1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
|
# This file was automatically generated by SWIG (https://www.swig.org).
# Version 4.2.0
#
# Do not make changes to this file unless you know what you are doing - modify
# the SWIG interface file instead.
package Math::GSL::Multilarge;
use base qw(Exporter);
use base qw(DynaLoader);
package Math::GSL::Multilargec;
bootstrap Math::GSL::Multilarge;
package Math::GSL::Multilarge;
@EXPORT = qw();
# ---------- BASE METHODS -------------
package Math::GSL::Multilarge;
sub TIEHASH {
my ($classname,$obj) = @_;
return bless $obj, $classname;
}
sub CLEAR { }
sub FIRSTKEY { }
sub NEXTKEY { }
sub FETCH {
my ($self,$field) = @_;
my $member_func = "swig_${field}_get";
$self->$member_func();
}
sub STORE {
my ($self,$field,$newval) = @_;
my $member_func = "swig_${field}_set";
$self->$member_func($newval);
}
sub this {
my $ptr = shift;
return tied(%$ptr);
}
# ------- FUNCTION WRAPPERS --------
package Math::GSL::Multilarge;
*gsl_error = *Math::GSL::Multilargec::gsl_error;
*gsl_stream_printf = *Math::GSL::Multilargec::gsl_stream_printf;
*gsl_strerror = *Math::GSL::Multilargec::gsl_strerror;
*gsl_set_error_handler = *Math::GSL::Multilargec::gsl_set_error_handler;
*gsl_set_error_handler_off = *Math::GSL::Multilargec::gsl_set_error_handler_off;
*gsl_set_stream_handler = *Math::GSL::Multilargec::gsl_set_stream_handler;
*gsl_set_stream = *Math::GSL::Multilargec::gsl_set_stream;
*gsl_permutation_alloc = *Math::GSL::Multilargec::gsl_permutation_alloc;
*gsl_permutation_calloc = *Math::GSL::Multilargec::gsl_permutation_calloc;
*gsl_permutation_init = *Math::GSL::Multilargec::gsl_permutation_init;
*gsl_permutation_free = *Math::GSL::Multilargec::gsl_permutation_free;
*gsl_permutation_memcpy = *Math::GSL::Multilargec::gsl_permutation_memcpy;
*gsl_permutation_fread = *Math::GSL::Multilargec::gsl_permutation_fread;
*gsl_permutation_fwrite = *Math::GSL::Multilargec::gsl_permutation_fwrite;
*gsl_permutation_fscanf = *Math::GSL::Multilargec::gsl_permutation_fscanf;
*gsl_permutation_fprintf = *Math::GSL::Multilargec::gsl_permutation_fprintf;
*gsl_permutation_size = *Math::GSL::Multilargec::gsl_permutation_size;
*gsl_permutation_data = *Math::GSL::Multilargec::gsl_permutation_data;
*gsl_permutation_swap = *Math::GSL::Multilargec::gsl_permutation_swap;
*gsl_permutation_valid = *Math::GSL::Multilargec::gsl_permutation_valid;
*gsl_permutation_reverse = *Math::GSL::Multilargec::gsl_permutation_reverse;
*gsl_permutation_inverse = *Math::GSL::Multilargec::gsl_permutation_inverse;
*gsl_permutation_next = *Math::GSL::Multilargec::gsl_permutation_next;
*gsl_permutation_prev = *Math::GSL::Multilargec::gsl_permutation_prev;
*gsl_permutation_mul = *Math::GSL::Multilargec::gsl_permutation_mul;
*gsl_permutation_linear_to_canonical = *Math::GSL::Multilargec::gsl_permutation_linear_to_canonical;
*gsl_permutation_canonical_to_linear = *Math::GSL::Multilargec::gsl_permutation_canonical_to_linear;
*gsl_permutation_inversions = *Math::GSL::Multilargec::gsl_permutation_inversions;
*gsl_permutation_linear_cycles = *Math::GSL::Multilargec::gsl_permutation_linear_cycles;
*gsl_permutation_canonical_cycles = *Math::GSL::Multilargec::gsl_permutation_canonical_cycles;
*gsl_permutation_get = *Math::GSL::Multilargec::gsl_permutation_get;
*gsl_multifit_linear_alloc = *Math::GSL::Multilargec::gsl_multifit_linear_alloc;
*gsl_multifit_linear_free = *Math::GSL::Multilargec::gsl_multifit_linear_free;
*gsl_multifit_linear = *Math::GSL::Multilargec::gsl_multifit_linear;
*gsl_multifit_linear_tsvd = *Math::GSL::Multilargec::gsl_multifit_linear_tsvd;
*gsl_multifit_linear_svd = *Math::GSL::Multilargec::gsl_multifit_linear_svd;
*gsl_multifit_linear_bsvd = *Math::GSL::Multilargec::gsl_multifit_linear_bsvd;
*gsl_multifit_linear_rank = *Math::GSL::Multilargec::gsl_multifit_linear_rank;
*gsl_multifit_linear_solve = *Math::GSL::Multilargec::gsl_multifit_linear_solve;
*gsl_multifit_linear_applyW = *Math::GSL::Multilargec::gsl_multifit_linear_applyW;
*gsl_multifit_linear_stdform1 = *Math::GSL::Multilargec::gsl_multifit_linear_stdform1;
*gsl_multifit_linear_wstdform1 = *Math::GSL::Multilargec::gsl_multifit_linear_wstdform1;
*gsl_multifit_linear_L_decomp = *Math::GSL::Multilargec::gsl_multifit_linear_L_decomp;
*gsl_multifit_linear_stdform2 = *Math::GSL::Multilargec::gsl_multifit_linear_stdform2;
*gsl_multifit_linear_wstdform2 = *Math::GSL::Multilargec::gsl_multifit_linear_wstdform2;
*gsl_multifit_linear_genform1 = *Math::GSL::Multilargec::gsl_multifit_linear_genform1;
*gsl_multifit_linear_genform2 = *Math::GSL::Multilargec::gsl_multifit_linear_genform2;
*gsl_multifit_linear_wgenform2 = *Math::GSL::Multilargec::gsl_multifit_linear_wgenform2;
*gsl_multifit_linear_lreg = *Math::GSL::Multilargec::gsl_multifit_linear_lreg;
*gsl_multifit_linear_lcurve = *Math::GSL::Multilargec::gsl_multifit_linear_lcurve;
*gsl_multifit_linear_lcurvature = *Math::GSL::Multilargec::gsl_multifit_linear_lcurvature;
*gsl_multifit_linear_lcurvature_menger = *Math::GSL::Multilargec::gsl_multifit_linear_lcurvature_menger;
*gsl_multifit_linear_lcorner = *Math::GSL::Multilargec::gsl_multifit_linear_lcorner;
*gsl_multifit_linear_lcorner2 = *Math::GSL::Multilargec::gsl_multifit_linear_lcorner2;
*gsl_multifit_linear_Lk = *Math::GSL::Multilargec::gsl_multifit_linear_Lk;
*gsl_multifit_linear_Lsobolev = *Math::GSL::Multilargec::gsl_multifit_linear_Lsobolev;
*gsl_multifit_wlinear = *Math::GSL::Multilargec::gsl_multifit_wlinear;
*gsl_multifit_wlinear_tsvd = *Math::GSL::Multilargec::gsl_multifit_wlinear_tsvd;
*gsl_multifit_wlinear_svd = *Math::GSL::Multilargec::gsl_multifit_wlinear_svd;
*gsl_multifit_wlinear_usvd = *Math::GSL::Multilargec::gsl_multifit_wlinear_usvd;
*gsl_multifit_linear_est = *Math::GSL::Multilargec::gsl_multifit_linear_est;
*gsl_multifit_linear_rcond = *Math::GSL::Multilargec::gsl_multifit_linear_rcond;
*gsl_multifit_linear_residuals = *Math::GSL::Multilargec::gsl_multifit_linear_residuals;
*gsl_multifit_linear_gcv_init = *Math::GSL::Multilargec::gsl_multifit_linear_gcv_init;
*gsl_multifit_linear_gcv_curve = *Math::GSL::Multilargec::gsl_multifit_linear_gcv_curve;
*gsl_multifit_linear_gcv_min = *Math::GSL::Multilargec::gsl_multifit_linear_gcv_min;
*gsl_multifit_linear_gcv_calc = *Math::GSL::Multilargec::gsl_multifit_linear_gcv_calc;
*gsl_multifit_linear_gcv = *Math::GSL::Multilargec::gsl_multifit_linear_gcv;
*gsl_multifit_robust_alloc = *Math::GSL::Multilargec::gsl_multifit_robust_alloc;
*gsl_multifit_robust_free = *Math::GSL::Multilargec::gsl_multifit_robust_free;
*gsl_multifit_robust_tune = *Math::GSL::Multilargec::gsl_multifit_robust_tune;
*gsl_multifit_robust_maxiter = *Math::GSL::Multilargec::gsl_multifit_robust_maxiter;
*gsl_multifit_robust_name = *Math::GSL::Multilargec::gsl_multifit_robust_name;
*gsl_multifit_robust_statistics = *Math::GSL::Multilargec::gsl_multifit_robust_statistics;
*gsl_multifit_robust_weights = *Math::GSL::Multilargec::gsl_multifit_robust_weights;
*gsl_multifit_robust = *Math::GSL::Multilargec::gsl_multifit_robust;
*gsl_multifit_robust_est = *Math::GSL::Multilargec::gsl_multifit_robust_est;
*gsl_multifit_robust_residuals = *Math::GSL::Multilargec::gsl_multifit_robust_residuals;
*gsl_multilarge_linear_alloc = *Math::GSL::Multilargec::gsl_multilarge_linear_alloc;
*gsl_multilarge_linear_free = *Math::GSL::Multilargec::gsl_multilarge_linear_free;
*gsl_multilarge_linear_name = *Math::GSL::Multilargec::gsl_multilarge_linear_name;
*gsl_multilarge_linear_reset = *Math::GSL::Multilargec::gsl_multilarge_linear_reset;
*gsl_multilarge_linear_accumulate = *Math::GSL::Multilargec::gsl_multilarge_linear_accumulate;
*gsl_multilarge_linear_solve = *Math::GSL::Multilargec::gsl_multilarge_linear_solve;
*gsl_multilarge_linear_rcond = *Math::GSL::Multilargec::gsl_multilarge_linear_rcond;
*gsl_multilarge_linear_lcurve = *Math::GSL::Multilargec::gsl_multilarge_linear_lcurve;
*gsl_multilarge_linear_wstdform1 = *Math::GSL::Multilargec::gsl_multilarge_linear_wstdform1;
*gsl_multilarge_linear_stdform1 = *Math::GSL::Multilargec::gsl_multilarge_linear_stdform1;
*gsl_multilarge_linear_L_decomp = *Math::GSL::Multilargec::gsl_multilarge_linear_L_decomp;
*gsl_multilarge_linear_wstdform2 = *Math::GSL::Multilargec::gsl_multilarge_linear_wstdform2;
*gsl_multilarge_linear_stdform2 = *Math::GSL::Multilargec::gsl_multilarge_linear_stdform2;
*gsl_multilarge_linear_genform1 = *Math::GSL::Multilargec::gsl_multilarge_linear_genform1;
*gsl_multilarge_linear_genform2 = *Math::GSL::Multilargec::gsl_multilarge_linear_genform2;
*gsl_multilarge_linear_matrix_ptr = *Math::GSL::Multilargec::gsl_multilarge_linear_matrix_ptr;
*gsl_multilarge_linear_rhs_ptr = *Math::GSL::Multilargec::gsl_multilarge_linear_rhs_ptr;
############# Class : Math::GSL::Multilarge::gsl_function_struct ##############
package Math::GSL::Multilarge::gsl_function_struct;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::Multilarge );
%OWNER = ();
%ITERATORS = ();
*swig_function_get = *Math::GSL::Multilargec::gsl_function_struct_function_get;
*swig_function_set = *Math::GSL::Multilargec::gsl_function_struct_function_set;
*swig_params_get = *Math::GSL::Multilargec::gsl_function_struct_params_get;
*swig_params_set = *Math::GSL::Multilargec::gsl_function_struct_params_set;
sub new {
my $pkg = shift;
my $self = Math::GSL::Multilargec::new_gsl_function_struct(@_);
bless $self, $pkg if defined($self);
}
sub DESTROY {
return unless $_[0]->isa('HASH');
my $self = tied(%{$_[0]});
return unless defined $self;
delete $ITERATORS{$self};
if (exists $OWNER{$self}) {
Math::GSL::Multilargec::delete_gsl_function_struct($self);
delete $OWNER{$self};
}
}
sub DISOWN {
my $self = shift;
my $ptr = tied(%$self);
delete $OWNER{$ptr};
}
sub ACQUIRE {
my $self = shift;
my $ptr = tied(%$self);
$OWNER{$ptr} = 1;
}
############# Class : Math::GSL::Multilarge::gsl_function_fdf_struct ##############
package Math::GSL::Multilarge::gsl_function_fdf_struct;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::Multilarge );
%OWNER = ();
%ITERATORS = ();
*swig_f_get = *Math::GSL::Multilargec::gsl_function_fdf_struct_f_get;
*swig_f_set = *Math::GSL::Multilargec::gsl_function_fdf_struct_f_set;
*swig_df_get = *Math::GSL::Multilargec::gsl_function_fdf_struct_df_get;
*swig_df_set = *Math::GSL::Multilargec::gsl_function_fdf_struct_df_set;
*swig_fdf_get = *Math::GSL::Multilargec::gsl_function_fdf_struct_fdf_get;
*swig_fdf_set = *Math::GSL::Multilargec::gsl_function_fdf_struct_fdf_set;
*swig_params_get = *Math::GSL::Multilargec::gsl_function_fdf_struct_params_get;
*swig_params_set = *Math::GSL::Multilargec::gsl_function_fdf_struct_params_set;
sub new {
my $pkg = shift;
my $self = Math::GSL::Multilargec::new_gsl_function_fdf_struct(@_);
bless $self, $pkg if defined($self);
}
sub DESTROY {
return unless $_[0]->isa('HASH');
my $self = tied(%{$_[0]});
return unless defined $self;
delete $ITERATORS{$self};
if (exists $OWNER{$self}) {
Math::GSL::Multilargec::delete_gsl_function_fdf_struct($self);
delete $OWNER{$self};
}
}
sub DISOWN {
my $self = shift;
my $ptr = tied(%$self);
delete $OWNER{$ptr};
}
sub ACQUIRE {
my $self = shift;
my $ptr = tied(%$self);
$OWNER{$ptr} = 1;
}
############# Class : Math::GSL::Multilarge::gsl_function_vec_struct ##############
package Math::GSL::Multilarge::gsl_function_vec_struct;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::Multilarge );
%OWNER = ();
%ITERATORS = ();
*swig_function_get = *Math::GSL::Multilargec::gsl_function_vec_struct_function_get;
*swig_function_set = *Math::GSL::Multilargec::gsl_function_vec_struct_function_set;
*swig_params_get = *Math::GSL::Multilargec::gsl_function_vec_struct_params_get;
*swig_params_set = *Math::GSL::Multilargec::gsl_function_vec_struct_params_set;
sub new {
my $pkg = shift;
my $self = Math::GSL::Multilargec::new_gsl_function_vec_struct(@_);
bless $self, $pkg if defined($self);
}
sub DESTROY {
return unless $_[0]->isa('HASH');
my $self = tied(%{$_[0]});
return unless defined $self;
delete $ITERATORS{$self};
if (exists $OWNER{$self}) {
Math::GSL::Multilargec::delete_gsl_function_vec_struct($self);
delete $OWNER{$self};
}
}
sub DISOWN {
my $self = shift;
my $ptr = tied(%$self);
delete $OWNER{$ptr};
}
sub ACQUIRE {
my $self = shift;
my $ptr = tied(%$self);
$OWNER{$ptr} = 1;
}
############# Class : Math::GSL::Multilarge::gsl_permutation_struct ##############
package Math::GSL::Multilarge::gsl_permutation_struct;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::Multilarge );
%OWNER = ();
%ITERATORS = ();
*swig_size_get = *Math::GSL::Multilargec::gsl_permutation_struct_size_get;
*swig_size_set = *Math::GSL::Multilargec::gsl_permutation_struct_size_set;
*swig_data_get = *Math::GSL::Multilargec::gsl_permutation_struct_data_get;
*swig_data_set = *Math::GSL::Multilargec::gsl_permutation_struct_data_set;
sub new {
my $pkg = shift;
my $self = Math::GSL::Multilargec::new_gsl_permutation_struct(@_);
bless $self, $pkg if defined($self);
}
sub DESTROY {
return unless $_[0]->isa('HASH');
my $self = tied(%{$_[0]});
return unless defined $self;
delete $ITERATORS{$self};
if (exists $OWNER{$self}) {
Math::GSL::Multilargec::delete_gsl_permutation_struct($self);
delete $OWNER{$self};
}
}
sub DISOWN {
my $self = shift;
my $ptr = tied(%$self);
delete $OWNER{$ptr};
}
sub ACQUIRE {
my $self = shift;
my $ptr = tied(%$self);
$OWNER{$ptr} = 1;
}
############# Class : Math::GSL::Multilarge::gsl_multifit_linear_workspace ##############
package Math::GSL::Multilarge::gsl_multifit_linear_workspace;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::Multilarge );
%OWNER = ();
%ITERATORS = ();
*swig_nmax_get = *Math::GSL::Multilargec::gsl_multifit_linear_workspace_nmax_get;
*swig_nmax_set = *Math::GSL::Multilargec::gsl_multifit_linear_workspace_nmax_set;
*swig_pmax_get = *Math::GSL::Multilargec::gsl_multifit_linear_workspace_pmax_get;
*swig_pmax_set = *Math::GSL::Multilargec::gsl_multifit_linear_workspace_pmax_set;
*swig_n_get = *Math::GSL::Multilargec::gsl_multifit_linear_workspace_n_get;
*swig_n_set = *Math::GSL::Multilargec::gsl_multifit_linear_workspace_n_set;
*swig_p_get = *Math::GSL::Multilargec::gsl_multifit_linear_workspace_p_get;
*swig_p_set = *Math::GSL::Multilargec::gsl_multifit_linear_workspace_p_set;
*swig_A_get = *Math::GSL::Multilargec::gsl_multifit_linear_workspace_A_get;
*swig_A_set = *Math::GSL::Multilargec::gsl_multifit_linear_workspace_A_set;
*swig_Q_get = *Math::GSL::Multilargec::gsl_multifit_linear_workspace_Q_get;
*swig_Q_set = *Math::GSL::Multilargec::gsl_multifit_linear_workspace_Q_set;
*swig_QSI_get = *Math::GSL::Multilargec::gsl_multifit_linear_workspace_QSI_get;
*swig_QSI_set = *Math::GSL::Multilargec::gsl_multifit_linear_workspace_QSI_set;
*swig_S_get = *Math::GSL::Multilargec::gsl_multifit_linear_workspace_S_get;
*swig_S_set = *Math::GSL::Multilargec::gsl_multifit_linear_workspace_S_set;
*swig_t_get = *Math::GSL::Multilargec::gsl_multifit_linear_workspace_t_get;
*swig_t_set = *Math::GSL::Multilargec::gsl_multifit_linear_workspace_t_set;
*swig_xt_get = *Math::GSL::Multilargec::gsl_multifit_linear_workspace_xt_get;
*swig_xt_set = *Math::GSL::Multilargec::gsl_multifit_linear_workspace_xt_set;
*swig_D_get = *Math::GSL::Multilargec::gsl_multifit_linear_workspace_D_get;
*swig_D_set = *Math::GSL::Multilargec::gsl_multifit_linear_workspace_D_set;
*swig_rcond_get = *Math::GSL::Multilargec::gsl_multifit_linear_workspace_rcond_get;
*swig_rcond_set = *Math::GSL::Multilargec::gsl_multifit_linear_workspace_rcond_set;
sub new {
my $pkg = shift;
my $self = Math::GSL::Multilargec::new_gsl_multifit_linear_workspace(@_);
bless $self, $pkg if defined($self);
}
sub DESTROY {
return unless $_[0]->isa('HASH');
my $self = tied(%{$_[0]});
return unless defined $self;
delete $ITERATORS{$self};
if (exists $OWNER{$self}) {
Math::GSL::Multilargec::delete_gsl_multifit_linear_workspace($self);
delete $OWNER{$self};
}
}
sub DISOWN {
my $self = shift;
my $ptr = tied(%$self);
delete $OWNER{$ptr};
}
sub ACQUIRE {
my $self = shift;
my $ptr = tied(%$self);
$OWNER{$ptr} = 1;
}
############# Class : Math::GSL::Multilarge::gsl_multifit_robust_type ##############
package Math::GSL::Multilarge::gsl_multifit_robust_type;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::Multilarge );
%OWNER = ();
%ITERATORS = ();
*swig_name_get = *Math::GSL::Multilargec::gsl_multifit_robust_type_name_get;
*swig_name_set = *Math::GSL::Multilargec::gsl_multifit_robust_type_name_set;
*swig_wfun_get = *Math::GSL::Multilargec::gsl_multifit_robust_type_wfun_get;
*swig_wfun_set = *Math::GSL::Multilargec::gsl_multifit_robust_type_wfun_set;
*swig_psi_deriv_get = *Math::GSL::Multilargec::gsl_multifit_robust_type_psi_deriv_get;
*swig_psi_deriv_set = *Math::GSL::Multilargec::gsl_multifit_robust_type_psi_deriv_set;
*swig_tuning_default_get = *Math::GSL::Multilargec::gsl_multifit_robust_type_tuning_default_get;
*swig_tuning_default_set = *Math::GSL::Multilargec::gsl_multifit_robust_type_tuning_default_set;
sub new {
my $pkg = shift;
my $self = Math::GSL::Multilargec::new_gsl_multifit_robust_type(@_);
bless $self, $pkg if defined($self);
}
sub DESTROY {
return unless $_[0]->isa('HASH');
my $self = tied(%{$_[0]});
return unless defined $self;
delete $ITERATORS{$self};
if (exists $OWNER{$self}) {
Math::GSL::Multilargec::delete_gsl_multifit_robust_type($self);
delete $OWNER{$self};
}
}
sub DISOWN {
my $self = shift;
my $ptr = tied(%$self);
delete $OWNER{$ptr};
}
sub ACQUIRE {
my $self = shift;
my $ptr = tied(%$self);
$OWNER{$ptr} = 1;
}
############# Class : Math::GSL::Multilarge::gsl_multifit_robust_stats ##############
package Math::GSL::Multilarge::gsl_multifit_robust_stats;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::Multilarge );
%OWNER = ();
%ITERATORS = ();
*swig_sigma_ols_get = *Math::GSL::Multilargec::gsl_multifit_robust_stats_sigma_ols_get;
*swig_sigma_ols_set = *Math::GSL::Multilargec::gsl_multifit_robust_stats_sigma_ols_set;
*swig_sigma_mad_get = *Math::GSL::Multilargec::gsl_multifit_robust_stats_sigma_mad_get;
*swig_sigma_mad_set = *Math::GSL::Multilargec::gsl_multifit_robust_stats_sigma_mad_set;
*swig_sigma_rob_get = *Math::GSL::Multilargec::gsl_multifit_robust_stats_sigma_rob_get;
*swig_sigma_rob_set = *Math::GSL::Multilargec::gsl_multifit_robust_stats_sigma_rob_set;
*swig_sigma_get = *Math::GSL::Multilargec::gsl_multifit_robust_stats_sigma_get;
*swig_sigma_set = *Math::GSL::Multilargec::gsl_multifit_robust_stats_sigma_set;
*swig_Rsq_get = *Math::GSL::Multilargec::gsl_multifit_robust_stats_Rsq_get;
*swig_Rsq_set = *Math::GSL::Multilargec::gsl_multifit_robust_stats_Rsq_set;
*swig_adj_Rsq_get = *Math::GSL::Multilargec::gsl_multifit_robust_stats_adj_Rsq_get;
*swig_adj_Rsq_set = *Math::GSL::Multilargec::gsl_multifit_robust_stats_adj_Rsq_set;
*swig_rmse_get = *Math::GSL::Multilargec::gsl_multifit_robust_stats_rmse_get;
*swig_rmse_set = *Math::GSL::Multilargec::gsl_multifit_robust_stats_rmse_set;
*swig_sse_get = *Math::GSL::Multilargec::gsl_multifit_robust_stats_sse_get;
*swig_sse_set = *Math::GSL::Multilargec::gsl_multifit_robust_stats_sse_set;
*swig_dof_get = *Math::GSL::Multilargec::gsl_multifit_robust_stats_dof_get;
*swig_dof_set = *Math::GSL::Multilargec::gsl_multifit_robust_stats_dof_set;
*swig_numit_get = *Math::GSL::Multilargec::gsl_multifit_robust_stats_numit_get;
*swig_numit_set = *Math::GSL::Multilargec::gsl_multifit_robust_stats_numit_set;
*swig_weights_get = *Math::GSL::Multilargec::gsl_multifit_robust_stats_weights_get;
*swig_weights_set = *Math::GSL::Multilargec::gsl_multifit_robust_stats_weights_set;
*swig_r_get = *Math::GSL::Multilargec::gsl_multifit_robust_stats_r_get;
*swig_r_set = *Math::GSL::Multilargec::gsl_multifit_robust_stats_r_set;
sub new {
my $pkg = shift;
my $self = Math::GSL::Multilargec::new_gsl_multifit_robust_stats(@_);
bless $self, $pkg if defined($self);
}
sub DESTROY {
return unless $_[0]->isa('HASH');
my $self = tied(%{$_[0]});
return unless defined $self;
delete $ITERATORS{$self};
if (exists $OWNER{$self}) {
Math::GSL::Multilargec::delete_gsl_multifit_robust_stats($self);
delete $OWNER{$self};
}
}
sub DISOWN {
my $self = shift;
my $ptr = tied(%$self);
delete $OWNER{$ptr};
}
sub ACQUIRE {
my $self = shift;
my $ptr = tied(%$self);
$OWNER{$ptr} = 1;
}
############# Class : Math::GSL::Multilarge::gsl_multifit_robust_workspace ##############
package Math::GSL::Multilarge::gsl_multifit_robust_workspace;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::Multilarge );
%OWNER = ();
%ITERATORS = ();
*swig_n_get = *Math::GSL::Multilargec::gsl_multifit_robust_workspace_n_get;
*swig_n_set = *Math::GSL::Multilargec::gsl_multifit_robust_workspace_n_set;
*swig_p_get = *Math::GSL::Multilargec::gsl_multifit_robust_workspace_p_get;
*swig_p_set = *Math::GSL::Multilargec::gsl_multifit_robust_workspace_p_set;
*swig_numit_get = *Math::GSL::Multilargec::gsl_multifit_robust_workspace_numit_get;
*swig_numit_set = *Math::GSL::Multilargec::gsl_multifit_robust_workspace_numit_set;
*swig_maxiter_get = *Math::GSL::Multilargec::gsl_multifit_robust_workspace_maxiter_get;
*swig_maxiter_set = *Math::GSL::Multilargec::gsl_multifit_robust_workspace_maxiter_set;
*swig_type_get = *Math::GSL::Multilargec::gsl_multifit_robust_workspace_type_get;
*swig_type_set = *Math::GSL::Multilargec::gsl_multifit_robust_workspace_type_set;
*swig_tune_get = *Math::GSL::Multilargec::gsl_multifit_robust_workspace_tune_get;
*swig_tune_set = *Math::GSL::Multilargec::gsl_multifit_robust_workspace_tune_set;
*swig_r_get = *Math::GSL::Multilargec::gsl_multifit_robust_workspace_r_get;
*swig_r_set = *Math::GSL::Multilargec::gsl_multifit_robust_workspace_r_set;
*swig_weights_get = *Math::GSL::Multilargec::gsl_multifit_robust_workspace_weights_get;
*swig_weights_set = *Math::GSL::Multilargec::gsl_multifit_robust_workspace_weights_set;
*swig_c_prev_get = *Math::GSL::Multilargec::gsl_multifit_robust_workspace_c_prev_get;
*swig_c_prev_set = *Math::GSL::Multilargec::gsl_multifit_robust_workspace_c_prev_set;
*swig_resfac_get = *Math::GSL::Multilargec::gsl_multifit_robust_workspace_resfac_get;
*swig_resfac_set = *Math::GSL::Multilargec::gsl_multifit_robust_workspace_resfac_set;
*swig_psi_get = *Math::GSL::Multilargec::gsl_multifit_robust_workspace_psi_get;
*swig_psi_set = *Math::GSL::Multilargec::gsl_multifit_robust_workspace_psi_set;
*swig_dpsi_get = *Math::GSL::Multilargec::gsl_multifit_robust_workspace_dpsi_get;
*swig_dpsi_set = *Math::GSL::Multilargec::gsl_multifit_robust_workspace_dpsi_set;
*swig_QSI_get = *Math::GSL::Multilargec::gsl_multifit_robust_workspace_QSI_get;
*swig_QSI_set = *Math::GSL::Multilargec::gsl_multifit_robust_workspace_QSI_set;
*swig_D_get = *Math::GSL::Multilargec::gsl_multifit_robust_workspace_D_get;
*swig_D_set = *Math::GSL::Multilargec::gsl_multifit_robust_workspace_D_set;
*swig_workn_get = *Math::GSL::Multilargec::gsl_multifit_robust_workspace_workn_get;
*swig_workn_set = *Math::GSL::Multilargec::gsl_multifit_robust_workspace_workn_set;
*swig_stats_get = *Math::GSL::Multilargec::gsl_multifit_robust_workspace_stats_get;
*swig_stats_set = *Math::GSL::Multilargec::gsl_multifit_robust_workspace_stats_set;
*swig_multifit_p_get = *Math::GSL::Multilargec::gsl_multifit_robust_workspace_multifit_p_get;
*swig_multifit_p_set = *Math::GSL::Multilargec::gsl_multifit_robust_workspace_multifit_p_set;
sub new {
my $pkg = shift;
my $self = Math::GSL::Multilargec::new_gsl_multifit_robust_workspace(@_);
bless $self, $pkg if defined($self);
}
sub DESTROY {
return unless $_[0]->isa('HASH');
my $self = tied(%{$_[0]});
return unless defined $self;
delete $ITERATORS{$self};
if (exists $OWNER{$self}) {
Math::GSL::Multilargec::delete_gsl_multifit_robust_workspace($self);
delete $OWNER{$self};
}
}
sub DISOWN {
my $self = shift;
my $ptr = tied(%$self);
delete $OWNER{$ptr};
}
sub ACQUIRE {
my $self = shift;
my $ptr = tied(%$self);
$OWNER{$ptr} = 1;
}
############# Class : Math::GSL::Multilarge::gsl_multilarge_linear_type ##############
package Math::GSL::Multilarge::gsl_multilarge_linear_type;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::Multilarge );
%OWNER = ();
%ITERATORS = ();
*swig_name_get = *Math::GSL::Multilargec::gsl_multilarge_linear_type_name_get;
*swig_name_set = *Math::GSL::Multilargec::gsl_multilarge_linear_type_name_set;
*swig_alloc_get = *Math::GSL::Multilargec::gsl_multilarge_linear_type_alloc_get;
*swig_alloc_set = *Math::GSL::Multilargec::gsl_multilarge_linear_type_alloc_set;
*swig_reset_get = *Math::GSL::Multilargec::gsl_multilarge_linear_type_reset_get;
*swig_reset_set = *Math::GSL::Multilargec::gsl_multilarge_linear_type_reset_set;
*swig_accumulate_get = *Math::GSL::Multilargec::gsl_multilarge_linear_type_accumulate_get;
*swig_accumulate_set = *Math::GSL::Multilargec::gsl_multilarge_linear_type_accumulate_set;
*swig_solve_get = *Math::GSL::Multilargec::gsl_multilarge_linear_type_solve_get;
*swig_solve_set = *Math::GSL::Multilargec::gsl_multilarge_linear_type_solve_set;
*swig_rcond_get = *Math::GSL::Multilargec::gsl_multilarge_linear_type_rcond_get;
*swig_rcond_set = *Math::GSL::Multilargec::gsl_multilarge_linear_type_rcond_set;
*swig_lcurve_get = *Math::GSL::Multilargec::gsl_multilarge_linear_type_lcurve_get;
*swig_lcurve_set = *Math::GSL::Multilargec::gsl_multilarge_linear_type_lcurve_set;
*swig_matrix_ptr_get = *Math::GSL::Multilargec::gsl_multilarge_linear_type_matrix_ptr_get;
*swig_matrix_ptr_set = *Math::GSL::Multilargec::gsl_multilarge_linear_type_matrix_ptr_set;
*swig_rhs_ptr_get = *Math::GSL::Multilargec::gsl_multilarge_linear_type_rhs_ptr_get;
*swig_rhs_ptr_set = *Math::GSL::Multilargec::gsl_multilarge_linear_type_rhs_ptr_set;
*swig_free_get = *Math::GSL::Multilargec::gsl_multilarge_linear_type_free_get;
*swig_free_set = *Math::GSL::Multilargec::gsl_multilarge_linear_type_free_set;
sub new {
my $pkg = shift;
my $self = Math::GSL::Multilargec::new_gsl_multilarge_linear_type(@_);
bless $self, $pkg if defined($self);
}
sub DESTROY {
return unless $_[0]->isa('HASH');
my $self = tied(%{$_[0]});
return unless defined $self;
delete $ITERATORS{$self};
if (exists $OWNER{$self}) {
Math::GSL::Multilargec::delete_gsl_multilarge_linear_type($self);
delete $OWNER{$self};
}
}
sub DISOWN {
my $self = shift;
my $ptr = tied(%$self);
delete $OWNER{$ptr};
}
sub ACQUIRE {
my $self = shift;
my $ptr = tied(%$self);
$OWNER{$ptr} = 1;
}
############# Class : Math::GSL::Multilarge::gsl_multilarge_linear_workspace ##############
package Math::GSL::Multilarge::gsl_multilarge_linear_workspace;
use vars qw(@ISA %OWNER %ITERATORS %BLESSEDMEMBERS);
@ISA = qw( Math::GSL::Multilarge );
%OWNER = ();
%ITERATORS = ();
*swig_type_get = *Math::GSL::Multilargec::gsl_multilarge_linear_workspace_type_get;
*swig_type_set = *Math::GSL::Multilargec::gsl_multilarge_linear_workspace_type_set;
*swig_state_get = *Math::GSL::Multilargec::gsl_multilarge_linear_workspace_state_get;
*swig_state_set = *Math::GSL::Multilargec::gsl_multilarge_linear_workspace_state_set;
*swig_p_get = *Math::GSL::Multilargec::gsl_multilarge_linear_workspace_p_get;
*swig_p_set = *Math::GSL::Multilargec::gsl_multilarge_linear_workspace_p_set;
sub new {
my $pkg = shift;
my $self = Math::GSL::Multilargec::new_gsl_multilarge_linear_workspace(@_);
bless $self, $pkg if defined($self);
}
sub DESTROY {
return unless $_[0]->isa('HASH');
my $self = tied(%{$_[0]});
return unless defined $self;
delete $ITERATORS{$self};
if (exists $OWNER{$self}) {
Math::GSL::Multilargec::delete_gsl_multilarge_linear_workspace($self);
delete $OWNER{$self};
}
}
sub DISOWN {
my $self = shift;
my $ptr = tied(%$self);
delete $OWNER{$ptr};
}
sub ACQUIRE {
my $self = shift;
my $ptr = tied(%$self);
$OWNER{$ptr} = 1;
}
# ------- VARIABLE STUBS --------
package Math::GSL::Multilarge;
*GSL_VERSION = *Math::GSL::Multilargec::GSL_VERSION;
*GSL_MAJOR_VERSION = *Math::GSL::Multilargec::GSL_MAJOR_VERSION;
*GSL_MINOR_VERSION = *Math::GSL::Multilargec::GSL_MINOR_VERSION;
*GSL_POSZERO = *Math::GSL::Multilargec::GSL_POSZERO;
*GSL_NEGZERO = *Math::GSL::Multilargec::GSL_NEGZERO;
*GSL_SUCCESS = *Math::GSL::Multilargec::GSL_SUCCESS;
*GSL_FAILURE = *Math::GSL::Multilargec::GSL_FAILURE;
*GSL_CONTINUE = *Math::GSL::Multilargec::GSL_CONTINUE;
*GSL_EDOM = *Math::GSL::Multilargec::GSL_EDOM;
*GSL_ERANGE = *Math::GSL::Multilargec::GSL_ERANGE;
*GSL_EFAULT = *Math::GSL::Multilargec::GSL_EFAULT;
*GSL_EINVAL = *Math::GSL::Multilargec::GSL_EINVAL;
*GSL_EFAILED = *Math::GSL::Multilargec::GSL_EFAILED;
*GSL_EFACTOR = *Math::GSL::Multilargec::GSL_EFACTOR;
*GSL_ESANITY = *Math::GSL::Multilargec::GSL_ESANITY;
*GSL_ENOMEM = *Math::GSL::Multilargec::GSL_ENOMEM;
*GSL_EBADFUNC = *Math::GSL::Multilargec::GSL_EBADFUNC;
*GSL_ERUNAWAY = *Math::GSL::Multilargec::GSL_ERUNAWAY;
*GSL_EMAXITER = *Math::GSL::Multilargec::GSL_EMAXITER;
*GSL_EZERODIV = *Math::GSL::Multilargec::GSL_EZERODIV;
*GSL_EBADTOL = *Math::GSL::Multilargec::GSL_EBADTOL;
*GSL_ETOL = *Math::GSL::Multilargec::GSL_ETOL;
*GSL_EUNDRFLW = *Math::GSL::Multilargec::GSL_EUNDRFLW;
*GSL_EOVRFLW = *Math::GSL::Multilargec::GSL_EOVRFLW;
*GSL_ELOSS = *Math::GSL::Multilargec::GSL_ELOSS;
*GSL_EROUND = *Math::GSL::Multilargec::GSL_EROUND;
*GSL_EBADLEN = *Math::GSL::Multilargec::GSL_EBADLEN;
*GSL_ENOTSQR = *Math::GSL::Multilargec::GSL_ENOTSQR;
*GSL_ESING = *Math::GSL::Multilargec::GSL_ESING;
*GSL_EDIVERGE = *Math::GSL::Multilargec::GSL_EDIVERGE;
*GSL_EUNSUP = *Math::GSL::Multilargec::GSL_EUNSUP;
*GSL_EUNIMPL = *Math::GSL::Multilargec::GSL_EUNIMPL;
*GSL_ECACHE = *Math::GSL::Multilargec::GSL_ECACHE;
*GSL_ETABLE = *Math::GSL::Multilargec::GSL_ETABLE;
*GSL_ENOPROG = *Math::GSL::Multilargec::GSL_ENOPROG;
*GSL_ENOPROGJ = *Math::GSL::Multilargec::GSL_ENOPROGJ;
*GSL_ETOLF = *Math::GSL::Multilargec::GSL_ETOLF;
*GSL_ETOLX = *Math::GSL::Multilargec::GSL_ETOLX;
*GSL_ETOLG = *Math::GSL::Multilargec::GSL_ETOLG;
*GSL_EOF = *Math::GSL::Multilargec::GSL_EOF;
*M_E = *Math::GSL::Multilargec::M_E;
*M_LOG2E = *Math::GSL::Multilargec::M_LOG2E;
*M_LOG10E = *Math::GSL::Multilargec::M_LOG10E;
*M_SQRT2 = *Math::GSL::Multilargec::M_SQRT2;
*M_SQRT1_2 = *Math::GSL::Multilargec::M_SQRT1_2;
*M_SQRT3 = *Math::GSL::Multilargec::M_SQRT3;
*M_PI = *Math::GSL::Multilargec::M_PI;
*M_PI_2 = *Math::GSL::Multilargec::M_PI_2;
*M_PI_4 = *Math::GSL::Multilargec::M_PI_4;
*M_SQRTPI = *Math::GSL::Multilargec::M_SQRTPI;
*M_2_SQRTPI = *Math::GSL::Multilargec::M_2_SQRTPI;
*M_1_PI = *Math::GSL::Multilargec::M_1_PI;
*M_2_PI = *Math::GSL::Multilargec::M_2_PI;
*M_LN10 = *Math::GSL::Multilargec::M_LN10;
*M_LN2 = *Math::GSL::Multilargec::M_LN2;
*M_LNPI = *Math::GSL::Multilargec::M_LNPI;
*M_EULER = *Math::GSL::Multilargec::M_EULER;
my %__gsl_multifit_robust_default_hash;
tie %__gsl_multifit_robust_default_hash,"Math::GSL::Multilarge::gsl_multifit_robust_type", $Math::GSL::Multilargec::gsl_multifit_robust_default;
$gsl_multifit_robust_default= \%__gsl_multifit_robust_default_hash;
bless $gsl_multifit_robust_default, Math::GSL::Multilarge::gsl_multifit_robust_type;
my %__gsl_multifit_robust_bisquare_hash;
tie %__gsl_multifit_robust_bisquare_hash,"Math::GSL::Multilarge::gsl_multifit_robust_type", $Math::GSL::Multilargec::gsl_multifit_robust_bisquare;
$gsl_multifit_robust_bisquare= \%__gsl_multifit_robust_bisquare_hash;
bless $gsl_multifit_robust_bisquare, Math::GSL::Multilarge::gsl_multifit_robust_type;
my %__gsl_multifit_robust_cauchy_hash;
tie %__gsl_multifit_robust_cauchy_hash,"Math::GSL::Multilarge::gsl_multifit_robust_type", $Math::GSL::Multilargec::gsl_multifit_robust_cauchy;
$gsl_multifit_robust_cauchy= \%__gsl_multifit_robust_cauchy_hash;
bless $gsl_multifit_robust_cauchy, Math::GSL::Multilarge::gsl_multifit_robust_type;
my %__gsl_multifit_robust_fair_hash;
tie %__gsl_multifit_robust_fair_hash,"Math::GSL::Multilarge::gsl_multifit_robust_type", $Math::GSL::Multilargec::gsl_multifit_robust_fair;
$gsl_multifit_robust_fair= \%__gsl_multifit_robust_fair_hash;
bless $gsl_multifit_robust_fair, Math::GSL::Multilarge::gsl_multifit_robust_type;
my %__gsl_multifit_robust_huber_hash;
tie %__gsl_multifit_robust_huber_hash,"Math::GSL::Multilarge::gsl_multifit_robust_type", $Math::GSL::Multilargec::gsl_multifit_robust_huber;
$gsl_multifit_robust_huber= \%__gsl_multifit_robust_huber_hash;
bless $gsl_multifit_robust_huber, Math::GSL::Multilarge::gsl_multifit_robust_type;
my %__gsl_multifit_robust_ols_hash;
tie %__gsl_multifit_robust_ols_hash,"Math::GSL::Multilarge::gsl_multifit_robust_type", $Math::GSL::Multilargec::gsl_multifit_robust_ols;
$gsl_multifit_robust_ols= \%__gsl_multifit_robust_ols_hash;
bless $gsl_multifit_robust_ols, Math::GSL::Multilarge::gsl_multifit_robust_type;
my %__gsl_multifit_robust_welsch_hash;
tie %__gsl_multifit_robust_welsch_hash,"Math::GSL::Multilarge::gsl_multifit_robust_type", $Math::GSL::Multilargec::gsl_multifit_robust_welsch;
$gsl_multifit_robust_welsch= \%__gsl_multifit_robust_welsch_hash;
bless $gsl_multifit_robust_welsch, Math::GSL::Multilarge::gsl_multifit_robust_type;
my %__gsl_multilarge_linear_normal_hash;
tie %__gsl_multilarge_linear_normal_hash,"Math::GSL::Multilarge::gsl_multilarge_linear_type", $Math::GSL::Multilargec::gsl_multilarge_linear_normal;
$gsl_multilarge_linear_normal= \%__gsl_multilarge_linear_normal_hash;
bless $gsl_multilarge_linear_normal, Math::GSL::Multilarge::gsl_multilarge_linear_type;
my %__gsl_multilarge_linear_tsqr_hash;
tie %__gsl_multilarge_linear_tsqr_hash,"Math::GSL::Multilarge::gsl_multilarge_linear_type", $Math::GSL::Multilargec::gsl_multilarge_linear_tsqr;
$gsl_multilarge_linear_tsqr= \%__gsl_multilarge_linear_tsqr_hash;
bless $gsl_multilarge_linear_tsqr, Math::GSL::Multilarge::gsl_multilarge_linear_type;
@EXPORT_OK = qw/
gsl_multifit_linear_alloc
gsl_multifit_linear_free
gsl_multifit_linear
gsl_multifit_linear_svd
gsl_multifit_wlinear
gsl_multifit_wlinear_svd
gsl_multifit_linear_est
gsl_multifit_linear_residuals
gsl_multifit_gradient
gsl_multifit_covar
gsl_multifit_fsolver_alloc
gsl_multifit_fsolver_free
gsl_multifit_fsolver_set
gsl_multifit_fsolver_iterate
gsl_multifit_fsolver_name
gsl_multifit_fsolver_position
gsl_multifit_fdfsolver_alloc
gsl_multifit_fdfsolver_set
gsl_multifit_fdfsolver_iterate
gsl_multifit_fdfsolver_free
gsl_multifit_fdfsolver_name
gsl_multifit_fdfsolver_position
gsl_multifit_test_delta
gsl_multifit_test_gradient
$gsl_multifit_fdfsolver_lmder
$gsl_multifit_fdfsolver_lmsder;
/;
%EXPORT_TAGS = ( all => [ @EXPORT_OK ] );
__END__
=encoding utf8
=head1 NAME
Math::GSL::Multifit - Least-squares functions for a general linear model with multiple parameters
=head1 SYNOPSIS
use Math::GSL::Multifit qw /:all/;
=head1 DESCRIPTION
NOTE: This module requires GSL 2.1 or higher.
The functions in this module perform least-squares fits to a general linear model, y = X c where y is a vector of n observations, X is an n by p matrix of predictor variables, and the elements of the vector c are the p unknown best-fit parameters which are to be estimated.
Here is a list of all the functions in this module :
=over
=item C<gsl_multifit_linear_alloc($n, $p)> - This function allocates a workspace for fitting a model to $n observations using $p parameters.
=item C<gsl_multifit_linear_free($work)> - This function frees the memory associated with the workspace w.
=item C<gsl_multifit_linear($X, $y, $c, $cov, $work)> - This function computes the best-fit parameters vector $c of the model y = X c for the observations vector $y and the matrix of predictor variables $X. The variance-covariance matrix of the model parameters vector $cov is estimated from the scatter of the observations about the best-fit. The sum of squares of the residuals from the best-fit, \chi^2, is returned after 0 if the operation succeeded, 1 otherwise. If the coefficient of determination is desired, it can be computed from the expression R^2 = 1 - \chi^2 / TSS, where the total sum of squares (TSS) of the observations y may be computed from gsl_stats_tss. The best-fit is found by singular value decomposition of the matrix $X using the preallocated workspace provided in $work. The modified Golub-Reinsch SVD algorithm is used, with column scaling to improve the accuracy of the singular values. Any components which have zero singular value (to machine precision) are discarded from the fit.
=item C<gsl_multifit_linear_svd($X, $y, $tol, $c, $cov, $work)> - This function computes the best-fit parameters c of the model y = X c for the observations vector $y and the matrix of predictor variables $X. The variance-covariance matrix of the model parameters vector $cov is estimated from the scatter of the observations about the best-fit. The sum of squares of the residuals from the best-fit, \chi^2, is returned after 0 if the operation succeeded, 1 otherwise. If the coefficient of determination is desired, it can be computed from the expression R^2 = 1 - \chi^2 / TSS, where the total sum of squares (TSS) of the observations y may be computed from gsl_stats_tss. In this second form of the function the components are discarded if the ratio of singular values s_i/s_0 falls below the user-specified tolerance $tol, and the effective rank is returned after the sum of squares of the residuals from the best-fit.
=item C<gsl_multifit_wlinear($X, $w, $y, $c, $cov, $work> - This function computes the best-fit parameters vector $c of the weighted model y = X c for the observations y with weights $w and the matrix of predictor variables $X. The covariance matrix of the model parameters $cov is computed with the given weights. The weighted sum of squares of the residuals from the best-fit, \chi^2, is returned after 0 if the operation succeeded, 1 otherwise. If the coefficient of determination is desired, it can be computed from the expression R^2 = 1 - \chi^2 / WTSS, where the weighted total sum of squares (WTSS) of the observations y may be computed from gsl_stats_wtss. The best-fit is found by singular value decomposition of the matrix $X using the preallocated workspace provided in $work. Any components which have zero singular value (to machine precision) are discarded from the fit.
=item C<gsl_multifit_wlinear_svd($X, $w, $y, $tol, $rank, $c, $cov, $work) > This function computes the best-fit parameters vector $c of the weighted model y = X c for the observations y with weights $w and the matrix of predictor variables $X. The covariance matrix of the model parameters $cov is computed with the given weights. The weighted sum of squares of the residuals from the best-fit, \chi^2, is returned after 0 if the operation succeeded, 1 otherwise. If the coefficient of determination is desired, it can be computed from the expression R^2 = 1 - \chi^2 / WTSS, where the weighted total sum of squares (WTSS) of the observations y may be computed from gsl_stats_wtss. The best-fit is found by singular value decomposition of the matrix $X using the preallocated workspace provided in $work. In this second form of the function the components are discarded if the ratio of singular values s_i/s_0 falls below the user-specified tolerance $tol, and the effective rank is returned after the sum of squares of the residuals from the best-fit..
=item C<gsl_multifit_linear_est($x, $c, $cov)> - This function uses the best-fit multilinear regression coefficients vector $c and their covariance matrix $cov to compute the fitted function value $y and its standard deviation $y_err for the model y = x.c at the point $x, in the form of a vector. The functions returns 3 values in this order : 0 if the operation succeeded, 1 otherwise, the fittes function value and its standard deviation.
=item C<gsl_multifit_linear_residuals($X, $y, $c, $r)> - This function computes the vector of residuals r = y - X c for the observations vector $y, coefficients vector $c and matrix of predictor variables $X. $r is also a vector.
=item C<gsl_multifit_gradient($J, $f, $g)> - This function computes the gradient $g of \Phi(x) = (1/2) ||F(x)||^2 from the Jacobian matrix $J and the function values $f, using the formula $g = $J^T $f. $g and $f are vectors.
=item C<gsl_multifit_test_gradient($g, $epsabas)> - This function tests the residual gradient vector $g against the absolute error bound $epsabs. Mathematically, the gradient should be exactly zero at the minimum. The test returns $GSL_SUCCESS if the following condition is achieved, \sum_i |g_i| < $epsabs and returns $GSL_CONTINUE otherwise. This criterion is suitable for situations where the precise location of the minimum, x, is unimportant provided a value can be found where the gradient is small enough.
=item C<gsl_multifit_test_delta($dx, $x, $epsabs, $epsrel)> - This function tests for the convergence of the sequence by comparing the last step vector $dx with the absolute error $epsabs and relative error $epsrel to the current position x. The test returns $GSL_SUCCESS if the following condition is achieved, |dx_i| < epsabs + epsrel |x_i| for each component of x and returns $GSL_CONTINUE otherwise.
=back
The following functions are not yet implemented. Patches Welcome!
=over
=item C<gsl_multifit_covar >
=item C<gsl_multifit_fsolver_alloc($T, $n, $p)>
=item C<gsl_multifit_fsolver_free >
=item C<gsl_multifit_fsolver_set >
=item C<gsl_multifit_fsolver_iterate >
=item C<gsl_multifit_fsolver_name >
=item C<gsl_multifit_fsolver_position >
=item C<gsl_multifit_fdfsolver_alloc >
=item C<gsl_multifit_fdfsolver_set >
=item C<gsl_multifit_fdfsolver_iterate >
=item C<gsl_multifit_fdfsolver_free >
=item C<gsl_multifit_fdfsolver_name >
=item C<gsl_multifit_fdfsolver_position >
=back
For more information on the functions, we refer you to the GSL official
documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
=head1 EXAMPLES
=head1 AUTHORS
Jonathan "Duke" Leto <jonathan@leto.net> and Thierry Moisan <thierry.moisan@gmail.com>
=head1 COPYRIGHT AND LICENSE
Copyright (C) 2008-2024 Jonathan "Duke" Leto and Thierry Moisan
This program is free software; you can redistribute it and/or modify it
under the same terms as Perl itself.
=cut
1;
|