1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
#include <math.h>
#include "grisu3.h"
/* This code is part of an implementation of the "grisu3" double to string
conversion algorithm described in the research paper
"Printing Floating-Point Numbers Quickly And Accurately with Integers"
by Florian Loitsch, available at
http://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf */
/* This grisu3 implementation is used by doubletoa() in MPFR.xs */
/* See grisu3.h for definition of symbols and types */
static const power pow_cache[] =
{
{ 0xfa8fd5a0081c0288ULL, -1220, -348 },
{ 0xbaaee17fa23ebf76ULL, -1193, -340 },
{ 0x8b16fb203055ac76ULL, -1166, -332 },
{ 0xcf42894a5dce35eaULL, -1140, -324 },
{ 0x9a6bb0aa55653b2dULL, -1113, -316 },
{ 0xe61acf033d1a45dfULL, -1087, -308 },
{ 0xab70fe17c79ac6caULL, -1060, -300 },
{ 0xff77b1fcbebcdc4fULL, -1034, -292 },
{ 0xbe5691ef416bd60cULL, -1007, -284 },
{ 0x8dd01fad907ffc3cULL, -980, -276 },
{ 0xd3515c2831559a83ULL, -954, -268 },
{ 0x9d71ac8fada6c9b5ULL, -927, -260 },
{ 0xea9c227723ee8bcbULL, -901, -252 },
{ 0xaecc49914078536dULL, -874, -244 },
{ 0x823c12795db6ce57ULL, -847, -236 },
{ 0xc21094364dfb5637ULL, -821, -228 },
{ 0x9096ea6f3848984fULL, -794, -220 },
{ 0xd77485cb25823ac7ULL, -768, -212 },
{ 0xa086cfcd97bf97f4ULL, -741, -204 },
{ 0xef340a98172aace5ULL, -715, -196 },
{ 0xb23867fb2a35b28eULL, -688, -188 },
{ 0x84c8d4dfd2c63f3bULL, -661, -180 },
{ 0xc5dd44271ad3cdbaULL, -635, -172 },
{ 0x936b9fcebb25c996ULL, -608, -164 },
{ 0xdbac6c247d62a584ULL, -582, -156 },
{ 0xa3ab66580d5fdaf6ULL, -555, -148 },
{ 0xf3e2f893dec3f126ULL, -529, -140 },
{ 0xb5b5ada8aaff80b8ULL, -502, -132 },
{ 0x87625f056c7c4a8bULL, -475, -124 },
{ 0xc9bcff6034c13053ULL, -449, -116 },
{ 0x964e858c91ba2655ULL, -422, -108 },
{ 0xdff9772470297ebdULL, -396, -100 },
{ 0xa6dfbd9fb8e5b88fULL, -369, -92 },
{ 0xf8a95fcf88747d94ULL, -343, -84 },
{ 0xb94470938fa89bcfULL, -316, -76 },
{ 0x8a08f0f8bf0f156bULL, -289, -68 },
{ 0xcdb02555653131b6ULL, -263, -60 },
{ 0x993fe2c6d07b7facULL, -236, -52 },
{ 0xe45c10c42a2b3b06ULL, -210, -44 },
{ 0xaa242499697392d3ULL, -183, -36 },
{ 0xfd87b5f28300ca0eULL, -157, -28 },
{ 0xbce5086492111aebULL, -130, -20 },
{ 0x8cbccc096f5088ccULL, -103, -12 },
{ 0xd1b71758e219652cULL, -77, -4 },
{ 0x9c40000000000000ULL, -50, 4 },
{ 0xe8d4a51000000000ULL, -24, 12 },
{ 0xad78ebc5ac620000ULL, 3, 20 },
{ 0x813f3978f8940984ULL, 30, 28 },
{ 0xc097ce7bc90715b3ULL, 56, 36 },
{ 0x8f7e32ce7bea5c70ULL, 83, 44 },
{ 0xd5d238a4abe98068ULL, 109, 52 },
{ 0x9f4f2726179a2245ULL, 136, 60 },
{ 0xed63a231d4c4fb27ULL, 162, 68 },
{ 0xb0de65388cc8ada8ULL, 189, 76 },
{ 0x83c7088e1aab65dbULL, 216, 84 },
{ 0xc45d1df942711d9aULL, 242, 92 },
{ 0x924d692ca61be758ULL, 269, 100 },
{ 0xda01ee641a708deaULL, 295, 108 },
{ 0xa26da3999aef774aULL, 322, 116 },
{ 0xf209787bb47d6b85ULL, 348, 124 },
{ 0xb454e4a179dd1877ULL, 375, 132 },
{ 0x865b86925b9bc5c2ULL, 402, 140 },
{ 0xc83553c5c8965d3dULL, 428, 148 },
{ 0x952ab45cfa97a0b3ULL, 455, 156 },
{ 0xde469fbd99a05fe3ULL, 481, 164 },
{ 0xa59bc234db398c25ULL, 508, 172 },
{ 0xf6c69a72a3989f5cULL, 534, 180 },
{ 0xb7dcbf5354e9beceULL, 561, 188 },
{ 0x88fcf317f22241e2ULL, 588, 196 },
{ 0xcc20ce9bd35c78a5ULL, 614, 204 },
{ 0x98165af37b2153dfULL, 641, 212 },
{ 0xe2a0b5dc971f303aULL, 667, 220 },
{ 0xa8d9d1535ce3b396ULL, 694, 228 },
{ 0xfb9b7cd9a4a7443cULL, 720, 236 },
{ 0xbb764c4ca7a44410ULL, 747, 244 },
{ 0x8bab8eefb6409c1aULL, 774, 252 },
{ 0xd01fef10a657842cULL, 800, 260 },
{ 0x9b10a4e5e9913129ULL, 827, 268 },
{ 0xe7109bfba19c0c9dULL, 853, 276 },
{ 0xac2820d9623bf429ULL, 880, 284 },
{ 0x80444b5e7aa7cf85ULL, 907, 292 },
{ 0xbf21e44003acdd2dULL, 933, 300 },
{ 0x8e679c2f5e44ff8fULL, 960, 308 },
{ 0xd433179d9c8cb841ULL, 986, 316 },
{ 0x9e19db92b4e31ba9ULL, 1013, 324 },
{ 0xeb96bf6ebadf77d9ULL, 1039, 332 },
{ 0xaf87023b9bf0ee6bULL, 1066, 340 }
};
/* pow10_cache[i] = 10^(i-1) */
static const unsigned int pow10_cache[] =
{ 0, 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000 };
static int cached_pow(int exp, diy_fp *p) {
int k = (int)ceil((exp+DIYFP_FRACT_SIZE-1) * D_1_LOG2_10);
int i = (k-MIN_CACHED_EXP-1) / CACHED_EXP_STEP + 1;
p->f = pow_cache[i].fract;
p->e = pow_cache[i].b_exp;
return pow_cache[i].d_exp;
}
static diy_fp minus(diy_fp x, diy_fp y) {
diy_fp d; d.f = x.f - y.f; d.e = x.e;
#ifdef DTOA_ASSERT
if(x.e != y.e) croak("x.e != y.e");
if(x.f < y.f) croak("x.f < y.f");
/* assert(x.e == y.e && x.f >= y.f); */
#endif
return d;
}
static diy_fp multiply(diy_fp x, diy_fp y) {
uint64_t a, b, c, d, ac, bc, ad, bd, tmp;
diy_fp r;
a = x.f >> 32; b = x.f & MASK32;
c = y.f >> 32; d = y.f & MASK32;
ac = a*c; bc = b*c;
ad = a*d; bd = b*d;
tmp = (bd >> 32) + (ad & MASK32) + (bc & MASK32);
tmp += 1U << 31; /* round */
r.f = ac + (ad >> 32) + (bc >> 32) + (tmp >> 32);
r.e = x.e + y.e + 64;
return r;
}
static diy_fp normalize_diy_fp(diy_fp n) {
#ifdef DTOA_ASSERT
if(n.f == 0) croak("n.f == 0");
/* assert(n.f != 0); */
#endif
while(!(n.f & 0xFFC0000000000000ULL)) { n.f <<= 10; n.e -= 10; }
while(!(n.f & D64_SIGN)) { n.f <<= 1; --n.e; }
return n;
}
static diy_fp double2diy_fp(double d) {
diy_fp fp;
uint64_t u64 = CAST_U64(d);
if(!(u64 & D64_EXP_MASK)) { fp.f = u64 & D64_FRACT_MASK; fp.e = 1 - D64_EXP_BIAS; }
else { fp.f = (u64 & D64_FRACT_MASK) + D64_IMPLICIT_ONE; fp.e = (int)((u64 & D64_EXP_MASK) >> D64_EXP_POS) - D64_EXP_BIAS; }
return fp;
}
static int largest_pow10(uint32_t n, int n_bits, uint32_t *power) {
int guess = ((n_bits + 1) * 1233 >> 12) + 1/*skip first entry*/;
if(n < pow10_cache[guess]) --guess; /* We don't have any guarantees that 2^n_bits <= n. */
*power = pow10_cache[guess];
return guess;
}
static int round_weed(char *buffer, int len, uint64_t wp_W, uint64_t delta, uint64_t rest, uint64_t ten_kappa, uint64_t ulp) {
uint64_t wp_Wup = wp_W - ulp;
uint64_t wp_Wdown = wp_W + ulp;
while(rest < wp_Wup && delta - rest >= ten_kappa && (rest + ten_kappa < wp_Wup || wp_Wup - rest >= rest + ten_kappa - wp_Wup)) {
--buffer[len-1];
rest += ten_kappa;
}
if(rest < wp_Wdown && delta - rest >= ten_kappa && (rest + ten_kappa < wp_Wdown || wp_Wdown - rest > rest + ten_kappa - wp_Wdown))
return 0;
return 2*ulp <= rest && rest <= delta - 4*ulp;
}
static int digit_gen(diy_fp low, diy_fp w, diy_fp high, char *buffer, int *length, int *kappa) {
uint64_t unit = 1;
diy_fp too_low = { low.f - unit, low.e };
diy_fp too_high = { high.f + unit, high.e };
diy_fp unsafe_interval = minus(too_high, too_low);
diy_fp one = { 1ULL << -w.e, w.e };
uint32_t p1 = (uint32_t)(too_high.f >> -one.e);
uint64_t p2 = too_high.f & (one.f - 1);
uint32_t div;
*kappa = largest_pow10(p1, DIYFP_FRACT_SIZE + one.e, &div);
*length = 0;
while(*kappa > 0) {
uint64_t rest;
int digit = p1 / div;
buffer[*length] = (char)('0' + digit);
++*length;
p1 %= div;
--*kappa;
rest = ((uint64_t)p1 << -one.e) + p2;
if (rest < unsafe_interval.f) return round_weed(buffer, *length, minus(too_high, w).f, unsafe_interval.f, rest, (uint64_t)div << -one.e, unit);
div /= 10;
}
for(;;) {
int digit;
p2 *= 10;
unit *= 10;
unsafe_interval.f *= 10;
/* Integer division by one. */
digit = (int)(p2 >> -one.e);
buffer[*length] = (char)('0' + digit);
++*length;
p2 &= one.f - 1; /* Modulo by one. */
--*kappa;
if (p2 < unsafe_interval.f) return round_weed(buffer, *length, minus(too_high, w).f * unit, unsafe_interval.f, p2, one.f, unit);
}
}
int grisu3(double v, char *buffer, int *length, int *d_exp) {
int mk, kappa, success;
diy_fp dfp = double2diy_fp(v);
diy_fp w = normalize_diy_fp(dfp);
/* normalize boundaries */
diy_fp t = { (dfp.f << 1) + 1, dfp.e - 1 };
diy_fp b_plus = normalize_diy_fp(t);
diy_fp b_minus;
diy_fp c_mk; /* Cached power of ten: 10^-k */
uint64_t u64 = CAST_U64(v);
#ifdef DTOA_ASSERT
if(v <= 0)
croak("v <= 0, but Grisu only handles strictly positive finite numbers");
if(v > 1.7976931348623157e308)
croak("v > 1.7976931348623157e308, but Grisu only handles strictly positive finite numbers");
/* assert(v > 0 && v <= 1.7976931348623157e308); *//* Grisu only handles strictly positive finite numbers. */
#endif
if (!(u64 & D64_FRACT_MASK) && (u64 & D64_EXP_MASK) != 0) { b_minus.f = (dfp.f << 2) - 1; b_minus.e = dfp.e - 2;} /* lower boundary is closer? */
else { b_minus.f = (dfp.f << 1) - 1; b_minus.e = dfp.e - 1; }
b_minus.f = b_minus.f << (b_minus.e - b_plus.e);
b_minus.e = b_plus.e;
mk = cached_pow(MIN_TARGET_EXP - DIYFP_FRACT_SIZE - w.e, &c_mk);
w = multiply(w, c_mk);
b_minus = multiply(b_minus, c_mk);
b_plus = multiply(b_plus, c_mk);
success = digit_gen(b_minus, w, b_plus, buffer, length, &kappa);
*d_exp = kappa - mk;
return success;
}
int i_to_str(int val, char *str) {
int len, i;
char *s;
char *begin = str;
if(val < 0) {
*str++ = '-';
val = -val;
if(val < 10) *str++ = '0';
}
else { if (val) *str++ = '+'; }
s = str;
for(;;) {
int ni = val / 10;
int digit = val - ni*10;
*s++ = (char)('0' + digit);
if(ni == 0) break;
val = ni;
}
*s = '\0';
len = (int)(s - str);
for(i = 0; i < len/2; ++i) {
char ch = str[i];
str[i] = str[len-1-i];
str[len-1-i] = ch;
}
return (int)(s - begin);
}
|