File: MatrixReal.pm

package info (click to toggle)
libmath-matrixreal-perl 2.13-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 1,120 kB
  • sloc: perl: 2,837; makefile: 8
file content (5624 lines) | stat: -rw-r--r-- 164,528 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
#  Copyright (c) 1996, 1997 by Steffen Beyer. All rights reserved.
#  Copyright (c) 1999 by Rodolphe Ortalo. All rights reserved.
#  Copyright (c) 2001-2016 by Jonathan Leto. All rights reserved.
#  This package is free software; you can redistribute it and/or
#  modify it under the same terms as Perl itself.

package Math::MatrixReal;

use strict;
use warnings;
use Carp;
use Data::Dumper;
use Scalar::Util qw/reftype/;
use vars qw(@ISA @EXPORT @EXPORT_OK %EXPORT_TAGS $VERSION);
require Exporter;

@ISA = qw(Exporter);
@EXPORT = qw();
@EXPORT_OK = qw(min max);
%EXPORT_TAGS = (all => [@EXPORT_OK]);
$VERSION = '2.13';

use overload
     '.'   => '_concat',
     'neg' => '_negate',
       '~' => '_transpose',
    'bool' => '_boolean',
       '!' => '_not_boolean',
     'abs' => '_norm',
       '+' => '_add',
       '-' => '_subtract',
       '*' => '_multiply',
       '/' => '_divide',
      '**' => '_exponent',
      '+=' => '_assign_add',
      '-=' => '_assign_subtract',
      '*=' => '_assign_multiply',
     '**=' => '_assign_exponent',
      '==' => '_equal',
      '!=' => '_not_equal',
       '<' => '_less_than',
      '<=' => '_less_than_or_equal',
       '>' => '_greater_than',
      '>=' => '_greater_than_or_equal',
      'eq' => '_equal',
      'ne' => '_not_equal',
      'lt' => '_less_than',
      'le' => '_less_than_or_equal',
      'gt' => '_greater_than',
      'ge' => '_greater_than_or_equal',
       '=' => '_clone',
      '""' => '_stringify',
'fallback' =>   undef;

=head1 NAME

Math::MatrixReal - Matrix of Reals

Implements the data type "matrix of real numbers" (and consequently also
"vector of real numbers").

=head1 SYNOPSIS

my $a = Math::MatrixReal->new_random(5, 5);

my $b = $a->new_random(10, 30, { symmetric=>1, bounded_by=>[-1,1] });

my $c = $b * $a ** 3;

my $d = $b->new_from_rows( [ [ 5, 3 ,4], [3, 4, 5], [ 2, 4, 1 ] ] );

print $a;

my $row        = ($a * $b)->row(3);

my $col        = (5*$c)->col(2);

my $transpose  = ~$c;

my $transpose  = $c->transpose;

my $inverse    = $a->inverse; 

my $inverse    = 1/$a;

my $inverse    = $a ** -1;

my $determinant= $a->det;

=cut

sub new
{
    croak "Usage: \$new_matrix = Math::MatrixReal->new(\$rows,\$columns);" if (@_ != 3);

    my ($self,$rows,$cols) =  @_;
    my $class = ref($self) || $self || 'Math::MatrixReal';

    croak "Math::MatrixReal::new(): number of rows must be integer > 0"
      unless ($rows > 0 and $rows == int($rows) );

    croak "Math::MatrixReal::new(): number of columns must be integer > 0"
      unless ($cols > 0 and $cols == int($cols) );

    my $this = [ [ ], $rows, $cols ];

    # Create the first empty row and pre-lengthen 
    my $empty = [ ];
    $#$empty = $cols - 1;          

    map { $empty->[$_] = 0.0 } ( 0 .. $cols-1 );

    # Create a row at a time
    map { $this->[0][$_] = [ @$empty ] } ( 0 .. $rows-1);

    bless $this, $class;
}

sub new_diag {
    croak "Usage: \$new_matrix = Math::MatrixReal->new_diag( [ 1, 2, 3] );" unless (@_ == 2 );
    my ($self,$diag) = @_;
    my $n = scalar @$diag;

    croak "Math::MatrixReal::new_diag(): Third argument must be an arrayref" unless (ref($diag) eq "ARRAY");

    my $matrix = Math::MatrixReal->new($n,$n);

    map { $matrix->[0][$_][$_] = shift @$diag } ( 0 .. $n-1);
    return $matrix;
}
sub new_tridiag {
    croak "Usage: \$new_matrix = Math::MatrixReal->new_tridiag( [ 1, 2, 3], [ 4, 5, 6, 7], [-1,-2,-3] );" unless (@_ == 4 );
    my ($self,$lower,$diag,$upper) = @_;
    my $matrix;
    my ($l,$n,$m) =   (scalar(@$lower),scalar(@$diag),scalar(@$upper)); 
    my ($k,$p)=(-1,-1);

    croak "Math::MatrixReal::new_tridiag(): Arguments must be arrayrefs" unless 
	ref $diag eq 'ARRAY' && ref $lower eq 'ARRAY' && ref $upper eq 'ARRAY';
    croak "Math::MatrixReal::new_tridiag(): new_tridiag(\$lower,\$diag,\$upper) diagonal dimensions incompatible" unless 
	($l == $m && $n == ($l+1));

    $matrix = Math::MatrixReal->new_diag($diag);
    $matrix = $matrix->each( 
		sub { 
		    my ($e,$i,$j) = @_;
		    if    (($i-$j) == -1) { $k++; return $upper->[$k];} 
		    elsif (    $i  == $j) {       return $e;          }
		    elsif (($i-$j) ==  1) { $p++; return $lower->[$p];}
		} 
		);
    return $matrix;
}

sub new_random { 
    croak "Usage: \$new_matrix = Math::MatrixReal->new_random(\$n,\$m, { symmetric => 1, bounded_by => [-5,5], integer => 1 } );" 
        if (@_ < 2);
    my ($self, $rows, $cols, $options ) = @_;
    (($options = $cols) and ($cols = $rows)) if ref $cols eq 'HASH';
    my ($min,$max) = defined $options->{bounded_by} ?  @{ $options->{bounded_by} } : ( 0, 10);
    my $integer = $options->{integer}; 
    $self = ref($self) || $self || 'Math::MatrixReal';
   
    $cols ||= $rows; 
    croak "Math::MatrixReal::new_random(): number of rows must = number of cols for symmetric option" 
        if ($rows != $cols and $options->{symmetric} );

    croak "Math::MatrixReal::new_random(): number of rows must be integer > 0" 
        unless ($rows > 0 and  $rows == int($rows) ) && ($cols > 0 and $cols == int($cols) ) ;

    croak "Math::MatrixReal::new_random(): bounded_by interval length must be > 0" 
        unless (defined $min && defined $max && $min < $max );

    croak "Math::MatrixReal::new_random(): tridiag option only for square matrices"   
        if (($options->{tridiag} || $options->{tridiagonal}) && $rows != $cols);

    croak "Math::MatrixReal::new_random(): diagonal option only for square matrices " 
        if (($options->{diag} || $options->{diagonal}) && ($rows != $cols));

    my $matrix = Math::MatrixReal->new($rows,$cols);
    my $random_code = sub { $integer ? int($min + rand($max-$min)) : $min + rand($max-$min) } ;

    $matrix = $options->{diag} || $options->{diagonal} ? $matrix->each_diag($random_code) :  $matrix->each($random_code); 
    $matrix = $matrix->each( sub {my($e,$i,$j)=@_; ( abs($i-$j)>1 ) ?  0 : $e } ) if ($options->{tridiag} || $options->{tridiagonal} );
    $options->{symmetric} ? 0.5*($matrix + ~$matrix) : $matrix;
}
	
sub new_from_string#{{{
{#{{{
    croak "Usage: \$new_matrix = Math::MatrixReal->new_from_string(\$string);"
      if (@_ != 2);

    my ($self,$string)  = @_;
    my $class  = ref($self) || $self || 'Math::MatrixReal';
    my ($line,$values);
    my ($rows,$cols);
    my ($row,$col);
    my ($warn,$this);

    $warn = $rows = $cols = 0;

    $values = [ ]; 
	while ($string =~ m!^\s* \[ \s+ ( (?: [+-]? \d+ (?: \. \d*)? (?: E [+-]? \d+ )? \s+ )+ ) \] \s*? \n !ix) { 
			$line = $1; $string = $';
			$values->[$rows] = [ ]; @{$values->[$rows]} = split(' ', $line);
			$col = @{$values->[$rows]};
	 		if ($col != $cols) { 
				unless ($cols == 0) { $warn = 1; } 
				if ($col > $cols) { $cols = $col; } 
			} 
			$rows++; 
	} 
	if ($string !~ m/^\s*$/) {
        chomp $string;
        my $error_msg = "Math::MatrixReal::new_from_string(): syntax error in input string: $string";
        croak $error_msg;
    }
		if ($rows == 0) { croak "Math::MatrixReal::new_from_string(): empty input string"; } 
		if ($warn) { warn "Math::MatrixReal::new_from_string(): missing elements will be set to zero!\n"; } 
		$this = Math::MatrixReal::new($class,$rows,$cols); 
		for ( $row = 0; $row < $rows; $row++ ) { 
			for ( $col = 0; $col < @{$values->[$row]}; $col++ ) {
			$this->[0][$row][$col] = $values->[$row][$col]; 
			}
		} 
		return $this; 
}#}}}#}}}

# from Math::MatrixReal::Ext1 (msouth@fulcrum.org)
sub new_from_cols { 
    my $self = shift;
    my $extra_args = ( @_ > 1 && ref($_[-1]) eq 'HASH' ) ? pop : {};
    $extra_args->{_type} = 'column';
    $self->_new_from_rows_or_cols(@_, $extra_args );
}
# from Math::MatrixReal::Ext1 (msouth@fulcrum.org)
sub new_from_columns {
    my $self = shift;
    $self->new_from_cols(@_);
}
# from Math::MatrixReal::Ext1 (msouth@fulcrum.org)
sub new_from_rows {
    my $self = shift;
    my $extra_args = ( @_ > 1 && ref($_[-1]) eq 'HASH' ) ? pop : {};
    $extra_args->{_type} = 'row';

    $self->_new_from_rows_or_cols(@_, $extra_args );
}

sub reshape {
    my ($self, $rows, $cols, $values) = @_;

    my @cols = ();
    my $p = 0;
    for my $c (1..$cols) {
        push @cols, [@{$values}[$p .. $p + $rows - 1]];
        $p += $rows;
    }

    return $self->new_from_cols( \@cols );
}

# from Math::MatrixReal::Ext1 (msouth@fulcrum.org)
sub _new_from_rows_or_cols {
    my $proto = shift;
    my $class = ref($proto) || $proto;
    my $ref_to_vectors = shift;

    # these additional args are internal at the moment,  but in the future the user could pass e.g. {pad=>1} to
    # request padding
    my $args = pop;
    my $vector_type = $args->{_type};
    die "Internal ".__PACKAGE__." error" unless $vector_type =~ /^(row|column)$/;

    # step back one frame because this private method is  not how the user called it
    my $caller_subname = (caller(1))[3];

    croak "$caller_subname: need a reference to an array of ${vector_type}s" unless reftype($ref_to_vectors) eq 'ARRAY';

    my @vectors = @{$ref_to_vectors};
    my $matrix;
    my $other_type = {row=>'column', column=>'row'}->{$vector_type};
    my %matrix_dim = (
        $vector_type => scalar( @vectors ), 
        $other_type  => 0,  # we will correct this in a bit
    );

    # row and column indices are one based
    my $current_vector_count = 1; 
    foreach my $current_vector (@vectors) {
        # dimension is one-based, so we're
        # starting with one here and incrementing
        # as we go.  The other dimension is fixed (for now, until
        # we add the 'pad' option), and gets set later
        my $ref = ref( $current_vector ) ;

        if ( $ref eq '' ) {
            # we hope this is a properly formatted Math::MatrixReal string,
            # but if not we just let the Math::MatrixReal die() do it's
            # thing
            $current_vector = $class->new_from_string( $current_vector );
        } elsif ( $ref eq 'ARRAY' ) {
            my @array = @$current_vector;
            croak "$caller_subname: one $vector_type you gave me was a ref to an array with no elements" unless @array;
            # we need to create the right kind of string based on whether
            # they said they were sending us rows or columns:
            if ($vector_type eq 'row') {
                $current_vector = $class->new_from_string( '[ '. join( " ", @array) ." ]\n" );
            } else {
                $current_vector = $class->new_from_string( '[ '. join( " ]\n[ ", @array) ." ]\n" );
            }
        } elsif ( $ref ne 'HASH' and 
                ( $current_vector->isa('Math::MatrixReal') || 
                  $current_vector->isa('Math::MatrixComplex')
                ) ) {
            # it's already a Math::MatrixReal something.
            # we don't need to do anything, it will all
            # work out
        } else {
            # we have no idea, error time!
            croak "$caller_subname: I only know how to deal with array refs, strings, and things that inherit from Math::MatrixReal\n";
        }

        # starting now we know $current_vector isa Math::MatrixReal thingy
        my @vector_dims = $current_vector->dim;

        #die unless the appropriate dimension is 1
        croak "$caller_subname: I don't accept $other_type vectors" unless ($vector_dims[ $vector_type eq 'row' ? 0 : 1 ] == 1) ;

        # the other dimension is the length of our vector
        my $length =  $vector_dims[ $vector_type eq 'row' ? 1 : 0 ];

        # set the "other" dimension to the length of this
        # vector the first time through
        $matrix_dim{$other_type} ||= $length;

        # die unless length of this vector matches the first length
        croak "$caller_subname: one $vector_type has [$length] elements and another one had [$matrix_dim{$other_type}]--all of the ${vector_type}s passed in must have the same dimension"
              unless ($length == $matrix_dim{$other_type}) ;

        # create the matrix the first time through
        $matrix ||= $class->new($matrix_dim{row}, $matrix_dim{column});

        # step along the vector assigning the value of each element
        # to the correct place in the matrix we're building
        foreach my $element_index ( 1..$length ){
            # args for vector assignment:
            # initialize both to one and reset the correct
            # one below
            my ($v_r, $v_c) = (1,1);

            # args for matrix assignment
            my ($row_index, $column_index, $value);

            if ($vector_type eq 'row') {
                $row_index           = $current_vector_count;
                $v_c = $column_index = $element_index;
            } else {
                $v_r = $row_index    = $element_index;
                $column_index        = $current_vector_count;
            }
            $value = $current_vector->element($v_r, $v_c);
            $matrix->assign($row_index, $column_index, $value);
        }
        $current_vector_count ++ ;
    }
    return $matrix;
}

sub shadow
{
    croak "Usage: \$new_matrix = \$some_matrix->shadow();" if (@_ != 1);

    my ($matrix) = @_;

    return $matrix->new($matrix->[1],$matrix->[2]);
}

=over 4

=item * $matrix->display_precision($integer)

Sets the default precision when matrices are printed or stringified.
$matrix->display_precision(0) will only show the integer part of all the
entries of $matrix and $matrix->display_precision() will return to the default
scientific display notation. This method does not effect the precision of the
calculations.

=back

=cut 

sub display_precision 
{
    my ($self,$n) = @_;
    if (defined $n) { 
        croak "Usage: \$matrix->display_precision(\$nonnegative_integer);" if ($n < 0);
        $self->[4] = int $n;
    } else {
        $self->[4] = undef;
    }
}

sub copy
{
    croak "Usage: \$matrix1->copy(\$matrix2);"
      if (@_ != 2);

    my ($matrix1,$matrix2) = @_;
    my ($rows1,$cols1) = ($matrix1->[1],$matrix1->[2]);
    my ($rows2,$cols2) = ($matrix2->[1],$matrix2->[2]);
    my ($i,$j);

    croak "Math::MatrixReal::copy(): matrix size mismatch" unless $rows1 == $rows2 && $cols1 == $cols2;

    for ( $i = 0; $i < $rows1; $i++ )
    {
        my $r1            = []; 
        my $r2            = $matrix2->[0][$i];
        @$r1              = @$r2;              # Copy whole array directly
        $matrix1->[0][$i] = $r1;
    }
    if (defined $matrix2->[3]) # is an LR decomposition matrix!
    {
        $matrix1->[3] = $matrix2->[3]; # $sign
        $matrix1->[4] = $matrix2->[4]; # $perm_row
        $matrix1->[5] = $matrix2->[5]; # $perm_col
    }
}

sub clone
{
    croak "Usage: \$twin_matrix = \$some_matrix->clone();" if (@_ != 1);

    my($matrix) = @_;
    my($temp);

    $temp = $matrix->new($matrix->[1],$matrix->[2]);
    $temp->copy($matrix);
    return $temp;
}

## trace() : return the sum of the diagonal elements
sub trace {
    croak "Usage: \$trace = \$matrix->trace();" if (@_ != 1);

    my $matrix = shift;
    my($rows,$cols) = ($matrix->[1],$matrix->[2]);
    my $trace = 0;

    croak "Math::MatrixReal::trace(): matrix is not quadratic" unless ($rows == $cols);

    map { $trace += $matrix->[0][$_][$_] } (0 .. $cols-1);

    return $trace;
}
sub submatrix {
    my $self = shift;
    my ($x1, $y1, $x2, $y2) = @_;
    croak "Math::MatrixReal::submatrix(): indices must be positive integers"
        unless ($x1 >= 1 && $x2 >= 1 && $y1 >=1 && $y2 >=1 );
    my($rows,$cols) = ($self->[1],$self->[2]);
    my($sr,$sc)     = ( 1+abs($x1-$x2), 1+abs($y1-$y2) );
    my $submatrix = $self->new( $sr, $sc );

    for (my $i = $x1-1; $i < $x2; $i++ ) {
        for (my $j = $y1-1; $j < $y2; $j++ ) {
            $submatrix->[0][$i-($x1-1)][$j-($y1-1)] = $self->[0][$i][$j];
        }
    }
    return $submatrix;
}
## return the minor corresponding to $r and $c
## eliminate row $r and col $c , and return the $r-1 by $c-1 matrix
sub minor {
    croak "Usage: \$minor = \$matrix->minor(\$r,\$c);" unless (@_ == 3);
    my ($matrix,$r,$c) = @_;
    my ($rows,$cols) = $matrix->dim();

    croak "Math::MatrixReal::minor(): \$matrix must be at least 2x2"
        unless ($rows > 1 and $cols > 1);
    croak "Math::MatrixReal::minor(): $r and $c must be positive" 
        unless ($r > 0 and $c > 0 );
    croak "Math::MatrixReal::minor(): matrix has no $r,$c element" 
        unless ($r <= $rows and $c <= $cols );

    my $minor = new Math::MatrixReal($rows-1,$cols-1);
    my ($i,$j) = (0,0);

    ## assign() might have been easier, but this should be faster
    ## the element can be in any of 4 regions compared to the eliminated
    ## row and col:
    ## above and to the left, above and to the right
    ## below and to the left, below and to the right

    for(; $i < $rows; $i++){
        for(;$j < $rows; $j++ ){
            if( $i >= $r && $j >= $c ){
                $minor->[0][$i-1][$j-1] = $matrix->[0][$i][$j];
            } elsif ( $i >= $r && $j < $c ){
                $minor->[0][$i-1][$j] = $matrix->[0][$i][$j];
            } elsif ( $i < $r && $j < $c ){
                $minor->[0][$i][$j] = $matrix->[0][$i][$j];
            } elsif ( $i < $r && $j >= $c ){
                $minor->[0][$i][$j-1] = $matrix->[0][$i][$j];
            } else {
                croak "Very bad things";
            }
        }
        $j = 0;
    }
    return ($minor);
}
sub swap_col {
    croak "Usage: \$matrix->swap_col(\$col1,\$col2); " unless (@_ == 3);
    my ($matrix,$col1,$col2) = @_;
    my ($rows,$cols) = $matrix->dim();
    my (@temp);

    croak "Math::MatrixReal::swap_col(): col index is not valid"
        unless ( $col1 <= $cols && $col2 <= $cols &&
             $col1 == int($col1) &&
             $col2 == int($col2) );
    $col1--;$col2--;
    for(my $i=0;$i < $rows;$i++){
        $temp[$i] = $matrix->[0][$i][$col1];
        $matrix->[0][$i][$col1] = $matrix->[0][$i][$col2];
        $matrix->[0][$i][$col2] =  $temp[$i];
    }
}
sub swap_row {
    croak "Usage: \$matrix->swap_row(\$row1,\$row2); " unless (@_ == 3);
    my ($matrix,$row1,$row2) = @_;
    my ($rows,$cols) = $matrix->dim();
    my (@temp);

    croak "Math::MatrixReal::swap_row(): row index is not valid"
        unless ( $row1 <= $rows && $row2 <= $rows && 
             $row1 == int($row1) && 
             $row2 == int($row2) ); 
    $row1--;$row2--;
    for(my $j=0;$j < $cols;$j++){
        $temp[$j] = $matrix->[0][$row1][$j];
        $matrix->[0][$row1][$j] = $matrix->[0][$row2][$j];
        $matrix->[0][$row2][$j] =  $temp[$j];
    }
}

sub assign_row {
    croak "Usage: \$matrix->assign_row(\$row,\$row_vec);"  unless (@_ == 3);
    my ($matrix,$row,$row_vec) = @_;
    my ($rows1,$cols1) = $matrix->dim();
    my ($rows2,$cols2) = $row_vec->dim();
   
    croak "Math::MatrixReal::assign_row(): number of columns mismatch" if ($cols1 != $cols2);
    croak "Math::MatrixReal::assign_row(): not a row vector" unless( $rows2 == 1);

    @{$matrix->[0][--$row]} = @{$row_vec->[0][0]};
    return $matrix;
}
# returns the number of zeroes in a row
sub _count_zeroes_row {
    my ($matrix) = @_;
    my ($rows,$cols) = $matrix->dim();
    my $count = 0;
    croak "_count_zeroes_row(): only 1 row, buddy" unless ($rows == 1);

    map { $count++ unless $matrix->[0][0][$_] } (0 .. $cols-1);
    return $count;
}
## divide a row by it's largest abs() element
sub _normalize_row {
    my ($matrix) = @_;
    my ($rows,$cols) = $matrix->dim();
    my $new_row = Math::MatrixReal->new(1,$cols);

    my $big = abs($matrix->[0][0][0]);
    for(my $j=0;$j < $cols; $j++ ){
        $big = $big < abs($matrix->[0][0][$j])
            ? abs($matrix->[0][0][$j]) : $big;
    }
    next unless $big;
    # now $big is biggest element in row
    for(my $j = 0;$j < $cols; $j++ ){
        $new_row->[0][0][$j]  = $matrix->[0][0][$j] / $big;
    }
    return $new_row;

}

sub cofactor {
    my ($matrix) = @_;
    my ($rows,$cols) = $matrix->dim();

    croak "Math::MatrixReal::cofactor(): Matrix is not quadratic" 
        unless ($rows == $cols);

    # black magic ahead
    my $cofactor = $matrix->each( 
        sub { 
            my($v,$i,$j) = @_;
            ($i+$j) % 2 == 0 ? $matrix->minor($i,$j)->det() : -1*$matrix->minor($i,$j)->det(); 
        });
    return ($cofactor);
}

sub adjoint {
    my ($matrix) = @_;
    return ~($matrix->cofactor);
}

sub row
{
    croak "Usage: \$row_vector = \$matrix->row(\$row);"
      if (@_ != 2);

    my($matrix,$row) = @_;
    my($rows,$cols) = ($matrix->[1],$matrix->[2]);
    my($temp);

    croak "Math::MatrixReal::row(): row index out of range" if ($row < 1 || $row > $rows);

    $row--;
    $temp = $matrix->new(1,$cols);
    for ( my $j = 0; $j < $cols; $j++ )
    {
        $temp->[0][0][$j] = $matrix->[0][$row][$j];
    }
    return($temp);
}
sub col{ return (shift)->column(shift) }
sub column
{
    croak "Usage: \$column_vector = \$matrix->column(\$column);" if (@_ != 2);

    my($matrix,$col) = @_;
    my($rows,$cols) = ($matrix->[1],$matrix->[2]);
    #my($temp);
    #my($i);
    my $col_vector;

    croak "Math::MatrixReal::column(): column index out of range" if ($col < 1 || $col > $cols);

    $col--;
    $col_vector = $matrix->new($rows,1);

    map { $col_vector->[0][$_][0] = $matrix->[0][$_][$col] } (0 .. $rows-1);

    return $col_vector;
}

sub as_list
{
    croak "Usage: \$matrix->as_list();" if (@_ != 1);

    my($self) = @_;
    my($rows,$cols) = ($self->[1], $self->[2]);
    my @list;
    for(my $i = 0; $i < $rows; $i++ ){
        for(my $j = 0; $j < $cols; $j++){
            push @list, $self->[0][$i][$j];
        }
    }
    return @list;
}

sub _undo_LR
{
    croak "Usage: \$matrix->_undo_LR();"
      if (@_ != 1);

    my($self) = @_;

    undef $self->[3];
    undef $self->[4];
    undef $self->[5];
}
# brrr
sub zero
{
    croak "Usage: \$matrix->zero();" if (@_ != 1);

    my ($self) = @_;
    my ($rows,$cols) = ($self->[1],$self->[2]);

    $self->_undo_LR();

    # zero out first row 
    map {  $self->[0][0][$_] = 0.0              } (0 .. $cols-1);
    
    # copy that to the other rows
    map {  @{$self->[0][$_]} = @{$self->[0][0]} } (0 .. $rows-1);

    return $self;
}

sub one
{
    croak "Usage: \$matrix->one();" if (@_ != 1);

    my ($self) = @_;
    my ($rows,$cols) = ($self->[1],$self->[2]);

    $self->zero(); # We rely on zero() efficiency

    map { $self->[0][$_][$_] = 1.0 } (0 .. $rows-1);

    return $self;
}

sub assign
{
    croak "Usage: \$matrix->assign(\$row,\$column,\$value);" if (@_ != 4);

    my($self,$row,$col,$value) = @_;
    my($rows,$cols) = ($self->[1],$self->[2]);

    croak "Math::MatrixReal::assign(): row index out of range" if (($row < 1) || ($row > $rows));
    croak "Math::MatrixReal::assign(): column index out of range" if (($col < 1) || ($col > $cols));

    $self->_undo_LR();
    $self->[0][--$row][--$col] = $value;
}

sub element
{
    croak "Usage: \$value = \$matrix->element(\$row,\$column);" if (@_ != 3);

    my($self,$row,$col) = @_;
    my($rows,$cols) = ($self->[1],$self->[2]);

    croak "Math::MatrixReal::element(): row index out of range" if (($row < 1) || ($row > $rows));
    croak "Math::MatrixReal::element(): column index out of range" if (($col < 1) || ($col > $cols));

    return( $self->[0][--$row][--$col] );
}

sub dim  #  returns dimensions of a matrix
{
    croak "Usage: (\$rows,\$columns) = \$matrix->dim();" if (@_ != 1);

    my($matrix) = @_;

    return( $matrix->[1], $matrix->[2] );
}

sub norm_one  #  maximum of sums of each column
{
    croak "Usage: \$norm_one = \$matrix->norm_one();" if (@_ != 1);

    my($self) = @_;
    my($rows,$cols) = ($self->[1],$self->[2]);

    my $max = 0.0;
    for (my $j = 0; $j < $cols; $j++)
    {
        my $sum = 0.0;
        for (my $i = 0; $i < $rows; $i++)
        {
            $sum += abs( $self->[0][$i][$j] );
        }
        $max = $sum if ($sum > $max);
    }
    return($max);
}
## sum of absolute value of every element
sub norm_sum {
    croak "Usage: \$norm_sum = \$matrix->norm_sum();" unless (@_ == 1);
    my ($matrix) = @_;
    my $norm = 0;
    $matrix->each( sub { $norm+=abs(shift); } );
    return $norm;
}
sub norm_frobenius {
    my ($m) = @_;
    my ($r,$c) = $m->dim;
    my $s=0;

    $m->each( sub { $s+=abs(shift)**2 } );
    return sqrt($s);
}

# Vector Norm 
sub norm_p {
    my ($v,$p) = @_;
    # sanity check on $p
    croak "Math::MatrixReal:norm_p: argument must be a row or column vector" 
        unless ( $v->is_row_vector || $v->is_col_vector );
    croak "Math::MatrixReal::norm_p: $p must be >= 1" 
        unless ($p =~ m/Inf(inity)?/i || $p >= 1);

    if( $p =~ m/^(Inf|Infinity)$/i ){
        my $max = $v->element(1,1);
        $v->each ( sub { my $x=abs(shift); $max = $x if( $x > $max ); } );
        return $max;
    }

    my $s=0;
    $v->each( sub { $s+= (abs(shift))**$p; } );
    return $s ** (1/$p);

}
sub norm_max  #  maximum of sums of each row
{
    croak "Usage: \$norm_max = \$matrix->norm_max();" if (@_ != 1);

    my($self) = @_;
    my($rows,$cols) = ($self->[1],$self->[2]);

    my $max = 0.0;
    for (my $i = 0; $i < $rows; $i++)
    {
        my $sum = 0.0;
        for (my $j = 0; $j < $cols; $j++)
        {
            $sum += abs( $self->[0][$i][$j] );
        }
        $max = $sum if ($sum > $max);
    }
    return($max);
}

sub negate
{
    croak "Usage: \$matrix1->negate(\$matrix2);"
      if (@_ != 2);

    my($matrix1,$matrix2) = @_;
    my($rows1,$cols1) = ($matrix1->[1],$matrix1->[2]);
    my($rows2,$cols2) = ($matrix2->[1],$matrix2->[2]);

    croak "Math::MatrixReal::negate(): matrix size mismatch"
      unless (($rows1 == $rows2) && ($cols1 == $cols2));

    $matrix1->_undo_LR();

    for (my $i = 0; $i < $rows1; $i++ )
    {
        for (my $j = 0; $j < $cols1; $j++ )
        {
            $matrix1->[0][$i][$j] = -($matrix2->[0][$i][$j]);
        }
    }
}
## each(): evaluate a coderef on each element and return a new matrix
## of said 
sub each {
    croak "Usage: \$new_matrix = \$matrix->each( \&sub );" unless (@_ == 2 );
    my($matrix,$function) = @_;
    my($rows,$cols) = ($matrix->[1],$matrix->[2]);
    my($new_matrix) = $matrix->clone();

    croak "Math::MatrixReal::each(): argument is not a sub reference" unless ref($function);
    $new_matrix->_undo_LR();

    for (my $i = 0; $i < $rows; $i++ ) {
        for (my $j = 0; $j < $cols; $j++ ) {
            no strict 'refs';
            # $i,$j are 1-based as of 1.7
            $new_matrix->[0][$i][$j] = &{ $function }($matrix->[0][$i][$j],$i+1,$j+1) ;
        }
    }
    return ($new_matrix);
}
## each_diag(): same as each() but only diag elements
sub each_diag { 
    croak "Usage: \$new_matrix = \$matrix->each_diag( \&sub );" unless (@_ == 2 );
    my($matrix,$function) = @_;
    my($rows,$cols) = ($matrix->[1],$matrix->[2]);
    my($new_matrix) = $matrix->clone();

    croak "Math::MatrixReal::each(): argument is not a sub reference" unless ref($function);
    croak "Matrix is not quadratic" unless ($rows == $cols);

    $new_matrix->_undo_LR();

    for (my $i = 0; $i < $rows; $i++ ) {
        for (my $j = 0; $j < $cols; $j++ ) {
            next unless ($i == $j);
            no strict 'refs';
            # $i,$j are 1-based as of 1.7
            $new_matrix->[0][$i][$j] = &{ $function }($matrix->[0][$i][$j],$i+1,$j+1) ;
        }
    }
    return ($new_matrix);
}

## Make computing the inverse more user friendly
sub inverse {
    croak "Usage: \$inverse = \$matrix->inverse();" unless (@_ == 1);
    my ($matrix) = @_;
    return $matrix->decompose_LR->invert_LR;
}

sub transpose {

    croak "Usage: \$matrix1->transpose(\$matrix2);" if (@_ != 2);

    my($matrix1,$matrix2) = @_;
    my($rows1,$cols1) = ($matrix1->[1],$matrix1->[2]);
    my($rows2,$cols2) = ($matrix2->[1],$matrix2->[2]);

    croak "Math::MatrixReal::transpose(): matrix size mismatch"
      unless (($rows1 == $cols2) && ($cols1 == $rows2));

    $matrix1->_undo_LR();

    if ($rows1 == $cols1)
    {
        # more complicated to make in-place possible!

        for (my $i = 0; $i < $rows1; $i++)
        {
            for (my $j = ($i + 1); $j < $cols1; $j++)
            {
                my $swap              = $matrix2->[0][$i][$j];
                $matrix1->[0][$i][$j] = $matrix2->[0][$j][$i];
                $matrix1->[0][$j][$i] = $swap;
            }
            $matrix1->[0][$i][$i] = $matrix2->[0][$i][$i];
        }
    } else {                                # ($rows1 != $cols1) 
        for (my $i = 0; $i < $rows1; $i++)
        {
            for (my $j = 0; $j < $cols1; $j++)
            {
                $matrix1->[0][$i][$j] = $matrix2->[0][$j][$i];
            }
        }
    }
}

sub add
{
    croak "Usage: \$matrix1->add(\$matrix2,\$matrix3);" if (@_ != 3);

    my($matrix1,$matrix2,$matrix3) = @_;
    my($rows1,$cols1) = ($matrix1->[1],$matrix1->[2]);
    my($rows2,$cols2) = ($matrix2->[1],$matrix2->[2]);
    my($rows3,$cols3) = ($matrix3->[1],$matrix3->[2]);

    croak "Math::MatrixReal::add(): matrix size mismatch"
      unless (($rows1 == $rows2) && ($rows1 == $rows3) &&
              ($cols1 == $cols2) && ($cols1 == $cols3));

    $matrix1->_undo_LR();

    for ( my $i = 0; $i < $rows1; $i++ )
    {
        for ( my $j = 0; $j < $cols1; $j++ )
        {
            $matrix1->[0][$i][$j] = $matrix2->[0][$i][$j] + $matrix3->[0][$i][$j];
        }
    }
}

sub subtract
{
    croak "Usage: \$matrix1->subtract(\$matrix2,\$matrix3);" if (@_ != 3);

    my($matrix1,$matrix2,$matrix3) = @_;
    my($rows1,$cols1) = ($matrix1->[1],$matrix1->[2]);
    my($rows2,$cols2) = ($matrix2->[1],$matrix2->[2]);
    my($rows3,$cols3) = ($matrix3->[1],$matrix3->[2]);

    croak "Math::MatrixReal::subtract(): matrix size mismatch"
      unless (($rows1 == $rows2) && ($rows1 == $rows3) &&
              ($cols1 == $cols2) && ($cols1 == $cols3));

    $matrix1->_undo_LR();

    for ( my $i = 0; $i < $rows1; $i++ )
    {
        for ( my $j = 0; $j < $cols1; $j++ )
        {
            $matrix1->[0][$i][$j] = $matrix2->[0][$i][$j] - $matrix3->[0][$i][$j];
        }
    }
}

sub multiply_scalar
{
    croak "Usage: \$matrix1->multiply_scalar(\$matrix2,\$scalar);"
      if (@_ != 3);

    my($matrix1,$matrix2,$scalar) = @_;
    my($rows1,$cols1) = ($matrix1->[1],$matrix1->[2]);
    my($rows2,$cols2) = ($matrix2->[1],$matrix2->[2]);

    croak "Math::MatrixReal::multiply_scalar(): matrix size mismatch"
      unless (($rows1 == $rows2) && ($cols1 == $cols2));

    $matrix1->_undo_LR();

    for ( my $i = 0; $i < $rows1; $i++ )
    {
        map { $matrix1->[0][$i][$_] = $matrix2->[0][$i][$_] * $scalar } (0 .. $cols1-1);
    }
}

sub multiply
{
    croak "Usage: \$product_matrix = \$matrix1->multiply(\$matrix2);"
      if (@_ != 2);

    my($matrix1,$matrix2) = @_;
    my($rows1,$cols1) = ($matrix1->[1],$matrix1->[2]);
    my($rows2,$cols2) = ($matrix2->[1],$matrix2->[2]);

    croak "Math::MatrixReal::multiply(): matrix size mismatch" unless ($cols1 == $rows2);

    my $temp = $matrix1->new($rows1,$cols2);
    for (my $i = 0; $i < $rows1; $i++ )
    {
        for (my $j = 0; $j < $cols2; $j++ )
        {
            my $sum = 0.0;
            for (my $k = 0; $k < $cols1; $k++ )
            {
                $sum += ( $matrix1->[0][$i][$k] * $matrix2->[0][$k][$j] );
            }
            $temp->[0][$i][$j] = $sum;
        }
    }
    return($temp);
}

sub exponent {       
    croak "Usage: \$matrix_exp = \$matrix1->exponent(\$integer);" if(@_ != 2 );
    my($matrix,$argument) = @_;
    my($rows,$cols) = ($matrix->[1],$matrix->[2]);
    my($name) = "'**'"; 
    my($temp) = $matrix->clone();       

    croak "Matrix is not quadratic" unless ($rows == $cols);
    croak "Exponent must be integer" unless ($argument =~ m/^[+-]?\d+$/ );

    return($matrix) if ($argument == 1);

    $temp->_undo_LR();

    # negative exponent is (A^-1)^n
    if( $argument < 0 ){ 
        my $LR = $matrix->decompose_LR();
        my $inverse = $LR->invert_LR();
        unless (defined $inverse){
            carp "Matrix has no inverse";
            return undef;
        }
        $temp = $inverse->clone();
        if( $inverse ){
            return($inverse) if ($argument == -1);
                for( 2 .. abs($argument) ){ 
                    $temp = multiply($inverse,$temp);
                    }
                return($temp);
            } else {   
               # TODO: is this the right behaviour?
               carp "Cannot compute negative exponent, inverse does not exist";
               return undef;
        }
    # matrix to zero power is identity matrix
    } elsif( $argument == 0 ){
        $temp->one();
        return ($temp);
    }

    # if it is diagonal, just raise diagonal entries to power
    if( $matrix->is_diagonal() ){
        $temp = $temp->each_diag( sub { (shift)**$argument } );
        return ($temp);
    
    } else {
        for( 2 .. $argument ){
            $temp = multiply($matrix,$temp);
        }
        return ($temp);
    }
}

sub min
{

    if ( @_ == 1 ) {
        my $matrix = shift;

        croak "Usage: \$minimum = Math::MatrixReal::min(\$number1,\$number2) or $matrix->min" if (@_ > 2);
        croak "invalid" unless ref $matrix eq 'Math::MatrixReal';

        my $min = $matrix->element(1,1);
        $matrix->each( sub { my ($e,$i,$j) = @_; $min = $e if $e < $min; } );
        return $min; 
    } 
    $_[0] < $_[1] ? $_[0] : $_[1];
}

sub max
{
    if ( @_ == 1 ) {
        my $matrix = shift;

        croak "Usage: \$maximum = Math::MatrixReal::max(\$number1,\$number2) or $matrix->max" if (@_ > 2);
        croak "Math::MatrixReal::max(\$matrix) \$matrix is not a Math::MatrixReal matrix" unless ref $matrix eq 'Math::MatrixReal';
 
        my $max = $matrix->element(1,1);
        $matrix->each( sub { my ($e,$i,$j) = @_; $max = $e if $e > $max; } );
        return $max; 
    } 

    $_[0] > $_[1] ? $_[0] : $_[1];
}

sub kleene
{
    croak "Usage: \$minimal_cost_matrix = \$cost_matrix->kleene();" if (@_ != 1);

    my($matrix) = @_;
    my($rows,$cols) = ($matrix->[1],$matrix->[2]);

    croak "Math::MatrixReal::kleene(): matrix is not quadratic" unless ($rows == $cols);

    my $temp = $matrix->new($rows,$cols);
    $temp->copy($matrix);
    $temp->_undo_LR();
    my $n = $rows;
    for ( my $i = 0; $i < $n; $i++ )
    {
        $temp->[0][$i][$i] = min( $temp->[0][$i][$i] , 0 );
    }
    for ( my $k = 0; $k < $n; $k++ )
    {
        for ( my $i = 0; $i < $n; $i++ )
        {
            for ( my $j = 0; $j < $n; $j++ )
            {
                $temp->[0][$i][$j] = min( $temp->[0][$i][$j] ,
                                        ( $temp->[0][$i][$k] +
                                          $temp->[0][$k][$j] ) );
            }
        }
    }
    return($temp);
}

sub normalize
{
    croak "Usage: (\$norm_matrix,\$norm_vector) = \$matrix->normalize(\$vector);"
      if (@_ != 2);

    my($matrix,$vector) = @_;
    my($rows,$cols) = ($matrix->[1],$matrix->[2]);
    my($norm_matrix,$norm_vector);
    my($max,$val);
    my($i,$j,$n);

    croak "Math::MatrixReal::normalize(): matrix is not quadratic"
      unless ($rows == $cols);

    $n = $rows;

    croak "Math::MatrixReal::normalize(): vector is not a column vector"
      unless ($vector->[2] == 1);

    croak "Math::MatrixReal::normalize(): matrix and vector size mismatch"
      unless ($vector->[1] == $n);

    $norm_matrix = $matrix->new($n,$n);
    $norm_vector = $vector->new($n,1);

    $norm_matrix->copy($matrix);
    $norm_vector->copy($vector);

    $norm_matrix->_undo_LR();

    for ( $i = 0; $i < $n; $i++ )
    {
        $max = abs($norm_vector->[0][$i][0]);
        for ( $j = 0; $j < $n; $j++ )
        {
            $val = abs($norm_matrix->[0][$i][$j]);
            if ($val > $max) { $max = $val; }
        }
        if ($max != 0)
        {
            $norm_vector->[0][$i][0] /= $max;
            for ( $j = 0; $j < $n; $j++ )
            {
                $norm_matrix->[0][$i][$j] /= $max;
            }
        }
    }
    return($norm_matrix,$norm_vector);
}

sub decompose_LR
{
    croak "Usage: \$LR_matrix = \$matrix->decompose_LR();"
      if (@_ != 1);

    my($matrix) = @_;
    my($rows,$cols) = ($matrix->[1],$matrix->[2]);
    my($perm_row,$perm_col);
    my($row,$col,$max);
    my($i,$j,$k,$n);
    my($sign) = 1;
    my($swap);
    my($temp);

    croak "Math::MatrixReal::decompose_LR(): matrix is not quadratic"
      unless ($rows == $cols);

    $temp = $matrix->new($rows,$cols);
    $temp->copy($matrix);
    $n = $rows;
    $perm_row = [ ];
    $perm_col = [ ];
    for ( $i = 0; $i < $n; $i++ )
    {
        $perm_row->[$i] = $i;
        $perm_col->[$i] = $i;
    }
    NONZERO:
    for ( $k = 0; $k < $n; $k++ ) # use Gauss's algorithm:
    {
        # complete pivot-search:

        $max = 0;
        for ( $i = $k; $i < $n; $i++ )
        {
            for ( $j = $k; $j < $n; $j++ )
            {
                if (($swap = abs($temp->[0][$i][$j])) > $max)
                {
                    $max = $swap;
                    $row = $i;
                    $col = $j;
                }
            }
        }
        last NONZERO if ($max == 0); # (all remaining elements are zero)
        if ($k != $row) # swap row $k and row $row:
        {
            $sign = -$sign;
            $swap             = $perm_row->[$k];
            $perm_row->[$k]   = $perm_row->[$row];
            $perm_row->[$row] = $swap;
            for ( $j = 0; $j < $n; $j++ )
            {
                # (must run from 0 since L has to be swapped too!)

                $swap                = $temp->[0][$k][$j];
                $temp->[0][$k][$j]   = $temp->[0][$row][$j];
                $temp->[0][$row][$j] = $swap;
            }
        }
        if ($k != $col) # swap column $k and column $col:
        {
            $sign = -$sign;
            $swap             = $perm_col->[$k];
            $perm_col->[$k]   = $perm_col->[$col];
            $perm_col->[$col] = $swap;
            for ( $i = 0; $i < $n; $i++ )
            {
                $swap                = $temp->[0][$i][$k];
                $temp->[0][$i][$k]   = $temp->[0][$i][$col];
                $temp->[0][$i][$col] = $swap;
            }
        }
        for ( $i = ($k + 1); $i < $n; $i++ )
        {
            # scan the remaining rows, add multiples of row $k to row $i:

            $swap = $temp->[0][$i][$k] / $temp->[0][$k][$k];
            if ($swap != 0)
            {
                # calculate a row of matrix R:

                for ( $j = ($k + 1); $j < $n; $j++ )
                {
                    $temp->[0][$i][$j] -= $temp->[0][$k][$j] * $swap;
                }

                # store matrix L in same matrix as R:

                $temp->[0][$i][$k] = $swap;
            }
        }
    }
    $temp->[3] = $sign;
    $temp->[4] = $perm_row;
    $temp->[5] = $perm_col;
    return($temp);
}

sub solve_LR
{
    croak "Usage: (\$dimension,\$x_vector,\$base_matrix) = \$LR_matrix->solve_LR(\$b_vector);"
      if (@_ != 2);

    my($LR_matrix,$b_vector) = @_;
    my($rows,$cols) = ($LR_matrix->[1],$LR_matrix->[2]);
    my($dimension,$x_vector,$base_matrix);
    my($perm_row,$perm_col);
    my($y_vector,$sum);
    my($i,$j,$k,$n);

    croak "Math::MatrixReal::solve_LR(): not an LR decomposition matrix"
      unless ((defined $LR_matrix->[3]) && ($rows == $cols));

    $n = $rows;

    croak "Math::MatrixReal::solve_LR(): vector is not a column vector"
      unless ($b_vector->[2] == 1);

    croak "Math::MatrixReal::solve_LR(): matrix and vector size mismatch"
      unless ($b_vector->[1] == $n);

    $perm_row = $LR_matrix->[4];
    $perm_col = $LR_matrix->[5];

    $x_vector    =   $b_vector->new($n,1);
    $y_vector    =   $b_vector->new($n,1);
    $base_matrix = $LR_matrix->new($n,$n);

    # calculate "x" so that LRx = b  ==>  calculate Ly = b, Rx = y:

    for ( $i = 0; $i < $n; $i++ ) # calculate $y_vector:
    {
        $sum = $b_vector->[0][($perm_row->[$i])][0];
        for ( $j = 0; $j < $i; $j++ )
        {
            $sum -= $LR_matrix->[0][$i][$j] * $y_vector->[0][$j][0];
        }
        $y_vector->[0][$i][0] = $sum;
    }

    $dimension = 0;
    for ( $i = ($n - 1); $i >= 0; $i-- ) # calculate $x_vector:
    {
        if ($LR_matrix->[0][$i][$i] == 0)
        {
            if ($y_vector->[0][$i][0] != 0)
            {
                return(); # a solution does not exist!
            }
            else
            {
                $dimension++;
                $x_vector->[0][($perm_col->[$i])][0] = 0;
            }
        } else {
            $sum = $y_vector->[0][$i][0];
            for ( $j = ($i + 1); $j < $n; $j++ )
            {
                $sum -= $LR_matrix->[0][$i][$j] *
                    $x_vector->[0][($perm_col->[$j])][0];
            }
            $x_vector->[0][($perm_col->[$i])][0] =
                $sum / $LR_matrix->[0][$i][$i];
        }
    }
    if ($dimension)
    {
        if ($dimension == $n)
        {
            $base_matrix->one();
        } else {
            for ( $k = 0; $k < $dimension; $k++ )
            {
                $base_matrix->[0][($perm_col->[($n-$k-1)])][$k] = 1;
                for ( $i = ($n-$dimension-1); $i >= 0; $i-- )
                {
                    $sum = 0;
                    for ( $j = ($i + 1); $j < $n; $j++ )
                    {
                        $sum -= $LR_matrix->[0][$i][$j] *
                            $base_matrix->[0][($perm_col->[$j])][$k];
                    }
                    $base_matrix->[0][($perm_col->[$i])][$k] =
                        $sum / $LR_matrix->[0][$i][$i];
                }
            }
        }
    }
    return( $dimension, $x_vector, $base_matrix );
}

sub invert_LR
{
    croak "Usage: \$inverse_matrix = \$LR_matrix->invert_LR();"
      if (@_ != 1);

    my($matrix) = @_;
    my($rows,$cols) = ($matrix->[1],$matrix->[2]);
    my($inv_matrix,$x_vector,$y_vector);
    my($i,$j,$n);

    croak "Math::MatrixReal::invert_LR(): not an LR decomposition matrix"
      unless ((defined $matrix->[3]) && ($rows == $cols));

    $n = $rows;
    #print Dumper [ $matrix ];
    if ($matrix->[0][$n-1][$n-1] != 0)
    {
        $inv_matrix = $matrix->new($n,$n);
        $y_vector   = $matrix->new($n,1);
        for ( $j = 0; $j < $n; $j++ )
        {
            if ($j > 0)
            {
                $y_vector->[0][$j-1][0] = 0;
            }
            $y_vector->[0][$j][0] = 1;
            if (($rows,$x_vector,$cols) = $matrix->solve_LR($y_vector))
            {
                for ( $i = 0; $i < $n; $i++ )
                {
                    $inv_matrix->[0][$i][$j] = $x_vector->[0][$i][0];
                }
            } else {
                die "Math::MatrixReal::invert_LR(): unexpected error - please inform author!\n";
            }
        }
        return($inv_matrix);
    } else {   
        warn __PACKAGE__ . qq{: matrix not invertible\n};
        return; 
    } 
}

sub condition
{
    # 1st matrix MUST be the inverse of 2nd matrix (or vice-versa)
    # for a meaningful result!

    # make this work when given no args

    croak "Usage: \$condition = \$matrix->condition(\$inverse_matrix);" if (@_ != 2);

    my($matrix1,$matrix2) = @_;
    my($rows1,$cols1) = ($matrix1->[1],$matrix1->[2]);
    my($rows2,$cols2) = ($matrix2->[1],$matrix2->[2]);

    croak "Math::MatrixReal::condition(): 1st matrix is not quadratic"
      unless ($rows1 == $cols1);

    croak "Math::MatrixReal::condition(): 2nd matrix is not quadratic"
      unless ($rows2 == $cols2);

    croak "Math::MatrixReal::condition(): matrix size mismatch"
      unless (($rows1 == $rows2) && ($cols1 == $cols2));

    return( $matrix1->norm_one() * $matrix2->norm_one() );
}

## easy to use determinant
## very fast if matrix is diagonal or triangular

sub det {
    croak "Usage: \$determinant = \$matrix->det_LR();" unless (@_ == 1);
    my ($matrix) = @_;
    my ($rows,$cols) = $matrix->dim();
    my $det = 1;

    croak "Math::MatrixReal::det(): Matrix is not quadratic"
        unless ($rows == $cols);
    
    # diagonal will match too
    if( $matrix->is_upper_triangular() ){
        $matrix->each_diag( sub { $det*=shift; } );
    } elsif ( $matrix->is_lower_triangular() ){
        $matrix->each_diag( sub { $det*=shift; } );
    } else {
        return $matrix->decompose_LR->det_LR();
    }
    return $det;
}

sub det_LR  #  determinant of LR decomposition matrix
{
    croak "Usage: \$determinant = \$LR_matrix->det_LR();"
      if (@_ != 1);

    my($matrix) = @_;
    my($rows,$cols) = ($matrix->[1],$matrix->[2]);
    my($k,$det);

    croak "Math::MatrixReal::det_LR(): not an LR decomposition matrix"
      unless ((defined $matrix->[3]) && ($rows == $cols));

    $det = $matrix->[3];
    for ( $k = 0; $k < $rows; $k++ )
    {
        $det *= $matrix->[0][$k][$k];
    }
    return($det);
}

sub rank_LR {
    return (shift)->order_LR;
}

sub order_LR  #  order of LR decomposition matrix (number of non-zero equations)
{
    croak "Usage: \$order = \$LR_matrix->order_LR();"
      if (@_ != 1);

    my($matrix) = @_;
    my($rows,$cols) = ($matrix->[1],$matrix->[2]);
    my($order);

    croak "Math::MatrixReal::order_LR(): not an LR decomposition matrix"
      unless ((defined $matrix->[3]) && ($rows == $cols));

    ZERO:
    for ( $order = ($rows - 1); $order >= 0; $order-- )
    {
        last ZERO if ($matrix->[0][$order][$order] != 0);
    }
    return(++$order);
}

sub scalar_product
{
    croak "Usage: \$scalar_product = \$vector1->scalar_product(\$vector2);"
      if (@_ != 2);

    my($vector1,$vector2) = @_;
    my($rows1,$cols1) = ($vector1->[1],$vector1->[2]);
    my($rows2,$cols2) = ($vector2->[1],$vector2->[2]);

    croak "Math::MatrixReal::scalar_product(): 1st vector is not a column vector"
      unless ($cols1 == 1);

    croak "Math::MatrixReal::scalar_product(): 2nd vector is not a column vector"
      unless ($cols2 == 1);

    croak "Math::MatrixReal::scalar_product(): vector size mismatch"
      unless ($rows1 == $rows2);

    my $sum = 0;
    map { $sum +=  $vector1->[0][$_][0] * $vector2->[0][$_][0] } ( 0 .. $rows1-1);
    return $sum;
}

sub vector_product
{
    croak "Usage: \$vector_product = \$vector1->vector_product(\$vector2);" if (@_ != 2);

    my($vector1,$vector2) = @_;
    my($rows1,$cols1) = ($vector1->[1],$vector1->[2]);
    my($rows2,$cols2) = ($vector2->[1],$vector2->[2]);
    my($temp);
    my($n);

    croak "Math::MatrixReal::vector_product(): 1st vector is not a column vector"
      unless ($cols1 == 1);

    croak "Math::MatrixReal::vector_product(): 2nd vector is not a column vector"
      unless ($cols2 == 1);

    croak "Math::MatrixReal::vector_product(): vector size mismatch"
      unless ($rows1 == $rows2);

    $n = $rows1;

    croak "Math::MatrixReal::vector_product(): only defined for 3 dimensions"
      unless ($n == 3);

    $temp = $vector1->new($n,1);
    $temp->[0][0][0] = $vector1->[0][1][0] * $vector2->[0][2][0] -
                       $vector1->[0][2][0] * $vector2->[0][1][0];
    $temp->[0][1][0] = $vector1->[0][2][0] * $vector2->[0][0][0] -
                       $vector1->[0][0][0] * $vector2->[0][2][0];
    $temp->[0][2][0] = $vector1->[0][0][0] * $vector2->[0][1][0] -
                       $vector1->[0][1][0] * $vector2->[0][0][0];
    return($temp);
}

sub length
{
    croak "Usage: \$length = \$vector->length();" if (@_ != 1);

    my($vector) = @_;
    my($rows,$cols) = ($vector->[1],$vector->[2]);
    my($k,$comp,$sum);

    croak "Math::MatrixReal::length(): vector is not a row or column vector"
      unless ($cols == 1 || $rows ==1 );

    $vector = ~$vector if ($rows == 1 );

    $sum = 0;
    for ( $k = 0; $k < $rows; $k++ )
    {
        $comp = $vector->[0][$k][0];
        $sum += $comp * $comp;
    }
    return sqrt $sum;
}

sub _init_iteration
{
    croak "Usage: \$which_norm = \$matrix->_init_iteration();"
      if (@_ != 1);

    my($matrix) = @_;
    my($rows,$cols) = ($matrix->[1],$matrix->[2]);
    my($ok,$max,$sum,$norm);
    my($i,$j,$n);

    croak "Math::MatrixReal::_init_iteration(): matrix is not quadratic"
      unless ($rows == $cols);

    $ok = 1;
    $n = $rows;
    for ( $i = 0; $i < $n; $i++ )
    {
        if ($matrix->[0][$i][$i] == 0) { $ok = 0; }
    }
    if ($ok)
    {
        $norm = 1; # norm_one
        $max = 0;
        for ( $j = 0; $j < $n; $j++ )
        {
            $sum = 0;
            for ( $i = 0; $i < $j; $i++ )
            {
                $sum += abs($matrix->[0][$i][$j]);
            }
            for ( $i = ($j + 1); $i < $n; $i++ )
            {
                $sum += abs($matrix->[0][$i][$j]);
            }
            $sum /= abs($matrix->[0][$j][$j]);
            if ($sum > $max) { $max = $sum; }
        }
        $ok = ($max < 1);
        unless ($ok)
        {
            $norm = -1; # norm_max
            $max = 0;
            for ( $i = 0; $i < $n; $i++ )
            {
                $sum = 0;
                for ( $j = 0; $j < $i; $j++ )
                {
                    $sum += abs($matrix->[0][$i][$j]);
                }
                for ( $j = ($i + 1); $j < $n; $j++ )
                {
                    $sum += abs($matrix->[0][$i][$j]);
                }
                $sum /= abs($matrix->[0][$i][$i]);
                if ($sum > $max) { $max = $sum; }
            }
            $ok = ($max < 1)
        }
    }
    if ($ok) { return($norm); }
    else     { return(0); }
}

sub solve_GSM  #  Global Step Method
{
    croak "Usage: \$xn_vector = \$matrix->solve_GSM(\$x0_vector,\$b_vector,\$epsilon);"
      if (@_ != 4);

    my($matrix,$x0_vector,$b_vector,$epsilon) = @_;
    my($rows1,$cols1) = (   $matrix->[1],   $matrix->[2]);
    my($rows2,$cols2) = ($x0_vector->[1],$x0_vector->[2]);
    my($rows3,$cols3) = ( $b_vector->[1], $b_vector->[2]);
    my($norm,$sum,$diff);
    my($xn_vector);
    my($i,$j,$n);

    croak "Math::MatrixReal::solve_GSM(): matrix is not quadratic"
      unless ($rows1 == $cols1);

    $n = $rows1;

    croak "Math::MatrixReal::solve_GSM(): 1st vector is not a column vector"
      unless ($cols2 == 1);

    croak "Math::MatrixReal::solve_GSM(): 2nd vector is not a column vector"
      unless ($cols3 == 1);

    croak "Math::MatrixReal::solve_GSM(): matrix and vector size mismatch"
      unless (($rows2 == $n) && ($rows3 == $n));

    return() unless ($norm = $matrix->_init_iteration());

    $xn_vector = $x0_vector->new($n,1);

    $diff = $epsilon + 1;
    while ($diff >= $epsilon)
    {
        for ( $i = 0; $i < $n; $i++ )
        {
            $sum = $b_vector->[0][$i][0];
            for ( $j = 0; $j < $i; $j++ )
            {
                $sum -= $matrix->[0][$i][$j] * $x0_vector->[0][$j][0];
            }
            for ( $j = ($i + 1); $j < $n; $j++ )
            {
                $sum -= $matrix->[0][$i][$j] * $x0_vector->[0][$j][0];
            }
            $xn_vector->[0][$i][0] = $sum / $matrix->[0][$i][$i];
        }
        $x0_vector->subtract($x0_vector,$xn_vector);
        if ($norm > 0) { $diff = $x0_vector->norm_one(); }
        else           { $diff = $x0_vector->norm_max(); }
        for ( $i = 0; $i < $n; $i++ )
        {
            $x0_vector->[0][$i][0] = $xn_vector->[0][$i][0];
        }
    }
    return($xn_vector);
}

sub solve_SSM  #  Single Step Method
{
    croak "Usage: \$xn_vector = \$matrix->solve_SSM(\$x0_vector,\$b_vector,\$epsilon);"
      if (@_ != 4);

    my($matrix,$x0_vector,$b_vector,$epsilon) = @_;
    my($rows1,$cols1) = (   $matrix->[1],   $matrix->[2]);
    my($rows2,$cols2) = ($x0_vector->[1],$x0_vector->[2]);
    my($rows3,$cols3) = ( $b_vector->[1], $b_vector->[2]);
    my($norm,$sum,$diff);
    my($xn_vector);
    my($i,$j,$n);

    croak "Math::MatrixReal::solve_SSM(): matrix is not quadratic"
      unless ($rows1 == $cols1);

    $n = $rows1;

    croak "Math::MatrixReal::solve_SSM(): 1st vector is not a column vector"
      unless ($cols2 == 1);

    croak "Math::MatrixReal::solve_SSM(): 2nd vector is not a column vector"
      unless ($cols3 == 1);

    croak "Math::MatrixReal::solve_SSM(): matrix and vector size mismatch"
      unless (($rows2 == $n) && ($rows3 == $n));

    return() unless ($norm = $matrix->_init_iteration());

    $xn_vector = $x0_vector->new($n,1);
    $xn_vector->copy($x0_vector);

    $diff = $epsilon + 1;
    while ($diff >= $epsilon)
    {
        for ( $i = 0; $i < $n; $i++ )
        {
            $sum = $b_vector->[0][$i][0];
            for ( $j = 0; $j < $i; $j++ )
            {
                $sum -= $matrix->[0][$i][$j] * $xn_vector->[0][$j][0];
            }
            for ( $j = ($i + 1); $j < $n; $j++ )
            {
                $sum -= $matrix->[0][$i][$j] * $xn_vector->[0][$j][0];
            }
            $xn_vector->[0][$i][0] = $sum / $matrix->[0][$i][$i];
        }
        $x0_vector->subtract($x0_vector,$xn_vector);
        if ($norm > 0) { $diff = $x0_vector->norm_one(); }
        else           { $diff = $x0_vector->norm_max(); }
        for ( $i = 0; $i < $n; $i++ )
        {
            $x0_vector->[0][$i][0] = $xn_vector->[0][$i][0];
        }
    }
    return($xn_vector);
}

sub solve_RM  #  Relaxation Method
{
    croak "Usage: \$xn_vector = \$matrix->solve_RM(\$x0_vector,\$b_vector,\$weight,\$epsilon);"
      if (@_ != 5);

    my($matrix,$x0_vector,$b_vector,$weight,$epsilon) = @_;
    my($rows1,$cols1) = (   $matrix->[1],   $matrix->[2]);
    my($rows2,$cols2) = ($x0_vector->[1],$x0_vector->[2]);
    my($rows3,$cols3) = ( $b_vector->[1], $b_vector->[2]);
    my($norm,$sum,$diff);
    my($xn_vector);
    my($i,$j,$n);

    croak "Math::MatrixReal::solve_RM(): matrix is not quadratic"
      unless ($rows1 == $cols1);

    $n = $rows1;

    croak "Math::MatrixReal::solve_RM(): 1st vector is not a column vector"
      unless ($cols2 == 1);

    croak "Math::MatrixReal::solve_RM(): 2nd vector is not a column vector"
      unless ($cols3 == 1);

    croak "Math::MatrixReal::solve_RM(): matrix and vector size mismatch"
      unless (($rows2 == $n) && ($rows3 == $n));

    return() unless ($norm = $matrix->_init_iteration());

    $xn_vector = $x0_vector->new($n,1);
    $xn_vector->copy($x0_vector);

    $diff = $epsilon + 1;
    while ($diff >= $epsilon)
    {
        for ( $i = 0; $i < $n; $i++ )
        {
            $sum = $b_vector->[0][$i][0];
            for ( $j = 0; $j < $i; $j++ )
            {
                $sum -= $matrix->[0][$i][$j] * $xn_vector->[0][$j][0];
            }
            for ( $j = ($i + 1); $j < $n; $j++ )
            {
                $sum -= $matrix->[0][$i][$j] * $xn_vector->[0][$j][0];
            }
            $xn_vector->[0][$i][0] = $weight * ( $sum / $matrix->[0][$i][$i] )
                                   + (1 - $weight) * $xn_vector->[0][$i][0];
        }
        $x0_vector->subtract($x0_vector,$xn_vector);
        if ($norm > 0) { $diff = $x0_vector->norm_one(); }
        else           { $diff = $x0_vector->norm_max(); }
        for ( $i = 0; $i < $n; $i++ )
        {
            $x0_vector->[0][$i][0] = $xn_vector->[0][$i][0];
        }
    }
    return($xn_vector);
}

# Core householder reduction routine (when eigenvector
# are wanted).
# Adapted from: Numerical Recipes, 2nd edition.
sub _householder_vectors ($)
{
    my ($Q) = @_;
    my ($rows, $cols) = ($Q->[1], $Q->[2]);
    
    # Creates tridiagonal
    # Set up tridiagonal needed elements
    my $d = []; # N Diagonal elements 0...n-1
    my $e = []; # N-1 Off-Diagonal elements 0...n-2
    
    my @p = ();
    for (my $i = ($rows-1); $i > 1; $i--)
    {
    my $scale = 0.0;
    # Computes norm of one column (below diagonal)
    for (my $k = 0; $k < $i; $k++)
    {
        $scale += abs($Q->[0][$i][$k]);
    }
    if ($scale == 0.0)
    { # skip the transformation
        $e->[$i-1] = $Q->[0][$i][$i-1];
    }
    else
    {
        my $h = 0.0;
        for (my $k = 0; $k < $i; $k++)
        { # Used scaled Q for transformation
            $Q->[0][$i][$k] /= $scale;
            # Form sigma in h
            $h += $Q->[0][$i][$k] * $Q->[0][$i][$k];
        }
        my $t1 = $Q->[0][$i][$i-1];
        my $t2 = (($t1 >= 0.0) ? -sqrt($h) : sqrt($h));
        $e->[$i-1] = $scale * $t2; # Update off-diagonals
        $h -= $t1 * $t2;
        $Q->[0][$i][$i-1] -= $t2;
        my $f = 0.0;
        for (my $j = 0; $j < $i; $j++)
        {
            $Q->[0][$j][$i] = $Q->[0][$i][$j] / $h;
            my $g = 0.0;
            for (my $k = 0; $k <= $j; $k++)
            {
                $g += $Q->[0][$j][$k] * $Q->[0][$i][$k];
            }
            for (my $k = $j+1; $k < $i; $k++)
            {
                $g += $Q->[0][$k][$j] * $Q->[0][$i][$k];
            }
            # Form elements of P
            $p[$j] = $g / $h;
            $f += $p[$j] * $Q->[0][$i][$j];
        }
        my $hh = $f / ($h + $h);
        for (my $j = 0; $j < $i; $j++)
        {
            my $t3 = $Q->[0][$i][$j];
            my $t4 = $p[$j] - $hh * $t3;
            $p[$j] = $t4;
            for (my $k = 0; $k <= $j; $k++)
            {
                $Q->[0][$j][$k] -= $t3 * $p[$k]
                + $t4 * $Q->[0][$i][$k];
            }
        }
    }
    }
    # Updates for i == 0,1
    $e->[0] = $Q->[0][1][0];    
    $d->[0] = $Q->[0][0][0]; # i==0
    $Q->[0][0][0] = 1.0;
    $d->[1] = $Q->[0][1][1]; # i==1
    $Q->[0][1][1] = 1.0;
    $Q->[0][1][0] = $Q->[0][0][1] = 0.0;
    for (my $i = 2; $i < $rows; $i++)
    {
        for (my $j = 0; $j < $i; $j++)
        {
            my $g = 0.0;
            for (my $k = 0; $k < $i; $k++)
            {
                $g += $Q->[0][$i][$k] * $Q->[0][$k][$j];
            }
            for (my $k = 0; $k < $i; $k++)
            {
                $Q->[0][$k][$j] -= $g * $Q->[0][$k][$i];
            }
        }
        $d->[$i] = $Q->[0][$i][$i];
        # Reset row and column of Q for next iteration
        $Q->[0][$i][$i] = 1.0;
        for (my $j = 0; $j < $i; $j++)
        {
            $Q->[0][$i][$j] = $Q->[0][$j][$i] = 0.0;
        }
    }
    return ($d, $e);
}

# Computes sqrt(a*a + b*b), but more carefully...
sub _pythag ($$)
{
    my ($a, $b) = @_;
    my $aa = abs($a);
    my $ab = abs($b);
    if ($aa > $ab)
    {
        # NB: Not needed!: return 0.0 if ($aa == 0.0);
        my $t = $ab / $aa;
        return ($aa * sqrt(1.0 + $t*$t));
    } else {
        return 0.0 if ($ab == 0.0);
        my $t = $aa / $ab;
        return ($ab * sqrt(1.0 + $t*$t));
    }
}

# QL algorithm with implicit shifts to determine the eigenvalues
# of a tridiagonal matrix. Internal routine.
sub _tridiagonal_QLimplicit
{
    my ($EV, $d, $e) = @_;
    my ($rows, $cols) = ($EV->[1], $EV->[2]);

    $e->[$rows-1] = 0.0;
    # Start real computation
    for (my $l = 0; $l < $rows; $l++)
    {
        my $iter = 0;
        my $m;
        OUTER:
        do {
            for ($m = $l; $m < ($rows - 1); $m++)
            {
                my $dd = abs($d->[$m]) + abs($d->[$m+1]);
                last if ((abs($e->[$m]) + $dd) == $dd);
            }
            if ($m != $l)
            {
                ## why only allow 30 iterations?
                croak("Too many iterations!") if ($iter++ >= 30);
                my $g = ($d->[$l+1] - $d->[$l])
                    / (2.0 * $e->[$l]);
                my $r = _pythag($g, 1.0);
                $g = $d->[$m] - $d->[$l]
                    + $e->[$l] / ($g + (($g >= 0.0) ? abs($r) : -abs($r)));
                my ($p,$s,$c) = (0.0, 1.0,1.0);
            for (my $i = ($m-1); $i >= $l; $i--)
            {
                my $ii = $i + 1;
                my $f = $s * $e->[$i];
                my $t = _pythag($f, $g);
                $e->[$ii] = $t;
                if ($t == 0.0)
                {
                    $d->[$ii] -= $p;
                    $e->[$m] = 0.0;
                    next OUTER;
                }
                my $b = $c * $e->[$i];
                $s = $f / $t;
                $c = $g / $t;
                $g = $d->[$ii] - $p;
                my $t2 = ($d->[$i] - $g) * $s + 2.0 * $c * $b;
                $p = $s * $t2;
                $d->[$ii] = $g + $p;
                $g = $c * $t2 - $b;
                for (my $k = 0; $k < $rows; $k++)
                {
                    my $t1 = $EV->[0][$k][$ii];
                    my $t2 = $EV->[0][$k][$i];
                    $EV->[0][$k][$ii] = $s * $t2 + $c * $t1;
                    $EV->[0][$k][$i] = $c * $t2 - $s * $t1;
                }
            }
            $d->[$l] -= $p;
            $e->[$l] = $g;
            $e->[$m] = 0.0;
            }
        } while ($m != $l);
    }
    return;
}

# Core householder reduction routine (when eigenvector
# are NOT wanted).
sub _householder_values ($)
{
    my ($Q) = @_; # NB: Q is destroyed on output...
    my ($rows, $cols) = ($Q->[1], $Q->[2]);
    
    # Creates tridiagonal
    # Set up tridiagonal needed elements
    my $d = []; # N Diagonal elements 0...n-1
    my $e = []; # N-1 Off-Diagonal elements 0...n-2
    
    my @p = ();
    for (my $i = ($rows - 1); $i > 1; $i--)
    {
        my $scale = 0.0;
        for (my $k = 0; $k < $i; $k++)
        {
            $scale += abs($Q->[0][$i][$k]);
        }
        if ($scale == 0.0)
        { # skip the transformation
            $e->[$i-1] = $Q->[0][$i][$i-1];
        }
        else
        {
            my $h = 0.0;
            for (my $k = 0; $k < $i; $k++)
            { # Used scaled Q for transformation
                $Q->[0][$i][$k] /= $scale;
                # Form sigma in h
                $h += $Q->[0][$i][$k] * $Q->[0][$i][$k];
            }
            my $t = $Q->[0][$i][$i-1];
            my $t2 = (($t >= 0.0) ? -sqrt($h) : sqrt($h));
            $e->[$i-1] = $scale * $t2; # Updates off-diagonal
            $h -= $t * $t2;
            $Q->[0][$i][$i-1] -= $t2;
            my $f = 0.0;
            for (my $j = 0; $j < $i; $j++)
            {
                my $g = 0.0;
                for (my $k = 0; $k <= $j; $k++)
                {
                    $g += $Q->[0][$j][$k] * $Q->[0][$i][$k];
                }
                for (my $k = $j+1; $k < $i; $k++)
                {
                    $g += $Q->[0][$k][$j] * $Q->[0][$i][$k];
                }
                # Form elements of P
                $p[$j] = $g / $h;
                $f += $p[$j] * $Q->[0][$i][$j];
            }
            my $hh = $f / ($h + $h);
            for (my $j = 0; $j < $i; $j++)
            {
                my $t = $Q->[0][$i][$j];
                my $g = $p[$j] - $hh * $t;
                $p[$j] = $g;
                for (my $k = 0; $k <= $j; $k++)
                {
                    $Q->[0][$j][$k] -= $t * $p[$k]
                    + $g * $Q->[0][$i][$k];
                }
            }
        }
    }
    # Updates for i==1
    $e->[0] =  $Q->[0][1][0];
    # Updates diagonal elements
    for (my $i = 0; $i < $rows; $i++)
    {
        $d->[$i] =  $Q->[0][$i][$i];
    }
    return ($d, $e);
}

# QL algorithm with implicit shifts to determine the
# eigenvalues ONLY. This is O(N^2) only...
sub _tridiagonal_QLimplicit_values
{
    my ($M, $d, $e) = @_; # NB: M is not touched...
    my ($rows, $cols) = ($M->[1], $M->[2]);

    $e->[$rows-1] = 0.0;
    # Start real computation
    for (my $l = 0; $l < $rows; $l++)
    {
        my $iter = 0;
        my $m;
        OUTER:
        do {
            for ($m = $l; $m < ($rows - 1); $m++)
            {
                my $dd = abs($d->[$m]) + abs($d->[$m+1]);
                last if ((abs($e->[$m]) + $dd) == $dd);
            }
            if ($m != $l)
            {
                croak("Too many iterations!") if ($iter++ >= 30);
                my $g = ($d->[$l+1] - $d->[$l])
                    / (2.0 * $e->[$l]);
                my $r = _pythag($g, 1.0);
                $g = $d->[$m] - $d->[$l]
                    + $e->[$l] / ($g + (($g >= 0.0) ? abs($r) : -abs($r)));
                my ($p,$s,$c) = (0.0, 1.0,1.0);
                for (my $i = ($m-1); $i >= $l; $i--)
                {
                    my $ii = $i + 1;
                    my $f = $s * $e->[$i];
                    my $t = _pythag($f, $g);
                    $e->[$ii] = $t;
                    if ($t == 0.0)
                    {
                        $d->[$ii] -= $p;
                        $e->[$m] = 0.0;
                        next OUTER;
                    }
                    my $b = $c * $e->[$i];
                    $s = $f / $t;
                    $c = $g / $t;
                    $g = $d->[$ii] - $p;
                    my $t2 = ($d->[$i] - $g) * $s + 2.0 * $c * $b;
                    $p = $s * $t2;
                    $d->[$ii] = $g + $p;
                    $g = $c * $t2 - $b;
                }
                $d->[$l] -= $p;
                $e->[$l] = $g;
                $e->[$m] = 0.0;
            }
        } while ($m != $l);
    }
    return;
}

# Householder reduction of a real, symmetric matrix A.
# Returns a tridiagonal matrix T and the orthogonal matrix
# Q effecting the transformation between A and T.
sub householder ($)
{
    my ($A) = @_;
    my ($rows, $cols) = ($A->[1], $A->[2]);

    croak "Matrix is not quadratic"
        unless ($rows = $cols);
    croak "Matrix is not symmetric"
        unless ($A->is_symmetric());

    # Copy given matrix TODO: study if we should do in-place modification
    my $Q = $A->clone();

    # Do the computation of tridiagonal elements and of
    # transformation matrix
    my ($diag, $offdiag) = $Q->_householder_vectors();

    # Creates the tridiagonal matrix
    my $T = $A->shadow();
    for (my $i = 0; $i < $rows; $i++)
    { # Set diagonal
        $T->[0][$i][$i] = $diag->[$i];
    }
    for (my $i = 0; $i < ($rows-1); $i++)
    { # Set off diagonals
        $T->[0][$i+1][$i] = $offdiag->[$i];
        $T->[0][$i][$i+1] = $offdiag->[$i];
    }
    return ($T, $Q);
}

# QL algorithm with implicit shifts to determine the eigenvalues
# and eigenvectors of a real tridiagonal matrix - or of a matrix
# previously reduced to tridiagonal form.
sub tri_diagonalize ($;$)
{
    my ($T,$Q) = @_; # Q may be 0 if the original matrix is really tridiagonal

    my ($rows, $cols) = ($T->[1], $T->[2]);

    croak "Matrix is not quadratic"
        unless ($rows = $cols);
    croak "Matrix is not tridiagonal"
        unless ($T->is_tridiagonal()); # DONE

    my $EV;
    # Obtain/Creates the todo eigenvectors matrix
    if ($Q)
    {
        $EV = $Q->clone();
    }
    else
    {
        $EV = $T->shadow();
        $EV->one();
    }
    # Allocates diagonal vector
    my $diag = [ ];
    # Initializes it with T
    for (my $i = 0; $i < $rows; $i++)
    {
        $diag->[$i] = $T->[0][$i][$i];
    }
    # Allocate temporary vector for off-diagonal elements
    my $offdiag = [ ];
    for (my $i = 1; $i < $rows; $i++)
    {
        $offdiag->[$i-1] = $T->[0][$i][$i-1];
    }

    # Calls the calculus routine
    $EV->_tridiagonal_QLimplicit($diag, $offdiag);

    # Allocate eigenvalues vector
    my $v = Math::MatrixReal->new($rows,1);
    # Fills it
    for (my $i = 0; $i < $rows; $i++)
    {
        $v->[0][$i][0] = $diag->[$i];
    }
    return ($v, $EV);
}

# Main routine for diagonalization of a real symmetric
# matrix M. Operates by transforming M into a tridiagonal
# matrix and then obtaining the eigenvalues and eigenvectors
# for that matrix (taking into account the transformation to
# tridiagonal).
sub sym_diagonalize ($)
{
    my ($M) = @_;
    my ($rows, $cols) = ($M->[1], $M->[2]);
    
    croak "Matrix is not quadratic"
        unless ($rows = $cols);
    croak "Matrix is not symmetric"
        unless ($M->is_symmetric());
    
    # Copy initial matrix
    # TODO: study if we should allow in-place modification
    my $VEC = $M->clone();

    # Do the computation of tridiagonal elements and of
    # transformation matrix
    my ($diag, $offdiag) = $VEC->_householder_vectors();
    # Calls the calculus routine for diagonalization
    $VEC->_tridiagonal_QLimplicit($diag, $offdiag);

    # Allocate eigenvalues vector
    my $val = Math::MatrixReal->new($rows,1);
    # Fills it
    for (my $i = 0; $i < $rows; $i++)
    {
        $val->[0][$i][0] = $diag->[$i];
    }
    return ($val, $VEC);
}

# Householder reduction of a real, symmetric matrix A.
# Returns a tridiagonal matrix T equivalent to A.
sub householder_tridiagonal ($)
{
    my ($A) = @_;
    my ($rows, $cols) = ($A->[1], $A->[2]);

    croak "Matrix is not quadratic"
        unless ($rows = $cols);
    croak "Matrix is not symmetric"
        unless ($A->is_symmetric());

    # Copy given matrix
    my $Q = $A->clone();

    # Do the computation of tridiagonal elements and of
    # transformation matrix
    # Q is destroyed after reduction
    my ($diag, $offdiag) = $Q->_householder_values();

    # Creates the tridiagonal matrix in Q (avoid allocation)
    my $T = $Q;
    $T->zero();
    for (my $i = 0; $i < $rows; $i++)
    { # Set diagonal
        $T->[0][$i][$i] = $diag->[$i];
    }
    for (my $i = 0; $i < ($rows-1); $i++)
    { # Set off diagonals
        $T->[0][$i+1][$i] = $offdiag->[$i];
        $T->[0][$i][$i+1] = $offdiag->[$i];
    }
    return $T;
}

# QL algorithm with implicit shifts to determine ONLY
# the eigenvalues a real tridiagonal matrix - or of a
# matrix previously reduced to tridiagonal form.
sub tri_eigenvalues ($;$)
{
    my ($T) = @_;
    my ($rows, $cols) = ($T->[1], $T->[2]);

    croak "Matrix is not quadratic"
        unless ($rows = $cols);
    croak "Matrix is not tridiagonal"
        unless ($T->is_tridiagonal() ); # DONE

    # Allocates diagonal vector
    my $diag = [ ];
    # Initializes it with T
    for (my $i = 0; $i < $rows; $i++)
    {
        $diag->[$i] = $T->[0][$i][$i];
    }
    # Allocate temporary vector for off-diagonal elements
    my $offdiag = [ ];
    for (my $i = 1; $i < $rows; $i++)
    {
        $offdiag->[$i-1] = $T->[0][$i][$i-1];
    }

    # Calls the calculus routine (T is not touched)
    $T->_tridiagonal_QLimplicit_values($diag, $offdiag);

    # Allocate eigenvalues vector
    my $v = Math::MatrixReal->new($rows,1);
    # Fills it
    for (my $i = 0; $i < $rows; $i++)
    {
        $v->[0][$i][0] = $diag->[$i];
    }
    return $v;
}

## more general routine than sym_eigenvalues
sub eigenvalues ($){
    my ($matrix) = @_;
    my ($rows,$cols) = $matrix->dim();

    croak "Matrix is not quadratic" unless ($rows == $cols);

    if($matrix->is_upper_triangular() || $matrix->is_lower_triangular() ){
        my $l = Math::MatrixReal->new($rows,1);
        map { $l->[0][$_][0] = $matrix->[0][$_][$_] } (0 .. $rows-1);
        return $l;
    }

    return sym_eigenvalues($matrix) if $matrix->is_symmetric();

    carp "Math::MatrixReal::eigenvalues(): Matrix is not symmetric or triangular";
    return undef;

}
# Main routine for diagonalization of a real symmetric
# matrix M. Operates by transforming M into a tridiagonal
# matrix and then obtaining the eigenvalues and eigenvectors
# for that matrix (taking into account the transformation to
# tridiagonal).
sub sym_eigenvalues ($)
{
    my ($M) = @_;
    my ($rows, $cols) = ($M->[1], $M->[2]);
    
    croak "Matrix is not quadratic" unless ($rows == $cols); 
    croak "Matrix is not symmetric" unless ($M->is_symmetric);

    # Copy matrix in temporary
    my $A = $M->clone();
    # Do the computation of tridiagonal elements and of
    # transformation matrix. A is destroyed
    my ($diag, $offdiag) = $A->_householder_values();
    # Calls the calculus routine for diagonalization
    # (M is not touched)
    $M->_tridiagonal_QLimplicit_values($diag, $offdiag);

    # Allocate eigenvalues vector
    my $val = Math::MatrixReal->new($rows,1);
    # Fills it
    map { $val->[0][$_][0] = $diag->[$_] } ( 0 .. $rows-1);

    return $val;
}
#TODO: docs+test
sub is_positive_definite {
    my ($matrix) = @_;
    my ($r,$c) = $matrix->dim;

    croak "Math::MatrixReal::is_positive_definite(): Matrix is not square" unless ($r == $c);
    # must have positive (i.e REAL) eigenvalues to be positive definite
    return 0 unless $matrix->is_symmetric;

    my $ev = $matrix->eigenvalues;
    my $pos = 1;
    $ev->each(sub { my $x = shift; if ($x <= 0){ $pos=0;return; } } );
    return $pos;
}
#TODO: docs+test
sub is_positive_semidefinite {
    my ($matrix) = @_;
    my ($r,$c) = $matrix->dim;

    croak "Math::MatrixReal::is_positive_semidefinite(): Matrix is not square" unless ($r == $c);
    # must have nonnegative (i.e REAL) eigenvalues to be positive semidefinite
    return 0 unless $matrix->is_symmetric;

    my $ev = $matrix->eigenvalues;
    my $pos = 1;
    $ev->each(sub { my $x = shift; if ($x < 0){ $pos=0;return; } } );
    return $pos;
}
sub is_row { return (shift)->is_row_vector }
sub is_col { return (shift)->is_col_vector }

sub is_row_vector {
    my ($m) = @_;
    my $r = $m->[1];
    $r == 1 ? 1 : 0;
}
sub is_col_vector {
    my ($m) = @_;
    my $c = $m->[2];
    $c == 1 ? 1 : 0;
}

sub is_orthogonal($) {
    my ($matrix) = @_;

    return 0 unless $matrix->is_quadratic;

    my $one = $matrix->shadow();
    $one->one;

    abs(~$matrix * $matrix - $one) < 1e-12 ? return 1 : return 0;

}

sub is_positive($) {
    my ($m) = @_;
    my $pos = 1;
    $m->each( sub { if( (shift) <= 0){ $pos = 0;return;} } );
    return $pos;
}
sub is_negative($) {
    my ($m) = @_;
    my $neg = 1;
    $m->each( sub { if( (shift) >= 0){ $neg = 0;return;} } );
    return $neg;
}


sub is_periodic($$) {
    my ($m,$k) = @_;
        return 0 unless $m->is_quadratic();
    abs($m**(int($k)+1) - $m) < 1e-12 ? return 1 : return 0;
}
sub is_idempotent($) {
    return (shift)->is_periodic(1);
}

# Boolean check routine to see if a matrix is
# symmetric
sub is_symmetric ($)
{
  my ($M) = @_;
  my ($rows, $cols) = ($M->[1], $M->[2]);
  # if it is not quadratic it cannot be symmetric...
  return 0 unless ($rows == $cols);
  # skip when $i=$j?
  for (my $i = 1; $i < $rows; $i++)
    {
      for (my $j = 0; $j < $i; $j++)
        {
          return 0 unless ($M->[0][$i][$j] == $M->[0][$j][$i]);
        }
    }
  return 1;
}
# Boolean check to see if matrix is tridiagonal
sub is_tridiagonal ($) {
    my ($M) = @_;
    my ($rows,$cols) = ($M->[1],$M->[2]);
    my ($i,$j) = (0,0); 
    # if it is not quadratic it cannot be tridiag
    return 0 unless ($rows == $cols);

    for(;$i < $rows; $i++ ){
        for(;$j < $cols; $j++ ){
            #print "debug: testing $i,$j = " . $M->[0][$i][$j] . "\n";
            # skip diag and diag+-1
            next if ($i == $j);
            next if ($i+1 == $j);
            next if ($i-1 == $j);
            return 0 if $M->[0][$i][$j];
        }
        $j = 0;
    }
    return 1;
}
# Boolean check to see if matrix is upper triangular
# i.e all nonzero elements are above main diagonal
sub is_upper_triangular {
    my ($M) = @_;
    my ($rows,$cols) = $M->dim();
    my ($i,$j) = (1,0);
    return 0 unless ($rows == $cols);
    
    for(;$i < $rows; $i++ ){
        for(;$j < $cols;$j++ ){
            next if ($i <= $j);
            return 0 if $M->[0][$i][$j];
        }
        $j = 0;
    }
    return 1;
}
# Boolean check to see if matrix is lower triangular
# i.e all nonzero elements are lower main diagonal
sub is_lower_triangular {
    my ($M) = @_;
    my ($rows,$cols) = $M->dim();
    my ($i,$j) = (0,1);
    return 0 unless ($rows == $cols);

    for(;$i < $rows; $i++ ){
        for(;$j < $cols;$j++ ){
            next if ($i >= $j);
            return 0 if $M->[0][$i][$j];
        }
        $j = 0;
    }
    return 1;
}

# Boolean check to see if matrix is diagonal
sub is_diagonal ($) {
    my ($M) = @_;
    my ($rows,$cols) = ($M->[1],$M->[2]);
    my ($i,$j) = (0,0);
    return 0 unless ($rows == $cols );
    for(;$i < $rows; $i++ ){
        for(;$j < $cols; $j++ ){
            # skip diag elements
            next if ($i == $j);
            return 0 if $M->[0][$i][$j];
        }
        $j = 0;
    }
    return 1;
}
sub is_quadratic ($) {
    croak "Usage: \$matrix->is_quadratic()" unless (@_ == 1);
    my ($matrix) = @_;
    $matrix->[1] == $matrix->[2] ? return 1 : return 0;
}

sub is_square($) {
    croak "Usage: \$matrix->is_square()" unless (@_ == 1);
    return (shift)->is_quadratic();
}

sub is_LR($) {
    croak "Usage: \$matrix->is_LR()" unless (@_ == 1);
    return (shift)->[3] ? 1 : 0;
}

sub is_normal{
    my ($matrix,$eps) = @_;
    my ($rows,$cols) = $matrix->dim;
   
    $eps ||= 1e-8; 

    (~$matrix * $matrix - $matrix * ~$matrix < $eps ) ? 1 : 0;

}

sub is_skew_symmetric{
    my ($m) = @_;
    my ($rows, $cols) = $m->dim;
    # if it is not quadratic it cannot be skew symmetric...
    return 0 unless ($rows == $cols);
    for (my $i = 1; $i < $rows; $i++) {
        for (my $j = 0; $j < $i; $j++) {
            return 0 unless ($m->[0][$i][$j] == -$m->[0][$j][$i]);
        }
    }
    return 1;

}
####
sub is_gramian{
    my ($m) = @_;
    my ($rows,$cols) = $m->dim;
    my $neg=0;
    # gramian matrix must be symmetric
    return 0 unless $m->is_symmetric;

    # must have all non-negative eigenvalues
    my $ev = $m->eigenvalues;
    $ev->each(sub { $neg++ if ((shift)<0) } );

    return $neg ? 0 : 1;
}
sub is_binary{
    my ($m) = @_;
    my ($rows, $cols) = $m->dim;
    for (my $i = 0; $i < $rows; $i++) {
        for (my $j = 0; $j < $cols; $j++) {
            return 0 unless ($m->[0][$i][$j] == 1 || $m->[0][$i][$j] == 0);
        }
    }
    return 1;

}
sub as_scilab {
    return (shift)->as_matlab;
}

sub as_matlab {
    my ($m) = shift;
    my %args = ( 
        format => "%s",
        name => "",
        semi => 0,
        @_);
    my ($row,$col) = $m->dim;
    my $s = "";
    
    if( $args{name} ){
        $s = "$args{name} = ";
    }
    $s .= "[";
    $m->each( 
        sub { my($x,$i,$j) = @_;
            $s .= sprintf(" $args{format}",$x);
            $s .= ";\n" if( $j == $col && $i != $row);
        }
        );
    $s .= "]";
    $s .= ";" if $args{semi};
    return $s;
}
#TODO: docs+test
sub as_yacas{
    my ($m) = shift;
    my %args = (
        format => "%s",
        name => "",
        semi => 0,
        @_);
    my ($row,$col) = $m->dim;
    my $s = "";

    if( $args{name} ){
        $s = "$args{name} := ";
    }
    $s .= "{";

    $m->each(
        sub { my($x,$i,$j) = @_;
            $s .= "{" if ($j == 1);
                        $s .= sprintf("$args{format}",$x);
                        $s .= "," if( $j != $col );
            $s .= "}," if ($j == $col && $i != $row);
        }
    );
    $s .= "}}";

    return $s;
}

sub as_latex{
    my ($m) = shift;
    my %args = (
        format       => "%s",
        name         => "",
        align        => "c",
        display_math => 0,
    @_);


    my ($row,$col) = $m->dim;
    my $inside;
    my $s = <<LATEX;
\\left( \\begin{array}{%COLS%}
%INSIDE%\\end{array} \\right)
LATEX
    $args{align} = lc $args{align};
    if( $args{align} !~ m/^(c|l|r)$/ ){
        croak "Math::MatrixReal::as_latex(): Invalid alignment '$args{align}'";
    }

    $s =~ s/%COLS%/$args{align} x $col/em;

    if( $args{name} ){
        $s = "$args{name} = $s";
    }
    $m->each(
        sub {
            my ($x,$i,$j) = @_;
            $x = sprintf($args{format},$x);

            # last element in each row gets a \\
            if ($j == $col && $i != $row){
                $inside .= "$x \\\\"."\n";
            # the annoying last line has neither
            } elsif( $j == $col && $i == $row){ 
                $inside .= "$x\n";
            } else {
                $inside .= "$x&";
            }
        } 
    );
    if($args{displaymath}){
            $s = "\\[$s\\]";
    } else {
            $s = "\$$s\$";
    }
    $s =~ s/%INSIDE%/$inside/gm;
    return $s;
}
#### 
sub spectral_radius 
{
    my ($matrix) = @_;
    my ($r,$c) = $matrix->dim;
    my $ev = $matrix->eigenvalues;
    my $radius=0;
    $ev->each(sub { my $x = shift; $radius = $x if (abs($x) > $radius); } );
    return $radius;
}

sub maximum {
	my ($matrix) = @_;
	my ($rows, $columns) = $matrix->dim;

	my $max = [];
	my $max_p = [];

	if ($rows == 1) {
		($max, $max_p) = _max_column($matrix->row(1)->_transpose, $columns);
	} elsif ($columns == 1) { 	
		($max, $max_p) = _max_column($matrix->column(1), $rows);
	} else {
		for my $c (1..$columns) {
			my ($m, $mp) = _max_column($matrix->column($c), $rows);
			push @$max, $m;
			push @$max_p, $mp;
		}
	}
	return wantarray ? ($max, $max_p) : $max
}

sub _max_column {
	# passing $rows allows for some extra (minimal) efficiency
	my ($column, $rows) = @_;

	my ($m, $mp) = ($column->element(1, 1), 1);
	for my $l (1..$rows) {
		if ($column->element($l, 1) > $m) {
			$m = $column->element($l, 1);
			$mp = $l;
		}
	}
	return ($m, $mp);
}

sub minimum {
	my ($matrix) = @_;
	my ($rows, $columns) = $matrix->dim;

	my $min = [];
	my $min_p = [];

	if ($rows == 1) {
		($min, $min_p) = _min_column($matrix->row(1)->_transpose, $columns);
	} elsif ($columns == 1) { 	
		($min, $min_p) = _min_column($matrix->column(1), $rows);
	} else {
		for my $c (1..$columns) {
			my ($m, $mp) = _min_column($matrix->column($c), $rows);
			push @$min, $m;
			push @$min_p, $mp;
		}
	}
	return wantarray ? ($min, $min_p) : $min
}

sub _min_column {
	# passing $rows allows for some extra (minimal) efficiency
	my ($column, $rows) = @_;

	my ($m, $mp) = ($column->element(1, 1), 1);
	for my $l (1..$rows) {
		if ($column->element($l, 1) < $m) {
			$m = $column->element($l, 1);
			$mp = $l;
		}
	}
	return ($m, $mp);
}



                ########################################
                #                                      #
                # define overloaded operators section: #
                #                                      #
                ########################################
sub _concat
{
    my($object,$argument,$flag) = @_;
    my($orows,$ocols) 		= ($object->[1],$object->[2]);
    my($name)			= "concat";


    if ((defined $argument) && ref($argument) && (ref($argument) !~ /^SCALAR$|^ARRAY$|^HASH$|^CODE$|^REF$/)) {
    	my($arows,$acols) 		= ($argument->[1],$argument->[2]);
        croak "Math::MatrixReal: Matrices must have same number of rows in concatenation" unless ($orows == $arows);
     	my $result = $object->new($orows,$ocols+$acols);
        for ( my $i = 0; $i < $arows; $i++ ) {
            for ( my $j = 0; $j < $ocols + $acols; $j++ ) {
		$result->[0][$i][$j] = ( $j <  $ocols ) ? $object->[0][$i][$j] : $argument->[0][$i][$j - $ocols] ;
            }
        }
        return $result;
    } elsif (defined $argument) {
	return "$object" . $argument;

    } else {
        croak "Math::MatrixReal $name: wrong argument type";
    }
}
sub _negate
{
    my($object) = @_;

    my $temp = $object->new($object->[1],$object->[2]);
    $temp->negate($object);
    return($temp);
}

sub _transpose
{
    my ($object) = @_;
    my $temp = $object->new($object->[2],$object->[1]);
    $temp->transpose($object);
    return $temp;
}

sub _boolean
{
    my($object) = @_;
    my($rows,$cols) = ($object->[1],$object->[2]);

    my $result = 0;

    BOOL:
    for ( my $i = 0; $i < $rows; $i++ )
    {
        for ( my $j = 0; $j < $cols; $j++ )
        {
            if ($object->[0][$i][$j] != 0)
            {
                $result = 1;
                last BOOL;
            }
        }
    }
    return($result);
}
#TODO: ugly copy+paste
sub _not_boolean
{
    my ($object) = @_;
    my ($rows,$cols) = ($object->[1],$object->[2]);

    my $result = 1;
    NOTBOOL:
    for ( my $i = 0; $i < $rows; $i++ )
    {
        for ( my $j = 0; $j < $cols; $j++ )
        {
            if ($object->[0][$i][$j] != 0)
            {
                $result = 0;
                last NOTBOOL;
            }
        }
    }
    return($result);
}

sub _stringify
{
    my ($self) = @_;
    my ($rows,$cols) = ($self->[1],$self->[2]);

    my $precision = $self->[4];

    my $format = !defined $precision ? '% #-19.12E ' : '% #-19.'.$precision.'f ';
    $format = '% #-12d' if defined $precision && $precision == 0;

    my $s = '';
    for ( my $i = 0; $i < $rows; $i++ )
    {
        $s .= "[ ";
        for ( my $j = 0; $j < $cols; $j++ )
        {
            $s .= sprintf $format , $self->[0][$i][$j];
        }
        $s .= "]\n";
    }
    return $s;
}

sub _norm
{
    my ($self) = @_;

    return $self->norm_one() ;
}

sub _add
{
    my($object,$argument,$flag) = @_;
    my($name) = "'+'"; 

    if ((defined $argument) && ref($argument) &&
        (ref($argument) !~ /^SCALAR$|^ARRAY$|^HASH$|^CODE$|^REF$/))
    {
        if (defined $flag)
        {
            my $temp = $object->new($object->[1],$object->[2]);
            $temp->add($object,$argument);
            return($temp);
        }
        else
        {
            $object->add($object,$argument);
            return($object);
        }
    }
    else
    {
        croak "Math::MatrixReal $name: wrong argument type";
    }
}

sub _subtract
{
    my($object,$argument,$flag) = @_;
    my($name) = "'-'"; 

    if ((defined $argument) && ref($argument) &&
        (ref($argument) !~ /^SCALAR$|^ARRAY$|^HASH$|^CODE$|^REF$/))
    {
        if (defined $flag)
        {
            my $temp = $object->new($object->[1],$object->[2]);
            if ($flag) { $temp->subtract($argument,$object); }
            else       { $temp->subtract($object,$argument); }
            return $temp;
        }
        else
        {
            $object->subtract($object,$argument);
            return($object);
        }
    }
    else
    {
        croak "Math::MatrixReal $name: wrong argument type";
    }
}

sub _exponent 
{
    my($matrix, $exp) = @_;
    my($rows,$cols) = ($matrix->[1],$matrix->[2]);

    return $matrix->exponent( $exp );
}
sub _divide
{
	my($matrix,$argument,$flag) = @_;
	# TODO: check dimensions of everything!
	my($mrows,$mcols) = ($matrix->[1],$matrix->[2]);
	my($arows,$acols)=(0,0);
	my($name) = "'/'";
	my $temp = $matrix->clone();
	my $arg;
	my ($inv,$m1);

	if( ref($argument) =~ /Math::MatrixReal/ ){ 
		$arg =  $argument->clone();  
		($arows,$acols)=($arg->[1],$arg->[2]);
	}
	#print "DEBUG: flag= $flag\n";
	#print "DEBUG: arg=$arg\n";
	if( $flag == 1) {
		  #print "DEBUG: ref(arg)= " . ref($arg) . "\n";
		if( ref($argument) =~ /Math::MatrixReal/ ){
			#print "DEBUG: arg is a matrix \n";
			# Matrix Division = A/B = A*B^(-1)
			croak "Math::MatrixReal $name: this operation is defined only for square matrices" unless ($arows == $acols);
			return $temp->multiply(  $arg->inverse() );	

		} else {
			#print "DEBUG: Arg is scalar\n";
			#print "DEBUG:arows,acols=$arows,$acols\n";
			#print "DEBGU:mrows,mcols=$mrows,$mcols\n";
			 croak "Math::MatrixReal $name: this operation is defined only for square matrices" unless ($mrows == $mcols);
			$temp->multiply_scalar( $temp , $argument);
			return $temp;
		}
        } else {
	#print "DEBUG: temp=\n";
	#print $temp . "\n";
	#print "DEBUG: ref(arg)= " . ref($arg) . "\n";
	#print "DEBUG: arg=\n";
	#print $arg ."\n";
	if( ref($arg) =~ /Math::MatrixReal/ ){
		#print "DEBUG: matrix division\n";
		if( $arg->is_col_vector() ){
			print "DEBUG: $arg is a col vector\n";
		}
		croak "Math::MatrixReal $name: this operation is defined only for square matrices" unless ($arows == $acols);
		$inv = $arg->inverse();
		return $temp->multiply($inv);
	} else {
		$temp->multiply_scalar($temp,1/$argument);
		return $temp;
	}
    }
   
}

sub _multiply
{
    my($object,$argument,$flag) = @_;
    my($name) = "'*'"; 
    my($temp);

    if ((defined $argument) && ref($argument) &&
        (ref($argument) !~ /^SCALAR$|^ARRAY$|^HASH$|^CODE$|^REF$/))
    {
        if ((defined $flag) && $flag)
        {
            return( multiply($argument,$object) );
        }
        else
        {
            return( multiply($object,$argument) );
        }
    }
    elsif ((defined $argument) && !(ref($argument)))
    {
        if (defined $flag)
        {
            $temp = $object->new($object->[1],$object->[2]);
            $temp->multiply_scalar($object,$argument);
            return($temp);
        }
        else
        {
            $object->multiply_scalar($object,$argument);
            return($object);
        }
    }
    else
    {
        croak "Math::MatrixReal $name: wrong argument type";
    }
}

sub _assign_add
{
    my($object,$argument) = @_;

    return( &_add($object,$argument,undef) );
}

sub _assign_subtract
{
    my($object,$argument) = @_;

    return( &_subtract($object,$argument,undef) );
}

sub _assign_multiply
{
    my($object,$argument) = @_;

    return( &_multiply($object,$argument,undef) );
}

sub _assign_exponent {
    my($object,$arg) = @_;
    return ( &_exponent($object,$arg,undef) );
}

sub _equal
{
    my($object,$argument,$flag) = @_;
    my($name) = "'=='"; 
    my($rows,$cols) = ($object->[1],$object->[2]);
    my($i,$j,$result);

    if ((defined $argument) && ref($argument) &&
        (ref($argument) !~ /^SCALAR$|^ARRAY$|^HASH$|^CODE$|^REF$/))
    {
        $result = 1;
        EQUAL:
        for ( $i = 0; $i < $rows; $i++ )
        {
            for ( $j = 0; $j < $cols; $j++ )
            {
                if ($object->[0][$i][$j] != $argument->[0][$i][$j])
                {
                    $result = 0;
                    last EQUAL;
                }
            }
        }
        return($result);
    }
    else
    {
        croak "Math::MatrixReal $name: wrong argument type";
    }
}

sub _not_equal
{
    my($object,$argument,$flag) = @_;
    my($name) = "'!='"; 
    my($rows,$cols) = ($object->[1],$object->[2]);

    if ((defined $argument) && ref($argument) &&
        (ref($argument) !~ /^SCALAR$|^ARRAY$|^HASH$|^CODE$|^REF$/))
    {
	my ($r,$c) = $argument->dim;
	return 1 unless ($r == $rows && $c == $cols );
    my $result = 0;
        NOTEQUAL:
        for ( my $i = 0; $i < $rows; $i++ )
        {
            for ( my $j = 0; $j < $cols; $j++ )
            {
                if ($object->[0][$i][$j] != $argument->[0][$i][$j])
                {
                    $result = 1;
                    last NOTEQUAL;
                }
            }
        }
        return $result;
    } else {
        croak "Math::MatrixReal $name: wrong argument type";
    }
}

sub _less_than
{
    my($object,$argument,$flag) = @_;
    my($name) = "'<'"; 

    if ((defined $argument) && ref($argument) &&
        (ref($argument) !~ /^SCALAR$|^ARRAY$|^HASH$|^CODE$|^REF$/))
    {
        if ((defined $flag) && $flag)
        {
            return( $argument->norm_one() < $object->norm_one() );
        } else {
            return( $object->norm_one() < $argument->norm_one() );
        }
    }
    elsif ((defined $argument) && !(ref($argument)))
    {
        if ((defined $flag) && $flag)
        {
            return( abs($argument) < $object->norm_one() );
        } else {
            return( $object->norm_one() < abs($argument) );
        }
    } else {
        croak "Math::MatrixReal $name: wrong argument type";
    }
}

sub _less_than_or_equal
{
    my($object,$argument,$flag) = @_;
    my($name) = "'<='"; 

    if ((defined $argument) && ref($argument) &&
        (ref($argument) !~ /^SCALAR$|^ARRAY$|^HASH$|^CODE$|^REF$/))
    {
        if ((defined $flag) && $flag)
        {
            return( $argument->norm_one() <= $object->norm_one() );
        } else {
            return( $object->norm_one() <= $argument->norm_one() );
        }
    } elsif ((defined $argument) && !(ref($argument))) {
        if ((defined $flag) && $flag)
        {
            return( abs($argument) <= $object->norm_one() );
        } else {
            return( $object->norm_one() <= abs($argument) );
        }
    } else {
        croak "Math::MatrixReal $name: wrong argument type";
    }
}

sub _greater_than
{
    my($object,$argument,$flag) = @_;
    my($name) = "'>'"; 

    if ((defined $argument) && ref($argument) &&
        (ref($argument) !~ /^SCALAR$|^ARRAY$|^HASH$|^CODE$|^REF$/))
    {
        if ((defined $flag) && $flag)
        {
            return( $argument->norm_one() > $object->norm_one() );
        } else {
            return( $object->norm_one() > $argument->norm_one() );
        }
    } elsif ((defined $argument) && !(ref($argument))) {
        if ((defined $flag) && $flag)
        {
            return( abs($argument) > $object->norm_one() );
        } else {
            return( $object->norm_one() > abs($argument) );
        }
    } else {
        croak "Math::MatrixReal $name: wrong argument type";
    }
}

sub _greater_than_or_equal
{
    my($object,$argument,$flag) = @_;
    my($name) = "'>='"; 

    if ((defined $argument) && ref($argument) &&
        (ref($argument) !~ /^SCALAR$|^ARRAY$|^HASH$|^CODE$|^REF$/))
    {
        if ((defined $flag) && $flag)
        {
            return( $argument->norm_one() >= $object->norm_one() );
        } else {
            return( $object->norm_one() >= $argument->norm_one() );
        }
    } elsif ((defined $argument) && !(ref($argument))) {
        if ((defined $flag) && $flag)
        {
            return( abs($argument) >= $object->norm_one() );
        } else {
            return( $object->norm_one() >= abs($argument) );
        }
    } else {
        croak "Math::MatrixReal $name: wrong argument type";
    }
}

sub _clone
{
    my($object) = @_;

    my $temp = $object->new($object->[1],$object->[2]);
    $temp->copy($object);
    $temp->_undo_LR();
    return $temp;
}
{ no warnings; 42 }
__END__


=head1 FUNCTIONS

=head2 Constructor Methods And Such

=over 4

=item * use Math::MatrixReal;

Makes the methods and overloaded operators of this module available
to your program.

=item * $new_matrix = new Math::MatrixReal($rows,$columns);

The matrix object constructor method. A new matrix of size $rows by $columns
will be created, with the value C<0.0> for all elements.

Note that this method is implicitly called by many of the other methods
in this module.

=item * $new_matrix = $some_matrix-E<gt>new($rows,$columns);

Another way of calling the matrix object constructor method.

Matrix $some_matrix is not changed by this in any way.

=item * $new_matrix = $matrix-E<gt>new_from_cols( [ $column_vector|$array_ref|$string, ... ] )

Creates a new matrix given a reference to an array of any of the following:

=over 4

=item * column vectors ( n by 1 Math::MatrixReal matrices )

=item * references to arrays

=item * strings properly formatted to create a column with Math::MatrixReal's
new_from_string command

=back

You may mix and match these as you wish.  However, all must be of the
same dimension--no padding happens automatically.  Example: 

    my $matrix = Math::MatrixReal->new_from_cols( [ [1,2], [3,4] ] );
    print $matrix;

will print

    [  1.000000000000E+00  3.000000000000E+00 ]
    [  2.000000000000E+00  4.000000000000E+00 ]


=item * new_from_rows( [ $row_vector|$array_ref|$string, ... ] )

Creates a new matrix given a reference to an array of any of the following:

=over 4

=item * row vectors ( 1 by n Math::MatrixReal matrices )

=item * references to arrays

=item * strings properly formatted to create a row with Math::MatrixReal's new_from_string command

=back

You may mix and match these as you wish.  However, all must be of the
same dimension--no padding happens automatically. Example:

        my $matrix = Math::MatrixReal->new_from_rows( [ [1,2], [3,4] ] );
        print $matrix;

will print

        [  1.000000000000E+00  2.000000000000E+00 ]
        [  3.000000000000E+00  4.000000000000E+00 ]


=item * $new_matrix = Math::MatrixReal-E<gt>new_random($rows, $cols, %options );

This method allows you to create a random matrix with various properties controlled
by the %options matrix, which is optional. The default values of the %options matrix
are { integer => 0, symmetric => 0, tridiagonal => 0, diagonal => 0, bounded_by => [0,10] } .

 Example: 

    $matrix = Math::MatrixReal->new_random(4, { diagonal => 1, integer => 1 }  );
    print $matrix;

will print a 4x4 random diagonal matrix with integer entries between zero and ten, something like

    [  5.000000000000E+00  0.000000000000E+00  0.000000000000E+00  0.000000000000E+00 ]
    [  0.000000000000E+00  2.000000000000E+00  0.000000000000E+00  0.000000000000E+00 ]
    [  0.000000000000E+00  0.000000000000E+00  1.000000000000E+00  0.000000000000E+00 ]
    [  0.000000000000E+00  0.000000000000E+00  0.000000000000E+00  8.000000000000E+00 ]


=item * $new_matrix = Math::MatrixReal-E<gt>new_diag( $array_ref );

This method allows you to create a diagonal matrix by only specifying
the diagonal elements. Example: 

    $matrix = Math::MatrixReal->new_diag( [ 1,2,3,4 ] );
    print $matrix;

will print

    [  1.000000000000E+00  0.000000000000E+00  0.000000000000E+00  0.000000000000E+00 ]
    [  0.000000000000E+00  2.000000000000E+00  0.000000000000E+00  0.000000000000E+00 ]
    [  0.000000000000E+00  0.000000000000E+00  3.000000000000E+00  0.000000000000E+00 ]
    [  0.000000000000E+00  0.000000000000E+00  0.000000000000E+00  4.000000000000E+00 ]


=item * $new_matrix = Math::MatrixReal-E<gt>new_tridiag( $lower, $diag, $upper );

This method allows you to create a tridiagonal matrix by only specifying
the lower diagonal, diagonal and upper diagonal, respectively.

    $matrix = Math::MatrixReal->new_tridiag( [ 6, 4, 2 ], [1,2,3,4], [1, 8, 9] );
    print $matrix;

will print

    [  1.000000000000E+00  1.000000000000E+00  0.000000000000E+00  0.000000000000E+00 ]
    [  6.000000000000E+00  2.000000000000E+00  8.000000000000E+00  0.000000000000E+00 ]
    [  0.000000000000E+00  4.000000000000E+00  3.000000000000E+00  9.000000000000E+00 ]
    [  0.000000000000E+00  0.000000000000E+00  2.000000000000E+00  4.000000000000E+00 ]


=item * $new_matrix = Math::MatrixReal-E<gt>new_from_string($string);

This method allows you to read in a matrix from a string (for
instance, from the keyboard, from a file or from your code).

The syntax is simple: each row must start with "C<[ >" and end with
"C< ]\n>" ("C<\n>" being the newline character and "C< >" a space or
tab) and contain one or more numbers, all separated from each other
by spaces or tabs.

Additional spaces or tabs can be added at will, but no comments.

Examples:

  $string = "[ 1 2 3 ]\n[ 2 2 -1 ]\n[ 1 1 1 ]\n";
  $matrix = Math::MatrixReal->new_from_string($string);
  print "$matrix";

By the way, this prints

  [  1.000000000000E+00  2.000000000000E+00  3.000000000000E+00 ]
  [  2.000000000000E+00  2.000000000000E+00 -1.000000000000E+00 ]
  [  1.000000000000E+00  1.000000000000E+00  1.000000000000E+00 ]

But you can also do this in a much more comfortable way using the
shell-like "here-document" syntax:

  $matrix = Math::MatrixReal->new_from_string(<<'MATRIX');
  [  1  0  0  0  0  0  1  ]
  [  0  1  0  0  0  0  0  ]
  [  0  0  1  0  0  0  0  ]
  [  0  0  0  1  0  0  0  ]
  [  0  0  0  0  1  0  0  ]
  [  0  0  0  0  0  1  0  ]
  [  1  0  0  0  0  0 -1  ]
  MATRIX

You can even use variables in the matrix:

  $c1 =   2  /  3;
  $c2 =  -2  /  5;
  $c3 =  26  /  9;

  $matrix = Math::MatrixReal->new_from_string(<<"MATRIX");

      [   3    2    0   ]
      [   0    3    2   ]
      [  $c1  $c2  $c3  ]

  MATRIX

(Remember that you may use spaces and tabs to format the matrix to
your taste)

Note that this method uses exactly the same representation for a
matrix as the "stringify" operator "": this means that you can convert
any matrix into a string with C<$string = "$matrix";> and read it back
in later (for instance from a file!).

Note however that you may suffer a precision loss in this process
because only 13 digits are supported in the mantissa when printed!!

If the string you supply (or someone else supplies) does not obey
the syntax mentioned above, an exception is raised, which can be
caught by "eval" as follows:

  print "Please enter your matrix (in one line): ";
  $string = <STDIN>;
  $string =~ s/\\n/\n/g;
  eval { $matrix = Math::MatrixReal->new_from_string($string); };
  if ($@)
  {
      print "$@";
      # ...
      # (error handling)
  }
  else
  {
      # continue...
  }

or as follows:

  eval { $matrix = Math::MatrixReal->new_from_string(<<"MATRIX"); };
  [   3    2    0   ]
  [   0    3    2   ]
  [  $c1  $c2  $c3  ]
  MATRIX
  if ($@)
  # ...

Actually, the method shown above for reading a matrix from the keyboard
is a little awkward, since you have to enter a lot of "\n"'s for the
newlines.

A better way is shown in this piece of code:

  while (1)
  {
      print "\nPlease enter your matrix ";
      print "(multiple lines, <ctrl-D> = done):\n";
      eval { $new_matrix =
          Math::MatrixReal->new_from_string(join('',<STDIN>)); };
      if ($@)
      {
          $@ =~ s/\s+at\b.*?$//;
          print "${@}Please try again.\n";
      }
      else { last; }
  }

Possible error messages of the "new_from_string()" method are:

  Math::MatrixReal::new_from_string(): syntax error in input string
  Math::MatrixReal::new_from_string(): empty input string

If the input string has rows with varying numbers of columns,
the following warning will be printed to STDERR:

  Math::MatrixReal::new_from_string(): missing elements will be set to zero!

If everything is okay, the method returns an object reference to the
(newly allocated) matrix containing the elements you specified.

=item * $new_matrix = $some_matrix-E<gt>shadow();

Returns an object reference to a B<NEW> but B<EMPTY> matrix
(filled with zero's) of the B<SAME SIZE> as matrix "C<$some_matrix>".

Matrix "C<$some_matrix>" is not changed by this in any way.

=item * $matrix1-E<gt>copy($matrix2);

Copies the contents of matrix "C<$matrix2>" to an B<ALREADY EXISTING>
matrix "C<$matrix1>" (which must have the same size as matrix "C<$matrix2>"!).

Matrix "C<$matrix2>" is not changed by this in any way.

=item * $twin_matrix = $some_matrix-E<gt>clone();

Returns an object reference to a B<NEW> matrix of the B<SAME SIZE> as
matrix "C<$some_matrix>". The contents of matrix "C<$some_matrix>" have
B<ALREADY BEEN COPIED> to the new matrix "C<$twin_matrix>". This
is the method that the operator "=" is overloaded to when you type
C<$a = $b>, when C<$a> and C<$b> are matrices.

Matrix "C<$some_matrix>" is not changed by this in any way.

=item * $matrix = Math::MatrixReal->reshape($rows, $cols, $array_ref);

Return a matrix with the specified dimensions (C<$rows> x C<$cols>)  whose
elements are taken from the array reference C<$array_ref>.  The elements of
the matrix are accessed in column-major order (like Fortran arrays are
stored).

     $matrix = Math::MatrixReal->reshape(4, 3, [1..12]);

Creates the following matrix:

    [ 1    5    9 ]
    [ 2    6   10 ]
    [ 3    7   11 ]
    [ 4    8   12 ]

=back

=head2 Matrix Row, Column and Element operations

=over 4

=item * $value = $matrix-E<gt>element($row,$column);

Returns the value of a specific element of the matrix "C<$matrix>",
located in row "C<$row>" and column "C<$column>".

B<NOTE:> Unlike Perl, matrices are indexed with base-one indexes. Thus, the
first element of the matrix is placed in the B<first> line, B<first> column:

    $elem = $matrix->element(1, 1); # first element of the matrix.
    
=item * $matrix-E<gt>assign($row,$column,$value);

Explicitly assigns a value "C<$value>" to a single element of the
matrix "C<$matrix>", located in row "C<$row>" and column "C<$column>",
thereby replacing the value previously stored there.

=item * $row_vector = $matrix-E<gt>row($row);

This is a projection method which returns an object reference to
a B<NEW> matrix (which in fact is a (row) vector since it has only
one row) to which row number "C<$row>" of matrix "C<$matrix>" has
already been copied.

Matrix "C<$matrix>" is not changed by this in any way.

=item * $column_vector = $matrix-E<gt>column($column);

This is a projection method which returns an object reference to
a B<NEW> matrix (which in fact is a (column) vector since it has
only one column) to which column number "C<$column>" of matrix
"C<$matrix>" has already been copied.

Matrix "C<$matrix>" is not changed by this in any way.

=item * @all_elements = $matrix-E<gt>as_list;

Get the contents of a Math::MatrixReal object as a Perl list.

Example:

   my $matrix = Math::MatrixReal->new_from_rows([ [1, 2], [3, 4] ]);
   my @list = $matrix->as_list; # 1, 2, 3, 4

This method is suitable for use with OpenGL. For example, there is need to
rotate model around X-axis to 90 degrees clock-wise. That could be achieved via:

 use Math::Trig;
 use OpenGL;
 ...;
 my $axis = [1, 0, 0];
 my $angle = 90;
 ...
 my ($x, $y, $z) = @$axis;
 my $f = $angle;
 my $cos_f = cos(deg2rad($f));
 my $sin_f = sin(deg2rad($f));
 my $rotation = Math::MatrixReal->new_from_rows([
    [$cos_f+(1-$cos_f)*$x**2,    (1-$cos_f)*$x*$y-$sin_f*$z, (1-$cos_f)*$x*$z+$sin_f*$y, 0 ],
    [(1-$cos_f)*$y*$z+$sin_f*$z, $cos_f+(1-$cos_f)*$y**2 ,   (1-$cos_f)*$y*$z-$sin_f*$x, 0 ],
    [(1-$cos_f)*$z*$x-$sin_f*$y, (1-$cos_f)*$z*$y+$sin_f*$x, $cos_f+(1-$cos_f)*$z**2    ,0 ],
    [0,                          0,                          0,                          1 ],
 ]);
 ...;
 my $model_initial = Math::MatrixReal->new_diag( [1, 1, 1, 1] ); # identity matrix
 my $model = $model_initial * $rotation;
 $model = ~$model; # OpenGL operates on transposed matrices
 my $model_oga = OpenGL::Array->new_list(GL_FLOAT, $model->as_list);
 $shader->SetMatrix(model => $model_oga); # instance of OpenGL::Shader

See L<OpenGL>, L<OpenGL::Shader>, L<OpenGL::Array>,
L<rotation matrix|https://en.wikipedia.org/wiki/Rotation_matrix>.

=item * $new_matrix = $matrix-E<gt>each( \&function );

Creates a new matrix by evaluating a code reference on each element of the 
given matrix. The function is passed the element, the row index and the column
index, in that order. The value the function returns ( or the value of the last
executed statement ) is the value given to the corresponding element in $new_matrix.

Example:

    # add 1 to every element in the matrix
    $matrix = $matrix->each ( sub { (shift) + 1 } );


Example:

    my $cofactor = $matrix->each( sub { my(undef,$i,$j) = @_;
        ($i+$j) % 2 == 0 ? $matrix->minor($i,$j)->det()
        : -1*$matrix->minor($i,$j)->det();
        } );

This code needs some explanation. For each element of $matrix, it throws away the actual value
and stores the row and column indexes in $i and $j. Then it sets element [$i,$j] in $cofactor
to the determinant of C<$matrix-E<gt>minor($i,$j)> if it is an "even" element, or C<-1*$matrix-E<gt>minor($i,$j)>
if it is an "odd" element.

=item * $new_matrix = $matrix-E<gt>each_diag( \&function );

Creates a new matrix by evaluating a code reference on each diagonal element of the 
given matrix. The function is passed the element, the row index and the column
index, in that order. The value the function returns ( or the value of the last
executed statement ) is the value given to the corresponding element in $new_matrix.


=item * $matrix-E<gt>swap_col( $col1, $col2 );

This method takes two one-based column numbers and swaps the values of each element in each column.
C<$matrix-E<gt>swap_col(2,3)> would replace column 2 in $matrix with column 3, and replace column
3 with column 2. 

=item * $matrix-E<gt>swap_row( $row1, $row2 );

This method takes two one-based row numbers and swaps the values of each element in each row.
C<$matrix-E<gt>swap_row(2,3)> would replace row 2 in $matrix with row 3, and replace row
3 with row 2. 

=item * $matrix-E<gt>assign_row( $row_number , $new_row_vector );

This method takes a one-based row number and assigns row $row_number of $matrix
with $new_row_vector and returns the resulting matrix.
C<$matrix-E<gt>assign_row(5, $x)> would replace row 5 in $matrix with the row vector $x.

=item * $matrix-E<gt>maximum();  and  $matrix-E<gt>minimum();

These two methods work similarly, one for computing the maximum element or
elements from a matrix, and the minimum element or elements from a matrix.
They work in a similar way as Octave/MatLab max/min functions.

When computing the maximum or minimum from a vector (vertical or horizontal),
only one element is returned. When  computing the maximum or minimum from a
matrix, the maximum/minimum element for each column is returned in an array
reference.

When called in list context, the function returns a pair, where the first
element is the maximum/minimum element (or elements) and the second is the
position of that value in the vector (first occurrence), or the row where it
occurs, for matrices.

Consider the matrix and vector below for the following examples:

           [ 1 9 4 ] 
      $A = [ 3 5 2 ]       $B = [ 8 7 9 5 3 ]
           [ 8 7 6 ]

When used in scalar context:

    $max = $A->maximum();    # $max = [ 8, 9, 6 ]
    $min = $B->minimum();    # $min = 3

When used in list context:

    ($min, $pos) = $A->minimum(); # $min = [ 1 5 2 ]
                                  # $pos = [ 1 2 2 ]
    ($max, $pos) = $B->maximum(); # $max = 9
                                  # $pos = 3


=back

=head2 Matrix Operations

=over 4

=item *

C<$det = $matrix-E<gt>det();>

Returns the determinant of the matrix, without going through
the rigamarole of computing a LR decomposition. This method should
be much faster than LR decomposition if the matrix is diagonal or
triangular. Otherwise, it is just a wrapper for 
C<$matrix-E<gt>decompose_LR-E<gt>det_LR>. If the determinant is zero, 
there is no inverse and vice-versa. Only quadratic matrices have 
determinants.

=item *

C<$inverse = $matrix-E<gt>inverse();>

Returns the inverse of a matrix, without going through the
rigamarole of computing a LR decomposition. If no inverse exists,
undef is returned and an error is printed via C<carp()>.
This is nothing but a wrapper for C<$matrix-E<gt>decompose_LR-E<gt>invert_LR>.

=item *

C<($rows,$columns) = $matrix-E<gt>dim();>

Returns a list of two items, representing the number of rows
and columns the given matrix "C<$matrix>" contains.

=item *

C<$norm_one = $matrix-E<gt>norm_one();>

Returns the "one"-norm of the given matrix "C<$matrix>".

The "one"-norm is defined as follows:

For each column, the sum of the absolute values of the elements in the
different rows of that column is calculated. Finally, the maximum
of these sums is returned.

Note that the "one"-norm and the "maximum"-norm are mathematically
equivalent, although for the same matrix they usually yield a different
value.

Therefore, you should only compare values that have been calculated
using the same norm!

Throughout this package, the "one"-norm is (arbitrarily) used
for all comparisons, for the sake of uniformity and comparability,
except for the iterative methods "solve_GSM()", "solve_SSM()" and
"solve_RM()" which use either norm depending on the matrix itself.

=item *

C<$norm_max = $matrix-E<gt>norm_max();>

Returns the "maximum"-norm of the given matrix $matrix.

The "maximum"-norm is defined as follows:

For each row, the sum of the absolute values of the elements in the
different columns of that row is calculated. Finally, the maximum
of these sums is returned.

Note that the "maximum"-norm and the "one"-norm are mathematically
equivalent, although for the same matrix they usually yield a different
value.

Therefore, you should only compare values that have been calculated
using the same norm!

Throughout this package, the "one"-norm is (arbitrarily) used
for all comparisons, for the sake of uniformity and comparability,
except for the iterative methods "solve_GSM()", "solve_SSM()" and
"solve_RM()" which use either norm depending on the matrix itself.

=item *

C<$norm_sum = $matrix-E<gt>norm_sum();>

This is a very simple norm which is defined as the sum of the 
absolute values of every element.

=item *

C<$p_norm> = $matrix-E<gt>norm_p($n);>

This function returns the "p-norm" of a vector. The argument $n
must be a number greater than or equal to 1 or the string "Inf".
The p-norm is defined as (sum(x_i^p))^(1/p). In words, it raised
each element to the p-th power, adds them up, and then takes the
p-th root of that number. If the string "Inf" is passed, the
"infinity-norm" is computed, which is really the limit of the 
p-norm as p goes to infinity. It is defined as the maximum element
of the vector. Also, note that the familiar Euclidean distance 
between two vectors is just a special case of a p-norm, when p is
equal to 2.

Example:
    $a = Math::MatrixReal->new_from_cols([[1,2,3]]);
    $p1   = $a->norm_p(1);
        $p2   = $a->norm_p(2);    
        $p3   = $a->norm_p(3);    
    $pinf = $a->norm_p("Inf");

    print "(1,2,3,Inf) norm:\n$p1\n$p2\n$p3\n$pinf\n";

    $i1 = $a->new_from_rows([[1,0]]);
    $i2 = $a->new_from_rows([[0,1]]);

    # this should be sqrt(2) since it is the same as the 
    # hypotenuse of a 1 by 1 right triangle

    $dist  = ($i1-$i2)->norm_p(2);
    print "Distance is $dist, which should be " . sqrt(2) . "\n";

Output:

    (1,2,3,Inf) norm:
    6
    3.74165738677394139
    3.30192724889462668
    3

    Distance is 1.41421356237309505, which should be 1.41421356237309505



=item *

C<$frob_norm> = C<$matrix-E<gt>norm_frobenius();>

This norm is similar to that of a p-norm where p is 2, except it
acts on a B<matrix>, not a vector. Each element of the matrix is 
squared, this is added up, and then a square root is taken. 

=item *

C<$matrix-E<gt>spectral_radius();>

Returns the maximum value of the absolute value of all eigenvalues.
Currently this computes B<all> eigenvalues, then sifts through them
to find the largest in absolute value. Needless to say, this is very
inefficient, and in the future an algorithm that computes only the 
largest eigenvalue may be implemented.

=item *

C<$matrix1-E<gt>transpose($matrix2);>

Calculates the transposed matrix of matrix $matrix2 and stores
the result in matrix "C<$matrix1>" (which must already exist and have
the same size as matrix "C<$matrix2>"!).

This operation can also be carried out "in-place", i.e., input and
output matrix may be identical.

Transposition is a symmetry operation: imagine you rotate the matrix
along the axis of its main diagonal (going through elements (1,1),
(2,2), (3,3) and so on) by 180 degrees.

Another way of looking at it is to say that rows and columns are
swapped. In fact the contents of element C<(i,j)> are swapped
with those of element C<(j,i)>.

Note that (especially for vectors) it makes a big difference if you
have a row vector, like this:

  [ -1 0 1 ]

or a column vector, like this:

  [ -1 ]
  [  0 ]
  [  1 ]

the one vector being the transposed of the other!

This is especially true for the matrix product of two vectors:

               [ -1 ]
  [ -1 0 1 ] * [  0 ]  =  [ 2 ] ,  whereas
               [  1 ]

                             *     [ -1  0  1 ]
  [ -1 ]                                            [  1  0 -1 ]
  [  0 ] * [ -1 0 1 ]  =  [ -1 ]   [  1  0 -1 ]  =  [  0  0  0 ]
  [  1 ]                  [  0 ]   [  0  0  0 ]     [ -1  0  1 ]
                          [  1 ]   [ -1  0  1 ]

So be careful about what you really mean!

Hint: throughout this module, whenever a vector is explicitly required
for input, a B<COLUMN> vector is expected!

=item *

C<$trace = $matrix-E<gt>trace();>

This returns the trace of the matrix, which is defined as
the sum of the diagonal elements. The matrix must be
quadratic.

=item *

C<$minor = $matrix-E<gt>minor($row,$col);>

Returns the minor matrix corresponding to $row and $col. $matrix must be quadratic.
If $matrix is n rows by n cols, the minor of $row and $col will be an (n-1) by (n-1)
matrix. The minor is defined as crossing out the row and the col specified and returning
the remaining rows and columns as a matrix. This method is used by C<cofactor()>.

=item *

C<$cofactor = $matrix-E<gt>cofactor();>

The cofactor matrix is constructed as follows:

For each element, cross out the row and column that it sits in.
Now, take the determinant of the matrix that is left in the other
rows and columns.
Multiply the determinant by (-1)^(i+j), where i is the row index,
and j is the column index. 
Replace the given element with this value.

The cofactor matrix can be used to find the inverse of the matrix. One formula for the
inverse of a matrix is the cofactor matrix transposed divided by the original
determinant of the matrix. 

The following two inverses should be exactly the same:

    my $inverse1 = $matrix->inverse;
    my $inverse2 = ~($matrix->cofactor)->each( sub { (shift)/$matrix->det() } );

Caveat: Although the cofactor matrix is simple algorithm to compute the inverse of a matrix, and
can be used with pencil and paper for small matrices, it is comically slower than 
the native C<inverse()> function. Here is a small benchmark:

    # $matrix1 is 15x15
    $det = $matrix1->det;
    timethese( 10,
        {'inverse' => sub { $matrix1->inverse(); },
          'cofactor' => sub { (~$matrix1->cofactor)->each ( sub { (shift)/$det; } ) }
        } );


    Benchmark: timing 10 iterations of LR, cofactor, inverse...
        inverse:  1 wallclock secs ( 0.56 usr +  0.00 sys =  0.56 CPU) @ 17.86/s (n=10)
    cofactor: 36 wallclock secs (36.62 usr +  0.01 sys = 36.63 CPU) @  0.27/s (n=10)

=item *

C<$adjoint = $matrix-E<gt>adjoint();>

The adjoint is just the transpose of the cofactor matrix. This method is 
just an alias for C< ~($matrix-E<gt>cofactor)>.

=item *

C<$part_of_matrix = $matrix-E<gt>submatrix(x1,y1,x2,Y2);>

Submatrix permits one to select only part of existing matrix in order to produce a new one.
This method take four arguments to define a selection area:

=over 6

=item    - firstly: Coordinate of top left corner to select (x1,y1)

=item    - secondly: Coordinate of bottom right corner to select (x2,y2)
    
=back

Example:

    my $matrix = Math::MatrixReal->new_from_string(<<'MATRIX');
    [  0  0  0  0  0  0  0  ]
    [  0  0  0  0  0  0  0  ]
    [  0  0  0  0  0  0  0  ]
    [  0  0  0  0  0  0  0  ]
    [  0  0  0  0  1  0  1  ]
    [  0  0  0  0  0  1  0  ]
    [  0  0  0  0  1  0  1  ]
    MATRIX
    
    my $submatrix = $matrix->submatrix(5,5,7,7);
    $submatrix->display_precision(0);
    print $submatrix;

Output:

    [  1  0  1  ]
    [  0  1  0  ]
    [  1  0  1  ]

=back

=head2 Arithmetic Operations

=over 4

=item *

C<$matrix1-E<gt>add($matrix2,$matrix3);>

Calculates the sum of matrix "C<$matrix2>" and matrix "C<$matrix3>"
and stores the result in matrix "C<$matrix1>" (which must already exist
and have the same size as matrix "C<$matrix2>" and matrix "C<$matrix3>"!).

This operation can also be carried out "in-place", i.e., the output and
one (or both) of the input matrices may be identical.

=item *

C<$matrix1-E<gt>subtract($matrix2,$matrix3);>

Calculates the difference of matrix "C<$matrix2>" minus matrix "C<$matrix3>"
and stores the result in matrix "C<$matrix1>" (which must already exist
and have the same size as matrix "C<$matrix2>" and matrix "C<$matrix3>"!).

This operation can also be carried out "in-place", i.e., the output and
one (or both) of the input matrices may be identical.

Note that this operation is the same as
C<$matrix1-E<gt>add($matrix2,-$matrix3);>, although the latter is
a little less efficient.

=item *

C<$matrix1-E<gt>multiply_scalar($matrix2,$scalar);>

Calculates the product of matrix "C<$matrix2>" and the number "C<$scalar>"
(i.e., multiplies each element of matrix "C<$matrix2>" with the factor
"C<$scalar>") and stores the result in matrix "C<$matrix1>" (which must
already exist and have the same size as matrix "C<$matrix2>"!).

This operation can also be carried out "in-place", i.e., input and
output matrix may be identical.

=item *

C<$product_matrix = $matrix1-E<gt>multiply($matrix2);>

Calculates the product of matrix "C<$matrix1>" and matrix "C<$matrix2>"
and returns an object reference to a new matrix "C<$product_matrix>" in
which the result of this operation has been stored.

Note that the dimensions of the two matrices "C<$matrix1>" and "C<$matrix2>"
(i.e., their numbers of rows and columns) must harmonize in the following
way (example):

                          [ 2 2 ]
                          [ 2 2 ]
                          [ 2 2 ]

              [ 1 1 1 ]   [ * * ]
              [ 1 1 1 ]   [ * * ]
              [ 1 1 1 ]   [ * * ]
              [ 1 1 1 ]   [ * * ]

I.e., the number of columns of matrix "C<$matrix1>" has to be the same
as the number of rows of matrix "C<$matrix2>".

The number of rows and columns of the resulting matrix "C<$product_matrix>"
is determined by the number of rows of matrix "C<$matrix1>" and the number
of columns of matrix "C<$matrix2>", respectively.

=item *

C<$matrix1-E<gt>negate($matrix2);>

Calculates the negative of matrix "C<$matrix2>" (i.e., multiplies
all elements with "-1") and stores the result in matrix "C<$matrix1>"
(which must already exist and have the same size as matrix "C<$matrix2>"!).

This operation can also be carried out "in-place", i.e., input and
output matrix may be identical.


=item *

C<$matrix_to_power = $matrix1-E<gt>exponent($integer);>

Raises the matrix to the C<$integer> power. Obviously, C<$integer> must
be an integer. If it is zero, the identity matrix is returned. If a negative
integer is given, the inverse will be computed (if it exists) and then raised
the the absolute value of C<$integer>. The matrix must be quadratic.

=back

=head2 Boolean Matrix Operations

=over 4

=item * 

C<$matrix-E<gt>is_quadratic();>

Returns a boolean value indicating if the given matrix is 
quadratic (also know as "square" or "n by n"). A matrix is 
quadratic if it has the same number of rows as it does columns.

=item * 

C<$matrix-E<gt>is_square();>

This is an alias for C<is_quadratic()>.


=item *

C<$matrix-E<gt>is_symmetric();>

Returns a boolean value indicating if the given matrix is
symmetric. By definition, a matrix is symmetric if and only
if (B<M>[I<i>,I<j>]=B<M>[I<j>,I<i>]). This is equivalent to
C<($matrix == ~$matrix)> but without memory allocation.
Only quadratic matrices can be symmetric.

Notes: A symmetric matrix always has real eigenvalues/eigenvectors.
A matrix plus its transpose is always symmetric.

=item *

C<$matrix-E<gt>is_skew_symmetric();>

Returns a boolean value indicating if the given matrix is
skew symmetric. By definition, a matrix is symmetric if and only
if (B<M>[I<i>,I<j>]=B<-M>[I<j>,I<i>]). This is equivalent to
C<($matrix == -(~$matrix))> but without memory allocation.
Only quadratic matrices can be skew symmetric.


=item *

C<$matrix-E<gt>is_diagonal();>

Returns a boolean value indicating if the given matrix is
diagonal, i.e. all of the nonzero elements are on the main diagonal.
Only quadratic matrices can be diagonal.

=item * 

C<$matrix-E<gt>is_tridiagonal();>

Returns a boolean value indicating if the given matrix is 
tridiagonal, i.e. all of the nonzero elements are on the main diagonal
or the diagonals above and below the main diagonal.
Only quadratic matrices can be tridiagonal.


=item *

C<$matrix-E<gt>is_upper_triangular();>

Returns a boolean value indicating if the given matrix is upper triangular, 
i.e. all of the nonzero elements not on the main diagonal are above it.
Only quadratic matrices can be upper triangular.
Note: diagonal matrices are both upper and lower triangular.


=item *

C<$matrix-E<gt>is_lower_triangular();>

Returns a boolean value indicating if the given matrix is lower triangular,
i.e. all of the nonzero elements not on the main diagonal are below it.
Only quadratic matrices can be lower triangular.
Note: diagonal matrices are both upper and lower triangular.

=item *

C<$matrix-E<gt>is_orthogonal();>

Returns a boolean value indicating if the given matrix is orthogonal.
An orthogonal matrix is has the property that the transpose equals the
inverse of the matrix. Instead of computing each and comparing them, this
method multiplies the matrix by it's transpose, and returns true if this 
turns out to be the identity matrix, false otherwise.
Only quadratic matrices can orthogonal.

=item *

C<$matrix-E<gt>is_binary();>

Returns a boolean value indicating if the given matrix is binary.
A matrix is binary if it contains only zeroes or ones. 

=item *

C<$matrix-E<gt>is_gramian();>

Returns a boolean value indicating if the give matrix is Gramian.
A matrix C<$A> is Gramian if and only if there exists a
square matrix C<$B> such that C<$A = ~$B*$B>. This is equivalent to
checking if C<$A> is symmetric and has all nonnegative eigenvalues, which
is what Math::MatrixReal uses to check for this property.

=item *

C<$matrix-E<gt>is_LR();>

Returns a boolean value indicating if the matrix is an LR decomposition
matrix.

=item *

C<$matrix-E<gt>is_positive();>

Returns a boolean value indicating if the matrix contains only
positive entries. Note that a zero entry is not positive and
will cause C<is_positive()> to return false.

=item *

C<$matrix-E<gt>is_negative();>

Returns a boolean value indicating if the matrix contains only
negative entries. Note that a zero entry is not negative and
will cause C<is_negative()> to return false.

=item *

C<$matrix-E<gt>is_periodic($k);>

Returns a boolean value indicating if the matrix is periodic
with period $k. This is true if C<$matrix ** ($k+1) == $matrix>.
When C<$k == 1>, this reduces down to the C<is_idempotent()>
function. 

=item *

C<$matrix-E<gt>is_idempotent();>

Returns a boolean value indicating if the matrix is idempotent,
which is defined as the square of the matrix being equal to 
the original matrix, i.e C<$matrix ** 2 == $matrix>.

=item *

C<$matrix-E<gt>is_row_vector();>

Returns a boolean value indicating if the matrix is a row vector.
A row vector is a matrix which is 1xn. Note that the 1x1 matrix is
both a row and column vector.

=item *

C<$matrix-E<gt>is_col_vector();>

Returns a boolean value indicating if the matrix is a col vector.
A col vector is a matrix which is nx1. Note that the 1x1 matrix is
both a row and column vector.

=back 

=head2 Eigensystems

=over 2

=item *

C<($l, $V) = $matrix-E<gt>sym_diagonalize();>

This method performs the diagonalization of the quadratic
I<symmetric> matrix B<M> stored in $matrix.
On output, B<l> is a column vector containing all the eigenvalues
of B<M> and B<V> is an orthogonal matrix which columns are the
corresponding normalized eigenvectors.
The primary property of an eigenvalue I<l> and an eigenvector
B<x> is of course that: B<M> * B<x> = I<l> * B<x>.

The method uses a Householder reduction to tridiagonal form
followed by a QL algorithm with implicit shifts on this
tridiagonal. (The tridiagonal matrix is kept internally
in a compact form in this routine to save memory.)
In fact, this routine wraps the householder() and
tri_diagonalize() methods described below when their
intermediate results are not desired.
The overall algorithmic complexity of this technique
is O(N^3). According to several books, the coefficient
hidden by the 'O' is one of the best possible for general
(symmetric) matrixes.

=item *

C<($T, $Q) = $matrix-E<gt>householder();>

This method performs the Householder algorithm which reduces
the I<n> by I<n> real I<symmetric> matrix B<M> contained
in $matrix to tridiagonal form.
On output, B<T> is a symmetric tridiagonal matrix (only
diagonal and off-diagonal elements are non-zero) and B<Q>
is an I<orthogonal> matrix performing the transformation
between B<M> and B<T> (C<$M == $Q * $T * ~$Q>).

=item *

C<($l, $V) = $T-E<gt>tri_diagonalize([$Q]);>

This method diagonalizes the symmetric tridiagonal
matrix B<T>. On output, $l and $V are similar to the
output values described for sym_diagonalize().

The optional argument $Q corresponds to an orthogonal
transformation matrix B<Q> that should be used additionally
during B<V> (eigenvectors) computation. It should be supplied
if the desired eigenvectors correspond to a more general
symmetric matrix B<M> previously reduced by the
householder() method, not a mere tridiagonal. If B<T> is
really a tridiagonal matrix, B<Q> can be omitted (it
will be internally created in fact as an identity matrix).
The method uses a QL algorithm (with implicit shifts).

=item *

C<$l = $matrix-E<gt>sym_eigenvalues();>

This method computes the eigenvalues of the quadratic
I<symmetric> matrix B<M> stored in $matrix.
On output, B<l> is a column vector containing all the eigenvalues
of B<M>. Eigenvectors are not computed (on the contrary of
C<sym_diagonalize()>) and this method is more efficient
(even though it uses a similar algorithm with two phases).
However, understand that the algorithmic complexity of this
technique is still also O(N^3). But the coefficient hidden
by the 'O' is better by a factor of..., well, see your
benchmark, it's wiser.

This routine wraps the householder_tridiagonal() and
tri_eigenvalues() methods described below when the
intermediate tridiagonal matrix is not needed.

=item *

C<$T = $matrix-E<gt>householder_tridiagonal();>

This method performs the Householder algorithm which reduces
the I<n> by I<n> real I<symmetric> matrix B<M> contained
in $matrix to tridiagonal form.
On output, B<T> is the obtained symmetric tridiagonal matrix
(only diagonal and off-diagonal elements are non-zero). The
operation is similar to the householder() method, but potentially
a little more efficient as the transformation matrix is not
computed.

=item * $l = $T-E<gt>tri_eigenvalues();

This method computesthe eigenvalues of the symmetric
tridiagonal matrix B<T>. On output, $l is a vector
containing the eigenvalues (similar to C<sym_eigenvalues()>).
This method is much more efficient than tri_diagonalize()
when eigenvectors are not needed.

=back

=head2 Miscellaneous 

=over 4

=item * $matrix-E<gt>zero();

Assigns a zero to every element of the matrix "C<$matrix>", i.e.,
erases all values previously stored there, thereby effectively
transforming the matrix into a "zero"-matrix or "null"-matrix,
the neutral element of the addition operation in a Ring.

(For instance the (quadratic) matrices with "n" rows and columns
and matrix addition and multiplication form a Ring. Most prominent
characteristic of a Ring is that multiplication is not commutative,
i.e., in general, "C<matrix1 * matrix2>" is not the same as
"C<matrix2 * matrix1>"!)

=item * $matrix-E<gt>one();

Assigns one's to the elements on the main diagonal (elements (1,1),
(2,2), (3,3) and so on) of matrix "C<$matrix>" and zero's to all others,
thereby erasing all values previously stored there and transforming the
matrix into a "one"-matrix, the neutral element of the multiplication
operation in a Ring.

(If the matrix is quadratic (which this method doesn't require, though),
then multiplying this matrix with itself yields this same matrix again,
and multiplying it with some other matrix leaves that other matrix
unchanged!)

=item *

C<$latex_string = $matrix-E<gt>as_latex( align=E<gt> "c", format =E<gt> "%s", name =E<gt> "" );>

This function returns the matrix as a LaTeX string. It takes a hash as an
argument which is used to control the style of the output. The hash element C<align>
may be "c","l" or "r", corresponding to center, left and right, respectively. The
C<format> element is a format string that is given to C<sprintf> to control the
style of number format, such a floating point or scientific notation. The C<name>
element can be used so that a LaTeX string of "$name = " is prepended to the string.

Example:

    my $a = Math::MatrixReal->new_from_cols([[ 1.234, 5.678, 9.1011],[1,2,3]] );
    print $a->as_latex( ( format => "%.2f", align => "l",name => "A" ) );

    Output:
    $A = $ $
    \left( \begin{array}{ll}
    1.23&1.00 \\
    5.68&2.00 \\
    9.10&3.00
    \end{array} \right)
    $

=item *

C<$yacas_string = $matrix-E<gt>as_yacas( format =E<gt> "%s", name =E<gt> "", semi =E<gt> 0 );>

This function returns the matrix as a string that can be read by Yacas.
It takes a hash as
an an argument which controls the style of the output. The
C<format> element is a format string that is given to C<sprintf> to control the
style of number format, such a floating point or scientific notation. The C<name>
element can be used so that "$name = " is prepended to the string. The <semi> element can
be set to 1 to that a semicolon is appended (so Matlab does not print out the matrix.) 

Example:

    $a = Math::MatrixReal->new_from_cols([[ 1.234, 5.678, 9.1011],[1,2,3]] );
    print $a->as_yacas( ( format => "%.2f", align => "l",name => "A" ) );

Output:

    A := {{1.23,1.00},{5.68,2.00},{9.10,3.00}}

=item *

C<$matlab_string = $matrix-E<gt>as_matlab( format =E<gt> "%s", name =E<gt> "", semi =E<gt> 0 );>

This function returns the matrix as a string that can be read by Matlab. It takes a hash as
an an argument which controls the style of the output. The
C<format> element is a format string that is given to C<sprintf> to control the
style of number format, such a floating point or scientific notation. The C<name>
element can be used so that "$name = " is prepended to the string. The <semi> element can
be set to 1 to that a semicolon is appended (so Matlab does not print out the matrix.) 

Example:

        my $a = Math::MatrixReal->new_from_rows([[ 1.234, 5.678, 9.1011],[1,2,3]] );
        print $a->as_matlab( ( format => "%.3f", name => "A",semi => 1 ) );

Output:
        A = [ 1.234 5.678 9.101;
         1.000 2.000 3.000];


=item *

C<$scilab_string = $matrix-E<gt>as_scilab( format =E<gt> "%s", name =E<gt> "", semi =E<gt> 0 );>

This function is just an alias for C<as_matlab()>, since both Scilab and Matlab have the
same matrix format.

=item *

C<$minimum = Math::MatrixReal::min($number1,$number2);>
C<$minimum = Math::MatrixReal::min($matrix);>
C<<$minimum = $matrix->min;>>

Returns the minimum of the two numbers "C<number1>" and "C<number2>" if called with two arguments, 
or returns the value of the smallest element of a matrix if called with one argument or as an object
method.

=item *

C<$maximum = Math::MatrixReal::max($number1,$number2);>
C<$maximum = Math::MatrixReal::max($number1,$number2);>
C<$maximum = Math::MatrixReal::max($matrix);>
C<<$maximum = $matrix->max;>>

Returns the maximum of the two numbers "C<number1>" and "C<number2>" if called with two arguments,
or returns the value of the largest element of a matrix if called with one arguemnt or as on object
method.

=item *

C<$minimal_cost_matrix = $cost_matrix-E<gt>kleene();>

Copies the matrix "C<$cost_matrix>" (which has to be quadratic!) to
a new matrix of the same size (i.e., "clones" the input matrix) and
applies Kleene's algorithm to it.

See L<Math::Kleene(3)> for more details about this algorithm!

The method returns an object reference to the new matrix.

Matrix "C<$cost_matrix>" is not changed by this method in any way.

=item *

C<($norm_matrix,$norm_vector) = $matrix-E<gt>normalize($vector);>

This method is used to improve the numerical stability when solving
linear equation systems.

Suppose you have a matrix "A" and a vector "b" and you want to find
out a vector "x" so that C<A * x = b>, i.e., the vector "x" which
solves the equation system represented by the matrix "A" and the
vector "b".

Applying this method to the pair (A,b) yields a pair (A',b') where
each row has been divided by (the absolute value of) the greatest
coefficient appearing in that row. So this coefficient becomes equal
to "1" (or "-1") in the new pair (A',b') (all others become smaller
than one and greater than minus one).

Note that this operation does not change the equation system itself
because the same division is carried out on either side of the equation
sign!

The method requires a quadratic (!) matrix "C<$matrix>" and a vector
"C<$vector>" for input (the vector must be a column vector with the same
number of rows as the input matrix) and returns a list of two items
which are object references to a new matrix and a new vector, in this
order.

The output matrix and vector are clones of the input matrix and vector
to which the operation explained above has been applied.

The input matrix and vector are not changed by this in any way.

Example of how this method can affect the result of the methods to solve
equation systems (explained immediately below following this method):

Consider the following little program:

  #!perl -w

  use Math::MatrixReal qw(new_from_string);

  $A = Math::MatrixReal->new_from_string(<<"MATRIX");
  [  1   2   3  ]
  [  5   7  11  ]
  [ 23  19  13  ]
  MATRIX

  $b = Math::MatrixReal->new_from_string(<<"MATRIX");
  [   0   ]
  [   1   ]
  [  29   ]
  MATRIX

  $LR = $A->decompose_LR();
  if (($dim,$x,$B) = $LR->solve_LR($b))
  {
      $test = $A * $x;
      print "x = \n$x";
      print "A * x = \n$test";
  }

  ($A_,$b_) = $A->normalize($b);

  $LR = $A_->decompose_LR();
  if (($dim,$x,$B) = $LR->solve_LR($b_))
  {
      $test = $A * $x;
      print "x = \n$x";
      print "A * x = \n$test";
  }

This will print:

  x =
  [  1.000000000000E+00 ]
  [  1.000000000000E+00 ]
  [ -1.000000000000E+00 ]
  A * x =
  [  4.440892098501E-16 ]
  [  1.000000000000E+00 ]
  [  2.900000000000E+01 ]
  x =
  [  1.000000000000E+00 ]
  [  1.000000000000E+00 ]
  [ -1.000000000000E+00 ]
  A * x =
  [  0.000000000000E+00 ]
  [  1.000000000000E+00 ]
  [  2.900000000000E+01 ]

You can see that in the second example (where "normalize()" has been used),
the result is "better", i.e., more accurate!

=item *

C<$LR_matrix = $matrix-E<gt>decompose_LR();>

This method is needed to solve linear equation systems.

Suppose you have a matrix "A" and a vector "b" and you want to find
out a vector "x" so that C<A * x = b>, i.e., the vector "x" which
solves the equation system represented by the matrix "A" and the
vector "b".

You might also have a matrix "A" and a whole bunch of different
vectors "b1".."bk" for which you need to find vectors "x1".."xk"
so that C<A * xi = bi>, for C<i=1..k>.

Using Gaussian transformations (multiplying a row or column with
a factor, swapping two rows or two columns and adding a multiple
of one row or column to another), it is possible to decompose any
matrix "A" into two triangular matrices, called "L" and "R" (for
"Left" and "Right").

"L" has one's on the main diagonal (the elements (1,1), (2,2), (3,3)
and so so), non-zero values to the left and below of the main diagonal
and all zero's in the upper right half of the matrix.

"R" has non-zero values on the main diagonal as well as to the right
and above of the main diagonal and all zero's in the lower left half
of the matrix, as follows:

          [ 1 0 0 0 0 ]      [ x x x x x ]
          [ x 1 0 0 0 ]      [ 0 x x x x ]
      L = [ x x 1 0 0 ]  R = [ 0 0 x x x ]
          [ x x x 1 0 ]      [ 0 0 0 x x ]
          [ x x x x 1 ]      [ 0 0 0 0 x ]

Note that "C<L * R>" is equivalent to matrix "A" in the sense that
C<L * R * x = b  E<lt>==E<gt>  A * x = b> for all vectors "x", leaving
out of account permutations of the rows and columns (these are taken
care of "magically" by this module!) and numerical errors.

Trick:

Because we know that "L" has one's on its main diagonal, we can
store both matrices together in the same array without information
loss! I.e.,

                 [ R R R R R ]
                 [ L R R R R ]
            LR = [ L L R R R ]
                 [ L L L R R ]
                 [ L L L L R ]

Beware, though, that "LR" and "C<L * R>" are not the same!!!

Note also that for the same reason, you cannot apply the method "normalize()"
to an "LR" decomposition matrix. Trying to do so will yield meaningless
rubbish!

(You need to apply "normalize()" to each pair (Ai,bi) B<BEFORE> decomposing
the matrix "Ai'"!)

Now what does all this help us in solving linear equation systems?

It helps us because a triangular matrix is the next best thing
that can happen to us besides a diagonal matrix (a matrix that
has non-zero values only on its main diagonal - in which case
the solution is trivial, simply divide "C<b[i]>" by "C<A[i,i]>"
to get "C<x[i]>"!).

To find the solution to our problem "C<A * x = b>", we divide this
problem in parts: instead of solving C<A * x = b> directly, we first
decompose "A" into "L" and "R" and then solve "C<L * y = b>" and
finally "C<R * x = y>" (motto: divide and rule!).

From the illustration above it is clear that solving "C<L * y = b>"
and "C<R * x = y>" is straightforward: we immediately know that
C<y[1] = b[1]>. We then deduce swiftly that

  y[2] = b[2] - L[2,1] * y[1]

(and we know "C<y[1]>" by now!), that

  y[3] = b[3] - L[3,1] * y[1] - L[3,2] * y[2]

and so on.

Having effortlessly calculated the vector "y", we now proceed to
calculate the vector "x" in a similar fashion: we see immediately
that C<x[n] = y[n] / R[n,n]>. It follows that

  x[n-1] = ( y[n-1] - R[n-1,n] * x[n] ) / R[n-1,n-1]

and

  x[n-2] = ( y[n-2] - R[n-2,n-1] * x[n-1] - R[n-2,n] * x[n] )
           / R[n-2,n-2]

and so on.

You can see that - especially when you have many vectors "b1".."bk"
for which you are searching solutions to C<A * xi = bi> - this scheme
is much more efficient than a straightforward, "brute force" approach.

This method requires a quadratic matrix as its input matrix.

If you don't have that many equations, fill up with zero's (i.e., do
nothing to fill the superfluous rows if it's a "fresh" matrix, i.e.,
a matrix that has been created with "new()" or "shadow()").

The method returns an object reference to a new matrix containing the
matrices "L" and "R".

The input matrix is not changed by this method in any way.

Note that you can "copy()" or "clone()" the result of this method without
losing its "magical" properties (for instance concerning the hidden
permutations of its rows and columns).

However, as soon as you are applying any method that alters the contents
of the matrix, its "magical" properties are stripped off, and the matrix
immediately reverts to an "ordinary" matrix (with the values it just happens
to contain at that moment, be they meaningful as an ordinary matrix or not!).

=item *

C<($dimension,$x_vector,$base_matrix) = $LR_matrix>C<-E<gt>>C<solve_LR($b_vector);>

Use this method to actually solve an equation system.

Matrix "C<$LR_matrix>" must be a (quadratic) matrix returned by the
method "decompose_LR()", the LR decomposition matrix of the matrix
"A" of your equation system C<A * x = b>.

The input vector "C<$b_vector>" is the vector "b" in your equation system
C<A * x = b>, which must be a column vector and have the same number of
rows as the input matrix "C<$LR_matrix>".

The method returns a list of three items if a solution exists or an
empty list otherwise (!).

Therefore, you should always use this method like this:

  if ( ($dim,$x_vec,$base) = $LR->solve_LR($b_vec) )
  {
      # do something with the solution...
  }
  else
  {
      # do something with the fact that there is no solution...
  }

The three items returned are: the dimension "C<$dimension>" of the solution
space (which is zero if only one solution exists, one if the solution is
a straight line, two if the solution is a plane, and so on), the solution
vector "C<$x_vector>" (which is the vector "x" of your equation system
C<A * x = b>) and a matrix "C<$base_matrix>" representing a base of the
solution space (a set of vectors which put up the solution space like
the spokes of an umbrella).

Only the first "C<$dimension>" columns of this base matrix actually
contain entries, the remaining columns are all zero.

Now what is all this stuff with that "base" good for?

The output vector "x" is B<ALWAYS> a solution of your equation system
C<A * x = b>.

But also any vector "C<$vector>"

  $vector = $x_vector->clone();

  $machine_infinity = 1E+99; # or something like that

  for ( $i = 1; $i <= $dimension; $i++ )
  {
      $vector += rand($machine_infinity) * $base_matrix->column($i);
  }

is a solution to your problem C<A * x = b>, i.e., if "C<$A_matrix>" contains
your matrix "A", then

  print abs( $A_matrix * $vector - $b_vector ), "\n";

should print a number around 1E-16 or so!

By the way, note that you can actually calculate those vectors "C<$vector>"
a little more efficient as follows:

  $rand_vector = $x_vector->shadow();

  $machine_infinity = 1E+99; # or something like that

  for ( $i = 1; $i <= $dimension; $i++ )
  {
      $rand_vector->assign($i,1, rand($machine_infinity) );
  }

  $vector = $x_vector + ( $base_matrix * $rand_vector );

Note that the input matrix and vector are not changed by this method
in any way.

=item *

C<$inverse_matrix = $LR_matrix-E<gt>invert_LR();>

Use this method to calculate the inverse of a given matrix "C<$LR_matrix>",
which must be a (quadratic) matrix returned by the method "decompose_LR()".

The method returns an object reference to a new matrix of the same size as
the input matrix containing the inverse of the matrix that you initially
fed into "decompose_LR()" B<IF THE INVERSE EXISTS>, or an empty list
otherwise.

Therefore, you should always use this method in the following way:

  if ( $inverse_matrix = $LR->invert_LR() )
  {
      # do something with the inverse matrix...
  }
  else
  {
      # do something with the fact that there is no inverse matrix...
  }

Note that by definition (disregarding numerical errors), the product
of the initial matrix and its inverse (or vice-versa) is always a matrix
containing one's on the main diagonal (elements (1,1), (2,2), (3,3) and
so on) and zero's elsewhere.

The input matrix is not changed by this method in any way.

=item *

C<$condition = $matrix-E<gt>condition($inverse_matrix);>

In fact this method is just a shortcut for

  abs($matrix) * abs($inverse_matrix)

Both input matrices must be quadratic and have the same size, and the result
is meaningful only if one of them is the inverse of the other (for instance,
as returned by the method "invert_LR()").

The number returned is a measure of the "condition" of the given matrix
"C<$matrix>", i.e., a measure of the numerical stability of the matrix.

This number is always positive, and the smaller its value, the better the
condition of the matrix (the better the stability of all subsequent
computations carried out using this matrix).

Numerical stability means for example that if

  abs( $vec_correct - $vec_with_error ) < $epsilon

holds, there must be a "C<$delta>" which doesn't depend on the vector
"C<$vec_correct>" (nor "C<$vec_with_error>", by the way) so that

  abs( $matrix * $vec_correct - $matrix * $vec_with_error ) < $delta

also holds.

=item *

C<$determinant = $LR_matrix-E<gt>det_LR();>

Calculates the determinant of a matrix, whose LR decomposition matrix
"C<$LR_matrix>" must be given (which must be a (quadratic) matrix
returned by the method "decompose_LR()").

In fact the determinant is a by-product of the LR decomposition: It is
(in principle, that is, except for the sign) simply the product of the
elements on the main diagonal (elements (1,1), (2,2), (3,3) and so on)
of the LR decomposition matrix.

(The sign is taken care of "magically" by this module)

=item *

C<$order = $LR_matrix-E<gt>order_LR();>

Calculates the order (called "Rang" in German) of a matrix, whose
LR decomposition matrix "C<$LR_matrix>" must be given (which must
be a (quadratic) matrix returned by the method "decompose_LR()").

This number is a measure of the number of linear independent row
and column vectors (= number of linear independent equations in
the case of a matrix representing an equation system) of the
matrix that was initially fed into "decompose_LR()".

If "n" is the number of rows and columns of the (quadratic!) matrix,
then "n - order" is the dimension of the solution space of the
associated equation system.

=item *

C<$rank = $LR_matrix-E<gt>rank_LR();>

This is an alias for the C<order_LR()> function. The "order"
is usually called the "rank" in the United States.

=item *

C<$scalar_product = $vector1-E<gt>scalar_product($vector2);>

Returns the scalar product of vector "C<$vector1>" and vector "C<$vector2>".

Both vectors must be column vectors (i.e., a matrix having
several rows but only one column).

This is a (more efficient!) shortcut for

  $temp           = ~$vector1 * $vector2;
  $scalar_product =  $temp->element(1,1);

or the sum C<i=1..n> of the products C<vector1[i] * vector2[i]>.

Provided none of the two input vectors is the null vector, then
the two vectors are orthogonal, i.e., have an angle of 90 degrees
between them, exactly when their scalar product is zero, and
vice-versa.

=item *

C<$vector_product = $vector1-E<gt>vector_product($vector2);>

Returns the vector product of vector "C<$vector1>" and vector "C<$vector2>".

Both vectors must be column vectors (i.e., a matrix having several rows
but only one column).

Currently, the vector product is only defined for 3 dimensions (i.e.,
vectors with 3 rows); all other vectors trigger an error message.

In 3 dimensions, the vector product of two vectors "x" and "y"
is defined as

              |  x[1]  y[1]  e[1]  |
  determinant |  x[2]  y[2]  e[2]  |
              |  x[3]  y[3]  e[3]  |

where the "C<x[i]>" and "C<y[i]>" are the components of the two vectors
"x" and "y", respectively, and the "C<e[i]>" are unity vectors (i.e.,
vectors with a length equal to one) with a one in row "i" and zero's
elsewhere (this means that you have numbers and vectors as elements
in this matrix!).

This determinant evaluates to the rather simple formula

  z[1] = x[2] * y[3] - x[3] * y[2]
  z[2] = x[3] * y[1] - x[1] * y[3]
  z[3] = x[1] * y[2] - x[2] * y[1]

A characteristic property of the vector product is that the resulting
vector is orthogonal to both of the input vectors (if neither of both
is the null vector, otherwise this is trivial), i.e., the scalar product
of each of the input vectors with the resulting vector is always zero.

=item *

C<$length = $vector-E<gt>length();>

This is actually a shortcut for

  $length = sqrt( $vector->scalar_product($vector) );

and returns the length of a given column or row vector "C<$vector>".

Note that the "length" calculated by this method is in fact the
"two"-norm (also know as the Euclidean norm) of a vector "C<$vector>"!

The general definition for norms of vectors is the following:

  sub vector_norm
  {
      croak "Usage: \$norm = \$vector->vector_norm(\$n);"
        if (@_ != 2);

      my($vector,$n) = @_;
      my($rows,$cols) = ($vector->[1],$vector->[2]);
      my($k,$comp,$sum);

      croak "Math::MatrixReal::vector_norm(): vector is not a column vector"
        unless ($cols == 1);

      croak "Math::MatrixReal::vector_norm(): norm index must be > 0"
        unless ($n > 0);

      croak "Math::MatrixReal::vector_norm(): norm index must be integer"
        unless ($n == int($n));

      $sum = 0;
      for ( $k = 0; $k < $rows; $k++ )
      {
          $comp = abs( $vector->[0][$k][0] );
          $sum += $comp ** $n;
      }
      return( $sum ** (1 / $n) );
  }

Note that the case "n = 1" is the "one"-norm for matrices applied to a
vector, the case "n = 2" is the euclidian norm or length of a vector,
and if "n" goes to infinity, you have the "infinity"- or "maximum"-norm
for matrices applied to a vector!

=item *

C<$xn_vector = $matrix-E<gt>>C<solve_GSM($x0_vector,$b_vector,$epsilon);>

=item *

C<$xn_vector = $matrix-E<gt>>C<solve_SSM($x0_vector,$b_vector,$epsilon);>

=item *

C<$xn_vector = $matrix-E<gt>>C<solve_RM($x0_vector,$b_vector,$weight,$epsilon);>

In some cases it might not be practical or desirable to solve an
equation system "C<A * x = b>" using an analytical algorithm like
the "decompose_LR()" and "solve_LR()" method pair.

In fact in some cases, due to the numerical properties (the "condition")
of the matrix "A", the numerical error of the obtained result can be
greater than by using an approximative (iterative) algorithm like one
of the three implemented here.

All three methods, GSM ("Global Step Method" or "Gesamtschrittverfahren"),
SSM ("Single Step Method" or "Einzelschrittverfahren") and RM ("Relaxation
Method" or "Relaxationsverfahren"), are fix-point iterations, that is, can
be described by an iteration function "C<x(t+1) = Phi( x(t) )>" which has
the property:

  Phi(x)  =  x    <==>    A * x  =  b

We can define "C<Phi(x)>" as follows:

  Phi(x)  :=  ( En - A ) * x  +  b

where "En" is a matrix of the same size as "A" ("n" rows and columns)
with one's on its main diagonal and zero's elsewhere.

This function has the required property.

Proof:

           A * x        =   b

  <==>  -( A * x )      =  -b

  <==>  -( A * x ) + x  =  -b + x

  <==>  -( A * x ) + x + b  =  x

  <==>  x - ( A * x ) + b  =  x

  <==>  ( En - A ) * x + b  =  x

This last step is true because

  x[i] - ( a[i,1] x[1] + ... + a[i,i] x[i] + ... + a[i,n] x[n] ) + b[i]

is the same as

  ( -a[i,1] x[1] + ... + (1 - a[i,i]) x[i] + ... + -a[i,n] x[n] ) + b[i]

qed

Note that actually solving the equation system "C<A * x = b>" means
to calculate

        a[i,1] x[1] + ... + a[i,i] x[i] + ... + a[i,n] x[n]  =  b[i]

  <==>  a[i,i] x[i]  =
        b[i]
        - ( a[i,1] x[1] + ... + a[i,i] x[i] + ... + a[i,n] x[n] )
        + a[i,i] x[i]

  <==>  x[i]  =
        ( b[i]
            - ( a[i,1] x[1] + ... + a[i,i] x[i] + ... + a[i,n] x[n] )
            + a[i,i] x[i]
        ) / a[i,i]

  <==>  x[i]  =
        ( b[i] -
            ( a[i,1] x[1] + ... + a[i,i-1] x[i-1] +
              a[i,i+1] x[i+1] + ... + a[i,n] x[n] )
        ) / a[i,i]

There is one major restriction, though: a fix-point iteration is
guaranteed to converge only if the first derivative of the iteration
function has an absolute value less than one in an area around the
point "C<x(*)>" for which "C<Phi( x(*) ) = x(*)>" is to be true, and
if the start vector "C<x(0)>" lies within that area!

This is best verified graphically, which unfortunately is impossible
to do in this textual documentation!

See literature on Numerical Analysis for details!

In our case, this restriction translates to the following three conditions:

There must exist a norm so that the norm of the matrix of the iteration
function, C<( En - A )>, has a value less than one, the matrix "A" may
not have any zero value on its main diagonal and the initial vector
"C<x(0)>" must be "good enough", i.e., "close enough" to the solution
"C<x(*)>".

(Remember school math: the first derivative of a straight line given by
"C<y = a * x + b>" is "a"!)

The three methods expect a (quadratic!) matrix "C<$matrix>" as their
first argument, a start vector "C<$x0_vector>", a vector "C<$b_vector>"
(which is the vector "b" in your equation system "C<A * x = b>"), in the
case of the "Relaxation Method" ("RM"), a real number "C<$weight>" best
between zero and two, and finally an error limit (real number) "C<$epsilon>".

(Note that the weight "C<$weight>" used by the "Relaxation Method" ("RM")
is B<NOT> checked to lie within any reasonable range!)

The three methods first test the first two conditions of the three
conditions listed above and return an empty list if these conditions
are not fulfilled.

Therefore, you should always test their return value using some
code like:

  if ( $xn_vector = $A_matrix->solve_GSM($x0_vector,$b_vector,1E-12) )
  {
      # do something with the solution...
  }
  else
  {
      # do something with the fact that there is no solution...
  }

Otherwise, they iterate until C<abs( Phi(x) - x ) E<lt> epsilon>.

(Beware that theoretically, infinite loops might result if the starting
vector is too far "off" the solution! In practice, this shouldn't be
a problem. Anyway, you can always press <ctrl-C> if you think that the
iteration takes too long!)

The difference between the three methods is the following:

In the "Global Step Method" ("GSM"), the new vector "C<x(t+1)>"
(called "y" here) is calculated from the vector "C<x(t)>"
(called "x" here) according to the formula:

  y[i] =
  ( b[i]
      - ( a[i,1] x[1] + ... + a[i,i-1] x[i-1] +
          a[i,i+1] x[i+1] + ... + a[i,n] x[n] )
  ) / a[i,i]

In the "Single Step Method" ("SSM"), the components of the vector
"C<x(t+1)>" which have already been calculated are used to calculate
the remaining components, i.e.

  y[i] =
  ( b[i]
      - ( a[i,1] y[1] + ... + a[i,i-1] y[i-1] +  # note the "y[]"!
          a[i,i+1] x[i+1] + ... + a[i,n] x[n] )  # note the "x[]"!
  ) / a[i,i]

In the "Relaxation method" ("RM"), the components of the vector
"C<x(t+1)>" are calculated by "mixing" old and new value (like
cold and hot water), and the weight "C<$weight>" determines the
"aperture" of both the "hot water tap" as well as of the "cold
water tap", according to the formula:

  y[i] =
  ( b[i]
      - ( a[i,1] y[1] + ... + a[i,i-1] y[i-1] +  # note the "y[]"!
          a[i,i+1] x[i+1] + ... + a[i,n] x[n] )  # note the "x[]"!
  ) / a[i,i]
  y[i] = weight * y[i] + (1 - weight) * x[i]

Note that the weight "C<$weight>" should be greater than zero and
less than two (!).

The three methods are supposed to be of different efficiency.
Experiment!

Remember that in most cases, it is probably advantageous to first
"normalize()" your equation system prior to solving it!

=back

=head1 OVERLOADED OPERATORS

=head2 SYNOPSIS

=over 2

=item *

Unary operators:

"C<->", "C<~>", "C<abs>", C<test>, "C<!>", 'C<"">'

=item *

Binary operators:

"C<.>"

Binary (arithmetic) operators:

"C<+>", "C<->", "C<*>", "C<**>",
"C<+=>", "C<-=>", "C<*=>", "C</=>","C<**=>"

=item *

Binary (relational) operators:

"C<==>", "C<!=>", "C<E<lt>>", "C<E<lt>=>", "C<E<gt>>", "C<E<gt>=>"

"C<eq>", "C<ne>", "C<lt>", "C<le>", "C<gt>", "C<ge>"

Note that the latter ("C<eq>", "C<ne>", ... ) are just synonyms
of the former ("C<==>", "C<!=>", ... ), defined for convenience
only.

=back

=head2 DESCRIPTION

=over 5

=item '.'

Concatenation

Returns the two matrices concatenated side by side.

Example:
	$c = $a . $b;

For example, 
if  

	$a=[ 1 2 ]   $b=[ 5 6 ]		
	   [ 3 4 ]      [ 7 8 ]		
then

	$c=[ 1 2 5 6 ]
           [ 3 4 7 8 ]

Note that only matrices with the same number of rows may be concatenated.


=item '-'

Unary minus

Returns the negative of the given matrix, i.e., the matrix with
all elements multiplied with the factor "-1".

Example:

    $matrix = -$matrix;

=item '~'

Transposition

Returns the transposed of the given matrix.

Examples:

    $temp = ~$vector * $vector;
    $length = sqrt( $temp->element(1,1) );

    if (~$matrix == $matrix) { # matrix is symmetric ... }

=item abs

Norm

Returns the "one"-Norm of the given matrix.

Example:

    $error = abs( $A * $x - $b );

=item test

Boolean test

Tests whether there is at least one non-zero element in the matrix.

Example:

    if ($xn_vector) { # result of iteration is not zero ... }

=item '!'

Negated boolean test

Tests whether the matrix contains only zero's.

Examples:

    if (! $b_vector) { # heterogenous equation system ... }
    else             { # homogenous equation system ... }

    unless ($x_vector) { # not the null-vector! }

=item '""""'

"Stringify" operator

Converts the given matrix into a string.

Uses scientific representation to keep precision loss to a minimum in case
you want to read this string back in again later with "new_from_string()".

By default a 13-digit mantissa and a 20-character field for each element is used
so that lines will wrap nicely on an 80-column screen. 

Examples:

    $matrix = Math::MatrixReal->new_from_string(<<"MATRIX");
    [ 1  0 ]
    [ 0 -1 ]
    MATRIX
    print "$matrix";

    [  1.000000000000E+00  0.000000000000E+00 ]
    [  0.000000000000E+00 -1.000000000000E+00 ]

    $string = "$matrix";
    $test = Math::MatrixReal->new_from_string($string);
    if ($test == $matrix) { print ":-)\n"; } else { print ":-(\n"; }

=item '+'

Addition

Returns the sum of the two given matrices.

Examples:

    $matrix_S = $matrix_A + $matrix_B;

    $matrix_A += $matrix_B;

=item '-'

Subtraction

Returns the difference of the two given matrices.

Examples:

    $matrix_D = $matrix_A - $matrix_B;

    $matrix_A -= $matrix_B;

Note that this is the same as:

    $matrix_S = $matrix_A + -$matrix_B;

    $matrix_A += -$matrix_B;

(The latter are less efficient, though)

=item '*'

Multiplication

Returns the matrix product of the two given matrices or
the product of the given matrix and scalar factor.

Examples:

    $matrix_P = $matrix_A * $matrix_B;

    $matrix_A *= $matrix_B;

    $vector_b = $matrix_A * $vector_x;

    $matrix_B = -1 * $matrix_A;

    $matrix_B = $matrix_A * -1;

    $matrix_A *= -1;

=item '/'

Division

Currently a shortcut for doing $a * $b ** -1 is $a / $b, which works for square matrices. One 
can also use 1/$a .


=item '**'

Exponentiation

Returns the matrix raised to an integer power. If 0 is passed,
the identity matrix is returned. If a negative integer is passed,
it computes the inverse (if it exists) and then raised the inverse
to the absolute value of the integer. The matrix must be quadratic.

Examples:

    $matrix2 = $matrix ** 2;

    $matrix **= 2;

    $inv2 = $matrix ** -2;

    $ident = $matrix ** 0;



=item '=='

Equality

Tests two matrices for equality.

Example:

    if ( $A * $x == $b ) { print "EUREKA!\n"; }

Note that in most cases, due to numerical errors (due to the finite
precision of computer arithmetics), it is a bad idea to compare two
matrices or vectors this way.

Better use the norm of the difference of the two matrices you want
to compare and compare that norm with a small number, like this:

    if ( abs( $A * $x - $b ) < 1E-12 ) { print "BINGO!\n"; }

=item '!='

Inequality

Tests two matrices for inequality.

Example:

    while ($x0_vector != $xn_vector) { # proceed with iteration ... }

(Stops when the iteration becomes stationary)

Note that (just like with the '==' operator), it is usually a bad idea
to compare matrices or vectors this way. Compare the norm of the difference
of the two matrices with a small number instead.

=item 'E<lt>'

Less than

Examples:

    if ( $matrix1 < $matrix2 ) { # ... }

    if ( $vector < $epsilon ) { # ... }

    if ( 1E-12 < $vector ) { # ... }

    if ( $A * $x - $b < 1E-12 ) { # ... }

These are just shortcuts for saying:

    if ( abs($matrix1) < abs($matrix2) ) { # ... }

    if ( abs($vector) < abs($epsilon) ) { # ... }

    if ( abs(1E-12) < abs($vector) ) { # ... }

    if ( abs( $A * $x - $b ) < abs(1E-12) ) { # ... }

Uses the "one"-norm for matrices and Perl's built-in "abs()" for scalars.

=item 'E<lt>='

Less than or equal

As with the '<' operator, this is just a shortcut for the same expression
with "abs()" around all arguments.

Example:

    if ( $A * $x - $b <= 1E-12 ) { # ... }

which in fact is the same as:

    if ( abs( $A * $x - $b ) <= abs(1E-12) ) { # ... }

Uses the "one"-norm for matrices and Perl's built-in "abs()" for scalars.

=item 'E<gt>'

Greater than

As with the '<' and '<=' operator, this

    if ( $xn - $x0 > 1E-12 ) { # ... }

is just a shortcut for:

    if ( abs( $xn - $x0 ) > abs(1E-12) ) { # ... }

Uses the "one"-norm for matrices and Perl's built-in "abs()" for scalars.

=item 'E<gt>='

Greater than or equal

As with the '<', '<=' and '>' operator, the following

    if ( $LR >= $A ) { # ... }

is simply a shortcut for:

    if ( abs($LR) >= abs($A) ) { # ... }

Uses the "one"-norm for matrices and Perl's built-in "abs()" for scalars.

=back

=head1 SEE ALSO

Math::VectorReal, Math::PARI, Math::MatrixBool,
Math::Vec, DFA::Kleene, Math::Kleene,
Set::IntegerRange, Set::IntegerFast .

=head1 VERSION

This man page documents Math::MatrixReal version 2.13

The latest code can be found at
https://github.com/leto/math--matrixreal .

=head1 AUTHORS

Steffen Beyer <sb@engelschall.com>, Rodolphe Ortalo <ortalo@laas.fr>,
Jonathan "Duke" Leto <jonathan@leto.net>.

Currently maintained by Jonathan "Duke" Leto, send all bugs/patches
to Github Issues: https://github.com/leto/math--matrixreal/issues

=head1 CREDITS

Many thanks to Prof. Pahlings for stoking the fire of my enthusiasm for
Algebra and Linear Algebra at the university (RWTH Aachen, Germany), and
to Prof. Esser and his assistant, Mr. Jarausch, for their fascinating
lectures in Numerical Analysis!

=head1 COPYRIGHT

Copyright (c) 1996-2016 by various authors including the original developer
Steffen Beyer, Rodolphe Ortalo, the current maintainer Jonathan "Duke" Leto and
all the wonderful people in the AUTHORS file. All rights reserved.

=head1 LICENSE AGREEMENT

This package is free software; you can redistribute it and/or
modify it under the same terms as Perl itself. Fuck yeah.