File: ODEIV.pod

package info (click to toggle)
libmath-gsl-perl 0.45-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 192,156 kB
  • sloc: ansic: 895,524; perl: 24,682; makefile: 12
file content (212 lines) | stat: -rw-r--r-- 10,143 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
%perlcode %{
package Math::GSL::ODEIV;

@EXPORT_OK = qw/
               gsl_odeiv_step_alloc
               gsl_odeiv_step_reset
               gsl_odeiv_step_free
               gsl_odeiv_step_name
               gsl_odeiv_step_order
               gsl_odeiv_step_apply
               gsl_odeiv_control_alloc
               gsl_odeiv_control_init
               gsl_odeiv_control_free
               gsl_odeiv_control_hadjust
               gsl_odeiv_control_name
               gsl_odeiv_control_standard_new
               gsl_odeiv_control_y_new
               gsl_odeiv_control_yp_new
               gsl_odeiv_control_scaled_new
               gsl_odeiv_evolve_alloc
               gsl_odeiv_evolve_apply
               gsl_odeiv_evolve_reset
               gsl_odeiv_evolve_free
               $gsl_odeiv_step_rk2
               $gsl_odeiv_step_rk4
               $gsl_odeiv_step_rkf45
               $gsl_odeiv_step_rkck
               $gsl_odeiv_step_rk8pd
               $gsl_odeiv_step_rk2imp
               $gsl_odeiv_step_rk2simp
               $gsl_odeiv_step_rk4imp
               $gsl_odeiv_step_bsimp
               $gsl_odeiv_step_gear1
               $gsl_odeiv_step_gear2
               $GSL_ODEIV_HADJ_INC
               $GSL_ODEIV_HADJ_NIL
               $GSL_ODEIV_HADJ_DEC
               $gsl_odeiv_control_standard
	/;
%EXPORT_TAGS = ( all => [ @EXPORT_OK ] );

__END__

=encoding utf8

=head1 NAME

Math::GSL::ODEIV - functions for solving ordinary differential equation (ODE) initial value problems

=head1 SYNOPSIS

 use Math::GSL::ODEIV qw /:all/;

=head1 DESCRIPTION

Here is a list of all the functions in this module :

=over

=item * C<gsl_odeiv_step_alloc($T, $dim)> - This function returns a pointer to a newly allocated instance of a stepping function of type $T for a system of $dim dimensions.$T must be one of the step type constant above.

=item * C<gsl_odeiv_step_reset($s)> - This function resets the stepping function $s. It should be used whenever the next use of s will not be a continuation of a previous step.

=item * C<gsl_odeiv_step_free($s)> - This function frees all the memory associated with the stepping function $s.

=item * C<gsl_odeiv_step_name($s)> - This function returns a pointer to the name of the stepping function.

=item * C<gsl_odeiv_step_order($s)> - This function returns the order of the stepping function on the previous step. This order can vary if the stepping function itself is adaptive.

=item * C<gsl_odeiv_step_apply >

=item * C<gsl_odeiv_control_alloc($T)> - This function returns a pointer to a newly allocated instance of a control function of type $T. This function is only needed for defining new types of control functions. For most purposes the standard control functions described above should be sufficient. $T is a gsl_odeiv_control_type.

=item * C<gsl_odeiv_control_init($c, $eps_abs, $eps_rel, $a_y, $a_dydt) > - This function initializes the control function c with the parameters eps_abs (absolute error), eps_rel (relative error), a_y (scaling factor for y) and a_dydt (scaling factor for derivatives).

=item * C<gsl_odeiv_control_free >

=item * C<gsl_odeiv_control_hadjust >

=item * C<gsl_odeiv_control_name >

=item * C<gsl_odeiv_control_standard_new($eps_abs, $eps_rel, $a_y, $a_dydt)> - The standard control object is a four parameter heuristic based on absolute and relative errors $eps_abs and $eps_rel, and scaling factors $a_y and $a_dydt for the system state y(t) and derivatives y'(t) respectively. The step-size adjustment procedure for this method begins by computing the desired error level D_i for each component, D_i = eps_abs + eps_rel * (a_y |y_i| + a_dydt h |y'_i|) and comparing it with the observed error E_i = |yerr_i|. If the observed error E exceeds the desired error level D by more than 10% for any component then the method reduces the step-size by an appropriate factor, h_new = h_old * S * (E/D)^(-1/q) where q is the consistency order of the method (e.g. q=4 for 4(5) embedded RK), and S is a safety factor of 0.9. The ratio E/D is taken to be the maximum of the ratios E_i/D_i. If the observed error E is less than 50% of the desired error level D for the maximum ratio E_i/D_i then the algorithm takes the opportunity to increase the step-size to bring the error in line with the desired level, h_new = h_old * S * (E/D)^(-1/(q+1)) This encompasses all the standard error scaling methods. To avoid uncontrolled changes in the stepsize, the overall scaling factor is limited to the range 1/5 to 5.

=item * C<gsl_odeiv_control_y_new($eps_abs, $eps_rel)> - This function creates a new control object which will keep the local error on each step within an absolute error of $eps_abs and relative error of $eps_rel with respect to the solution y_i(t). This is equivalent to the standard control object with a_y=1 and a_dydt=0.

=item * C<gsl_odeiv_control_yp_new($eps_abs, $eps_rel)> - This function creates a new control object which will keep the local error on each step within an absolute error of $eps_abs and relative error of $eps_rel with respect to the derivatives of the solution y'_i(t). This is equivalent to the standard control object with a_y=0 and a_dydt=1.

=item * C<gsl_odeiv_control_scaled_new($eps_abs, $eps_rel, $a_y, $a_dydt, $scale_abs, $dim) > - This function creates a new control object which uses the same algorithm as gsl_odeiv_control_standard_new but with an absolute error which is scaled for each component by the array reference $scale_abs. The formula for D_i for this control object is, D_i = eps_abs * s_i + eps_rel * (a_y |y_i| + a_dydt h |y'_i|) where s_i is the i-th component of the array scale_abs. The same error control heuristic is used by the Matlab ode suite.

=item * C<gsl_odeiv_evolve_alloc($dim)> - This function returns a pointer to a newly allocated instance of an evolution function for a system of $dim dimensions.

=item * C<gsl_odeiv_evolve_apply($e, $c, $step, $dydt, \$t, $t1, \$h, $y)> - This function advances the system ($e, $dydt) from time $t and position $y using the stepping function $step. The new time and position are stored in $t and $y on output. The initial step-size is taken as $h, but this will be modified using the control function $c to achieve the appropriate error bound if necessary. The routine may make several calls to step in order to determine the optimum step-size. If the step-size has been changed the value of $h will be modified on output. The maximum time $t1 is guaranteed not to be exceeded by the time-step. On the final time-step the value of $t will be set to $t1 exactly.

=item * C<gsl_odeiv_evolve_reset($e)> - This function resets the evolution function $e. It should be used whenever the next use of $e will not be a continuation of a previous step.

=item * C<gsl_odeiv_evolve_free($e)> - This function frees all the memory associated with the evolution function $e.

=back

This module also includes the following constants :

=over

=item * C<$GSL_ODEIV_HADJ_INC>

=item * C<$GSL_ODEIV_HADJ_NIL>

=item * C<$GSL_ODEIV_HADJ_DEC>

=back

=head2 Step Type

=over

=item * C<$gsl_odeiv_step_rk2> - Embedded Runge-Kutta (2, 3) method.

=item * C<$gsl_odeiv_step_rk4> - 4th order (classical) Runge-Kutta. The error estimate is obtained by halving the step-size. For more efficient estimate of the error, use the Runge-Kutta-Fehlberg method described below.

=item * C<$gsl_odeiv_step_rkf45> - Embedded Runge-Kutta-Fehlberg (4, 5) method. This method is a good general-purpose integrator.

=item * C<$gsl_odeiv_step_rkck> - Embedded Runge-Kutta Cash-Karp (4, 5) method.

=item * C<$gsl_odeiv_step_rk8pd> - Embedded Runge-Kutta Prince-Dormand (8,9) method.

=item * C<$gsl_odeiv_step_rk2imp> - Implicit 2nd order Runge-Kutta at Gaussian points.

=item * C<$gsl_odeiv_step_rk2simp>

=item * C<$gsl_odeiv_step_rk4imp> - Implicit 4th order Runge-Kutta at Gaussian points.

=item * C<$gsl_odeiv_step_bsimp> - Implicit Bulirsch-Stoer method of Bader and Deuflhard. This algorithm requires the Jacobian.

=item * C<$gsl_odeiv_step_gear1> - M=1 implicit Gear method.

=item * C<$gsl_odeiv_step_gear2> - M=2 implicit Gear method.

=back

For more information on the functions, we refer you to the GSL official
documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>

=head1 EXAMPLE

The example is taken from L<https://www.math.utah.edu/software/gsl/gsl-ref_367.html>.

 use strict;
 use warnings;
 use Math::GSL::Errno qw($GSL_SUCCESS);
 use Math::GSL::ODEIV qw/ :all /;
 use Math::GSL::Matrix qw/:all/;
 use Math::GSL::IEEEUtils qw/ :all /;
 
 sub func {
     my ($t, $y, $dydt, $params) = @_;
     my $mu = $params->{mu};
     $dydt->[0] = $y->[1];
     $dydt->[1] = -$y->[0] - $mu*$y->[1]*(($y->[0])**2 - 1);
     return $GSL_SUCCESS;
 }
 
 sub jac {
     my ($t, $y, $dfdy, $dfdt, $params) = @_;

     my $mu = $params->{mu};
     my $m = gsl_matrix_view_array($dfdy, 2, 2);
     gsl_matrix_set( $m, 0, 0, 0.0 );
     gsl_matrix_set( $m, 0, 1, 1.0 );
     gsl_matrix_set( $m, 1, 0, (-2.0 * $mu * $y->[0] * $y->[1]) - 1.0 );
     gsl_matrix_set( $m, 1, 1, -$mu * (($y->[0])**2 - 1.0) );
     $dfdt->[0] = 0.0;
     $dfdt->[1] = 0.0;
     return $GSL_SUCCESS;
 }
 
 my $T = $gsl_odeiv_step_rk8pd;
 my $s = gsl_odeiv_step_alloc($T, 2);
 my $c = gsl_odeiv_control_y_new(1e-6, 0.0);
 my $e = gsl_odeiv_evolve_alloc(2);
 my $params = { mu => 10 };
 my $sys = Math::GSL::ODEIV::gsl_odeiv_system->new(\&func, \&jac, 2, $params );
 my $t = 0.0;
 my $t1 = 100.0;
 my $h = 1e-6;
 my $y = [ 1.0, 0.0 ];
 gsl_ieee_env_setup;
 while ($t < $t1) {
     my $status = gsl_odeiv_evolve_apply ($e, $c, $s, $sys, \$t, $t1, \$h, $y);
     last if $status != $GSL_SUCCESS;
     printf "%.5e %.5e %.5e\n", $t, $y->[0], $y->[1];
 }
 gsl_odeiv_evolve_free($e);
 gsl_odeiv_control_free($c);
 gsl_odeiv_step_free($s);



=head1 AUTHORS

Jonathan "Duke" Leto <jonathan@leto.net> and Thierry Moisan <thierry.moisan@gmail.com>

=head1 COPYRIGHT AND LICENSE

Copyright (C) 2008-2024 Jonathan "Duke" Leto and Thierry Moisan

This program is free software; you can redistribute it and/or modify it
under the same terms as Perl itself.

=cut

%}