File: Sys.pod

package info (click to toggle)
libmath-gsl-perl 0.45-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 192,156 kB
  • sloc: ansic: 895,524; perl: 24,682; makefile: 12
file content (157 lines) | stat: -rw-r--r-- 4,369 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
%perlcode %{
our @EXPORT = qw();
our @EXPORT_OK = qw/
               gsl_log1p
               gsl_expm1
               gsl_hypot
               gsl_hypot3
               gsl_acosh
               gsl_asinh
               gsl_atanh
               gsl_isnan
               gsl_isinf
               gsl_finite
               gsl_posinf
               gsl_neginf
               gsl_fdiv
               gsl_coerce_double
               gsl_coerce_float
               gsl_coerce_long_double
               gsl_ldexp
               gsl_frexp
               gsl_fcmp
               gsl_nan
               gsl_isnan
               gsl_inf
               $GSL_NAN
               $GSL_POSINF
               $GSL_NEGINF
             /;

our %EXPORT_TAGS = ( all => \@EXPORT_OK );
our $GSL_NAN    = gsl_nan();
our $GSL_POSINF = gsl_posinf();
our $GSL_NEGINF = gsl_neginf();

__END__

=encoding utf8

=head1 NAME

Math::GSL::Sys - Misc Math Functions

=head1 SYNOPSIS

    use Math::GSL::Sys qw/:all/;

=head1 DESCRIPTION

This module contains various useful math functions that are not usually
provided by standard libraries.

=over

=item * C<gsl_log1p($x)>

This function computes the value of \log(1+$x) in a way that is accurate for
small $x. It provides an alternative to the BSD math function log1p(x).

=item * C<gsl_expm1($x)>

This function computes the value of \exp($x)-1 in a way that is accurate for
small $x. It provides an alternative to the BSD math function expm1(x).

=item * C<gsl_hypot($x, $y)>

This function computes the value of \sqrt{$x^2 + $y^2} in a way that avoids
overflow. It provides an alternative to the BSD math function hypot($x,$y).

=item * C<gsl_hypot3($x, $y, $z)>

This function computes the value of \sqrt{$x^2 + $y^2 + $z^2} in a way that
avoids overflow.

=item * C<gsl_acosh($x)>

This function computes the value of \arccosh($x). It provides an alternative to
the standard math function acosh($x).

=item * C<gsl_asinh($x)>

This function computes the value of \arcsinh($x). It provides an alternative to
the standard math function asinh($x).

=item * C<gsl_atanh($x)>

This function computes the value of \arctanh($x). It provides an alternative to
the standard math function atanh($x).

=item * C<gsl_isnan($x)>

This function returns 1 if $x is not-a-number.

=item * C<gsl_isinf($x)>

This function returns +1 if $x is positive infinity, -1 if $x is negative
infinity and 0 otherwise.

=item * C<gsl_finite($x)>

This function returns 1 if $x is a real number, and 0 if it is infinite or not-a-number.

=item * C<gsl_posinf >

=item * C<gsl_neginf >

=item * C<gsl_fdiv >

=item * C<gsl_coerce_double >

=item * C<gsl_coerce_float >

=item * C<gsl_coerce_long_double >

=item * C<gsl_ldexp($x, $e)>

This function computes the value of $x * 2**$e. It provides an alternative to
the standard math function ldexp($x,$e).

=item * C<gsl_frexp($x)>

This function splits the number $x into its normalized fraction f and exponent
e, such that $x = f * 2^e and 0.5 <= f < 1. The function returns f and then the
exponent in e. If $x is zero, both f and e are set to zero. This function
provides an alternative to the standard math function frexp(x, e).

=item * C<gsl_fcmp($x, $y, $epsilon)>

This function determines whether $x and $y are approximately equal to a
relative accuracy $epsilon. The relative accuracy is measured using an interval
of size 2 \delta, where \delta = 2^k \epsilon and k is the maximum base-2
exponent of $x and $y as computed by the function frexp. If $x and $y lie
within this interval, they are considered approximately equal and the function
returns 0. Otherwise if $x < $y, the function returns -1, or if $x > $y, the
function returns +1. Note that $x and $y are compared to relative accuracy, so
this function is not suitable for testing whether a value is approximately
zero. The implementation is based on the package fcmp by T.C. Belding.

=back

For more information on the functions, we refer you to the GSL official
documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>

=head1 AUTHORS

Jonathan "Duke" Leto <jonathan@leto.net> and Thierry Moisan <thierry.moisan@gmail.com>

=head1 COPYRIGHT AND LICENSE

Copyright (C) 2008-2024 Jonathan "Duke" Leto and Thierry Moisan

This program is free software; you can redistribute it and/or modify it
under the same terms as Perl itself.

=cut

%}