www.gnu.org/software/gsl/manual/html_node/>
=head1 EXAMPLES
Most of the examples from this section are perl versions of the examples at L<http://www.gnu.org/software/gsl/manual/html_node/Example-programs-for-matrices.html>
The program below shows how to allocate, initialize and read from a matrix using the functions gsl_matrix_alloc, gsl_matrix_set and gsl_matrix_get.
use Math::GSL::Matrix qw/:all/;
my $m = gsl_matrix_alloc (10,3);
for my $i (0..9){
for my $j (0..2){
gsl_matrix_set($m, $i, $j, 0.23 + 100*$i + $j);
}
}
for my $i (0..99){ # OUT OF RANGE ERROR
for my $j (0..2){
print "m($i, $j) = " . gsl_matrix_get ($m, $i, $j) . "\n";
}
}
gsl_matrix_free ($m);
use Math::GSL::Matrix qw/:all/;
my $m = gsl_matrix_alloc (100, 100);
my $a = gsl_matrix_alloc (100, 100);
for my $i (0..99){
for my $j (0..99){
gsl_matrix_set ($m, $i, $j, 0.23 + $i + $j);
}
}
The next program shows how to write a matrix to a file.
my $out = gsl_fopen("test.dat", "wb");
gsl_matrix_fwrite ($out, $m);
gsl_fclose ($out);
my $in = gsl_fopen("test.dat", "rb");
gsl_matrix_fread ($in, $a);
gsl_fclose($in);
my $k=0;
for my $i (0..99){
for my $j (0..99){
$mij = gsl_matrix_get ($m, $i, $j);
$aij = gsl_matrix_get ($a, $i, $j);
$k++ if ($mij != $aij);
}
}
gsl_matrix_free($m);
gsl_matrix_free($a);
print "differences = $k (should be zero)\n";
=head1 AUTHORS
Jonathan "Duke" Leto <jonathan@leto.net> and Thierry Moisan <thierry.moisan@gmail.com>
=head1 COPYRIGHT AND LICENSE
Copyright (C) 2008-2024 Jonathan "Duke" Leto and Thierry Moisan
This program is free software; you can redistribute it and/or modify it
under the same terms as Perl itself.
=cut
%}
|