1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
|
# Copyright 2011, 2012, 2013, 2014 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# math-image --path=MooreSpiral --all --output=numbers_dash
# math-image --path=MooreSpiral,arms=2 --all --output=numbers_dash
# www.nahee.com/spanky/www/fractint/lsys/variations.html
# William McWorter mcworter@midohio.net
# http://www.nahee.com/spanky/www/fractint/lsys/moore.gif
package Math::PlanePath::MooreSpiral;
use 5.004;
use strict;
use List::Util 'min'; # 'max'
*max = \&Math::PlanePath::_max;
use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
use Math::PlanePath::Base::Digits
'round_down_pow',
'digit_split_lowtohigh';
# uncomment this to run the ### lines
#use Smart::Comments;
use constant n_start => 0;
use constant parameter_info_array => [ { name => 'arms',
share_key => 'arms_2',
display => 'Arms',
type => 'integer',
minimum => 1,
maximum => 2,
default => 1,
width => 1,
description => 'Arms',
} ];
sub new {
my $self = shift->SUPER::new(@_);
$self->{'arms'} = max(1, min(2, $self->{'arms'} || 1));
return $self;
}
my @next_state = (20,30, 0, 60, 0,10, 70,60,50, undef, # 0
30, 0, 10,70,10, 20,40,70, 60,undef, # 10
0, 10,20,40, 20,30,50, 40,70,undef, # 20
10,20,30, 50,30, 0, 60,50,40, undef, # 30
10,20, 30,50,40, 20,40,70, 60,undef, # 40
20, 30, 0,60, 50,30,50, 40,70,undef, # 50
30, 0,10, 70,60, 0, 60,50,40, undef, # 60
0,10, 20,40,70, 10,70,60, 50,undef); # 70
my @digit_to_x = ( 0, 1, 1, 0,-1,-2, -2,-2,-3, -3, # 0
0, 0, -1,-1,-1, -1, 0, 1, 1, 0, # 10
0, -1,-1, 0, 1, 2, 2, 2, 3, 3, # 20
0, 0, 1, 1, 1, 1, 0,-1,-1, 0, # 30
0, 0, 1, 1, 1, 2, 3, 4, 4, 3, # 40
0, 1, 1, 0, -1,-1,-1, -1, 0, 0, # 50
0, 0,-1, -1,-1,-2, -3,-4,-4, -3, # 60
0,-1, -1, 0, 1, 1, 1, 1, 0, 0); # 70
my @digit_to_y = ( 0, 0, 1, 1, 1, 1, 0,-1,-1, 0, # 0
0, 1, 1, 0,-1, -2,-2,-2, -3,-3, # 10
0, 0,-1,-1, -1,-1, 0, 1, 1, 0, # 20
0,-1,-1, 0, 1, 2, 2, 2, 3, 3, # 30
0,-1, -1, 0, 1, 1, 1, 1, 0, 0, # 40
0, 0, 1, 1, 1, 2, 3, 4, 4, 3, # 50
0, 1, 1, 0,-1,-1, -1,-1, 0, 0, # 60
0, 0, -1,-1,-1, -2,-3,-4, -4,-3); # 70
# state length 80 in each of 4 tables
# rot2 state 20
sub n_to_xy {
my ($self, $n) = @_;
### MooreSpiral n_to_xy(): $n
if ($n < 0) { return; }
if (is_infinite($n)) { return ($n,$n); }
my $int = int($n);
$n -= $int; # frac
# initial state from arm number $int mod $arms
my $state = 20;
my $arms = $self->{'arms'};
if ($arms > 1) {
my $arm = _divrem_mutate($int,2);
if ($arm) {
$state = 0;
$int += 1;
}
}
my @digits = digit_split_lowtohigh($int,9);
my $zero = $int*0; # inherit bignum 0
my $len = ($zero+3) ** scalar(@digits);
unless ($#digits & 1) {
$state ^= 20; # rot 18re0
}
### digits: join(', ',@digits)." count ".scalar(@digits)
### $len
### initial state: $state
my $x = 0;
my $y = 0;
my $dir = 0;
while (@digits) {
$len /= 3;
### at: "$x,$y"
### $len
### digit: $digits[-1]
### state: $state
# . " ".state_string($state)
$state += (my $digit = pop @digits);
if ($digit != 8) {
}
$dir = $state; # lowest non-zero digit
### digit_to_x: $digit_to_x[$state]
### digit_to_y: $digit_to_y[$state]
### next_state: $next_state[$state]
$x += $len * $digit_to_x[$state];
$y += $len * $digit_to_y[$state];
$state = $next_state[$state];
}
### final: "$x,$y"
# with $n fractional part
return ($n * ($digit_to_x[$dir+1] - $digit_to_x[$dir]) + $x,
$n * ($digit_to_y[$dir+1] - $digit_to_y[$dir]) + $y);
}
# 61-62 67-68-69-70 4
# | | | |
# 60 63 66 73-72-71 3
# | | | |
# 59 64-65 74-75-76 2
# | |
# 11-10 5--4--3--2 58-57-56 83-82 77 1
# | | | | | | | |
# 12 9 6 0--1 53-54-55 84 81 78 <- Y=0
# | | | | | | |
# 13 8--7 52-51-50 85 80-79 -1
# | | |
# 14-15-16 25-26 31-32-33-34 43-44 49 86-87-88 97-98 -2
# | | | | | | | | | | |
# 19-18-17 24 27 30 37-36-35 42 45 48 91-90-89 96 99 -3
# | | | | | | | | | | |
# 20-21-22-23 28-29 38-39-40-41 46-47 92-93-94-95 ... -4
# 40 -3*9 = 40-27=13
# 13 -8 = 5
#
# bottom right corner "40" N=(9^level-1)/2
# bottom left corner "20"
# N=(9^level-1)/2 - 3*3^level
# len=3 Nr=(9*len*len-1)/2=40
# Nl=Nr - 2*len*len - (len-1)
# = (9*len*len-1)/2 - 2*len*len - (len-1)
# = (9*len*len-1 - 4*len*len - 2*(len-1))/2
# = (9*len*len - 1 - 4*len*len - 2*len + 2)/2
# = (5*len*len - 2*len + 1)/2
# = ((5*len - 2)*len + 1)/2
#
# round 2,5,etc 1+(3^level-1)/2 = x
# 2*(x-1) = 3^level-1
# 3^level = 2x-2+1 = 2x-1
# offset 1,4,etc 1+...+3^(level-1) = (3^level-1)/2
#
my @yx_to_rot = (0,3,0, # y=0
1,2,1, # y=1
0,3,0); # y=2
my @yx_to_digit = (-2,-3,-4, # y=0
-1,0,1, # y=1
4,3,2); # y=2
sub xy_to_n {
my ($self, $x, $y) = @_;
### MooreSpiral xy_to_n(): "$x, $y"
$x = round_nearest ($x);
$y = round_nearest ($y);
my ($len, $level) = round_down_pow (max(abs($x),abs($y))*2 - 1,
3);
### $len
### $level
# offset to make bottom left corner X=0,Y=0
{
my $offset = (3*$len-1)/2;
$x += $offset;
$y += $offset;
### $offset
### offset to: "$x,$y"
### assert: $x >= 0
### assert: $y >= 0
### assert: $x < 3*$len
### assert: $y < 3*$len
}
if (is_infinite($x)) {
return $x;
}
if (is_infinite($y)) {
return $y;
}
my $arms = $self->{'arms'};
my $npow = $len*$len;
my $n = ($x * 0 * $y); # + (9*$npow - 1)/2;
my $rot = ($level & 1 ? 2 : 0);
my @x = digit_split_lowtohigh ($x, 3);
my @y = digit_split_lowtohigh ($y, 3);
### @x
### @y
for ( ; $level >= 0; $level--) {
### $n
### $rot
$x = $x[$level] || 0;
$y = $y[$level] || 0;
### raw xy digits: "$x,$y"
if ($rot&1) {
($x,$y) = (2-$y,$x) # rotate +90
}
if ($rot&2) {
$x = 2-$x; # rotate 180
$y = 2-$y;
}
### rotated xy digits: "$x,$y"
my $k = $y*3+$x;
$rot += $yx_to_rot[$k];
my $digit = $yx_to_digit[$k];
$n += $npow*$digit;
### $digit
### add to n: $npow*$digit
if ($n < 0 && $self->{'arms'} < 2) {
### negative when only 1 arm ...
return undef;
}
$npow /= 9;
}
### final n: $n
if ($arms < 2) {
return $n;
}
if ($n < 0) {
return -1-2*$n;
} else {
return 2*$n;
}
}
# not exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### MooreSpiral rect_to_n_range(): "$x1,$y1, $x2,$y2"
$x1 = round_nearest ($x1);
$x2 = round_nearest ($x2);
$y1 = round_nearest ($y1);
$y2 = round_nearest ($y2);
my ($len, $level) = round_down_pow (max(abs($x1),abs($y1),
abs($x2),abs($y2))*2-1,
3);
### $len
### $level
return (0,
($x1 * 0 * $y1 * $x2 * $y2)
+ (9*$len*$len - 1) * $self->{'arms'} / 2);
}
1;
__END__
=for stopwords eg Ryde ie MooreSpiral Math-PlanePath Moore
=head1 NAME
Math::PlanePath::MooreSpiral -- 9-segment self-similar spiral
=head1 SYNOPSIS
use Math::PlanePath::MooreSpiral;
my $path = Math::PlanePath::MooreSpiral->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
This is an integer version of a 9-segment self-similar curve by ...
61-62 67-68-69-70 4
| | | |
60 63 66 73-72-71 3
| | | |
59 64-65 74-75-76 2
| |
11-10 5--4--3--2 58-57-56 83-82 77 1
| | | | | | | |
12 9 6 0--1 53-54-55 84 81 78 <- Y=0
| | | | | | |
13 8--7 52-51-50 85 80-79 -1
| | |
14-15-16 25-26 31-32-33-34 43-44 49 86-87-88 97-98 -2
| | | | | | | | | | |
19-18-17 24 27 30 37-36-35 42 45 48 91-90-89 96 99 -3
| | | | | | | | | | |
20-21-22-23 28-29 38-39-40-41 46-47 92-93-94-95 ... -4
-4 -3 -2 -1 X=0 1 2 3 4 5 6 7 8 9 10 11 12
The base pattern is the N=0 to N=9 shape. Then there's 9 copies of that
shape in the same relative directions as those segments and with reversals
in the 3,6,7,8 parts. The first reversed section is N=3*9=27 to N=4*9=36.
rev
5------4------3------2
| |
| |
9 6 0------1
| |rev
rev| |
8------7
rev
Notice the points N=9,18,27,...,81 are the base shape rotated 180 degrees.
Likewise for N=81,162,etc and any multiples of N=9^level, with each
successive level being rotated 180 degrees relative to the preceding. The
effect is to spiral around with an ever fatter 3^level width,
******************************************************
******************************************************
******************************************************
******************************************************
******************************************************
******************************************************
******************************************************
******************************************************
******************************************************
*************************** *********
*************************** *********
*************************** *********
*************************** ****** *********
*************************** *** ** *********
*************************** *** *********
*************************** ******************
*************************** ******************
*************************** ******************
***************************
***************************
***************************
***************************
***************************
***************************
***************************
***************************
***************************
=head2 Arms
The optional C<arms =E<gt> 2> parameter can give a second copy of the spiral
rotated 180 degrees. With two arms all points of the plane are covered.
93--91 81--79--77--75 57--55 45--43--41--39 122-124 ..
| | | | | | | | | | |
95 89 83 69--71--73 59 53 47 33--35--37 120 126 132
| | | | | | | | | | |
97 87--85 67--65--63--61 51--49 31--29--27 118 128-130
| | |
99-101-103 22--20 10-- 8-- 6-- 4 13--15 25 116-114-112
| | | | | | | | |
109-107-105 24 18 12 1 0-- 2 11 17 23 106-108-110
| | | | | | | | |
111-113-115 26 16--14 3-- 5-- 7-- 9 19--21 104-102-100
| | |
129-127 117 28--30--32 50--52 62--64--66--68 86--88 98
| | | | | | | | | | |
131 125 119 38--36--34 48 54 60 74--72--70 84 90 96
| | | | | | | | | | |
.. 123-121 40--42--44--46 56--58 76--78--80--82 92--94
The first arm is the even numbers N=0,2,4,etc and the second arm is the odd
numbers N=1,3,5,etc.
=head2 Wunderlich Serpentine Curve
The way the ends join makes little "S" shapes similar to the PeanoCurve.
The first is at N=5 to N=13,
11-10 5
| | |
12 9 6
| | |
13 8--7
The wider parts then have these sections alternately horizontal or vertical
in the style of Walter Wunderlich's "serpentine" type 010 101 010 curve.
For example the 9x9 block N=41 to N=101,
61--62 67--68--69--70 115-116 121
| | | | | | |
60 63 66 73--72--71 114 117 120
| | | | | | |
59 64--65 74--75--76 113 118-119
| | |
58--57--56 83--82 77 112-111-110
| | | | |
53--54--55 84 81 78 107-108-109
| | | | |
52--51--50 85 80--79 106-105-104
| | |
43--44 49 86--87--88 97--98 103
| | | | | | |
42 45 48 91--90--89 96 99 102
| | | | | | |
41 46--47 92--93--94--95 100-101
The whole curve is in fact like the Wunderlich serpentine started from the
middle. This can be seen in the two arms picture above (in mirror image of
the usual PlanePath start direction for Wunderlich's curve).
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for the behaviour common to all path
classes.
=over 4
=item C<$path = Math::PlanePath::MooreSpiral-E<gt>new ()>
Create and return a new path object.
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path. Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.
=back
=head1 FORMULAS
=head2 X,Y to N
The correspondence to Wunderlich's 3x3 serpentine curve can be used to turn
X,Y coordinates in base 3 into an N. Reckoning the innermost 3x3 as level=1
then the smallest abs(X) or abs(Y) in a level is
Xlevelmin = (3^level + 1) / 2
eg. level=2 Xlevelmin=5
which can be reversed as
level = log3floor( max(abs(X),abs(Y)) * 2 - 1 )
eg. X=7 level=log3floor(2*7-1)=2
An offset can be applied to put X,Y in the range 0 to 3^level-1,
offset = (3^level-1)/2
eg. level=2 offset=4
Then a table can give the N base-9 digit corresponding to X,Y digits
Y=2 4 3 2 N digit
Y=1 -1 0 1
Y=0 -2 -3 -4
X=0 X=1 X=2
A current rotation maintains the "S" part directions and is updated by a
table
Y=2 0 +3 0 rotation when descending
Y=1 +1 +2 +1 into sub-part
Y=0 0 +3 0
X=0 X=1 X=2
The negative digits of N represent backing up a little in some higher part.
If N goes negative at any state then X,Y was off the main curve and instead
on the second arm. If the second arm is not of interest the calculation can
stop at that stage.
It no doubt would also work to take take X,Y as balanced ternary digits
1,0,-1, but it's not clear that would be any faster or easier to calculate.
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::PeanoCurve>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2011, 2012, 2013, 2014 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|