File: MooreSpiral.pm

package info (click to toggle)
libmath-planepath-perl 117-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 6,988 kB
  • ctags: 5,587
  • sloc: perl: 99,131; ansic: 299; sh: 233; lisp: 73; makefile: 4
file content (554 lines) | stat: -rw-r--r-- 17,693 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
# Copyright 2011, 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# math-image --path=MooreSpiral --all --output=numbers_dash
# math-image --path=MooreSpiral,arms=2 --all --output=numbers_dash

# www.nahee.com/spanky/www/fractint/lsys/variations.html
# William McWorter mcworter@midohio.net
# http://www.nahee.com/spanky/www/fractint/lsys/moore.gif

package Math::PlanePath::MooreSpiral;
use 5.004;
use strict;
use List::Util 'min'; # 'max'
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'round_down_pow',
  'digit_split_lowtohigh';

# uncomment this to run the ### lines
#use Smart::Comments;


use constant n_start => 0;

use constant parameter_info_array => [ { name      => 'arms',
                                         share_key => 'arms_2',
                                         display   => 'Arms',
                                         type      => 'integer',
                                         minimum   => 1,
                                         maximum   => 2,
                                         default   => 1,
                                         width     => 1,
                                         description => 'Arms',
                                       } ];
sub new {
  my $self = shift->SUPER::new(@_);
  $self->{'arms'} = max(1, min(2, $self->{'arms'} || 1));
  return $self;
}

my @next_state = (20,30, 0, 60, 0,10, 70,60,50, undef,    # 0
                  30, 0, 10,70,10, 20,40,70, 60,undef,    # 10
                   0, 10,20,40, 20,30,50, 40,70,undef,    # 20
                  10,20,30, 50,30, 0, 60,50,40, undef,    # 30
                  10,20, 30,50,40, 20,40,70, 60,undef,    # 40
                  20, 30, 0,60, 50,30,50, 40,70,undef,    # 50
                  30, 0,10, 70,60, 0, 60,50,40, undef,    # 60
                   0,10, 20,40,70, 10,70,60, 50,undef);   # 70
my @digit_to_x = ( 0, 1, 1,  0,-1,-2, -2,-2,-3, -3,    # 0
                   0, 0, -1,-1,-1, -1, 0, 1,  1, 0,    # 10
                   0, -1,-1, 0,  1, 2, 2,  2, 3, 3,    # 20
                   0, 0, 1,  1, 1, 1,  0,-1,-1,  0,    # 30
                   0, 0,  1, 1, 1,  2, 3, 4,  4, 3,    # 40
                   0,  1, 1, 0, -1,-1,-1, -1, 0, 0,    # 50
                   0, 0,-1, -1,-1,-2, -3,-4,-4, -3,    # 60
                   0,-1, -1, 0, 1,  1, 1, 1,  0, 0);   # 70
my @digit_to_y = ( 0, 0, 1,  1, 1, 1,  0,-1,-1,  0,    # 0
                   0, 1,  1, 0,-1, -2,-2,-2, -3,-3,    # 10
                   0,  0,-1,-1, -1,-1, 0,  1, 1, 0,    # 20
                   0,-1,-1,  0, 1, 2,  2, 2, 3,  3,    # 30
                   0,-1, -1, 0, 1,  1, 1, 1,  0, 0,    # 40
                   0,  0, 1, 1,  1, 2, 3,  4, 4, 3,    # 50
                   0, 1, 1,  0,-1,-1, -1,-1, 0,  0,    # 60
                   0, 0, -1,-1,-1, -2,-3,-4, -4,-3);   # 70
# state length 80 in each of 4 tables
# rot2 state 20

sub n_to_xy {
  my ($self, $n) = @_;
  ### MooreSpiral n_to_xy(): $n

  if ($n < 0) { return; }
  if (is_infinite($n)) { return ($n,$n); }

  my $int = int($n);
  $n -= $int;  # frac

  # initial state from arm number $int mod $arms
  my $state = 20;
  my $arms = $self->{'arms'};
  if ($arms > 1) {
    my $arm = _divrem_mutate($int,2);
    if ($arm) {
      $state = 0;
      $int += 1;
    }
  }

  my @digits = digit_split_lowtohigh($int,9);

  my $zero = $int*0;   # inherit bignum 0
  my $len = ($zero+3) ** scalar(@digits);
  unless ($#digits & 1) {
    $state ^= 20; # rot 18re0
  }

  ### digits: join(', ',@digits)."   count ".scalar(@digits)
  ### $len
  ### initial state: $state

  my $x = 0;
  my $y = 0;
  my $dir = 0;

  while (@digits) {
    $len /= 3;

    ### at: "$x,$y"
    ### $len
    ### digit: $digits[-1]
    ### state: $state
    # . "   ".state_string($state)

    $state += (my $digit = pop @digits);
    if ($digit != 8) {
    }
    $dir = $state;  # lowest non-zero digit

    ### digit_to_x: $digit_to_x[$state]
    ### digit_to_y: $digit_to_y[$state]
    ### next_state: $next_state[$state]

    $x += $len * $digit_to_x[$state];
    $y += $len * $digit_to_y[$state];
    $state = $next_state[$state];
  }

  ### final: "$x,$y"

  # with $n fractional part
  return ($n * ($digit_to_x[$dir+1] - $digit_to_x[$dir]) + $x,
          $n * ($digit_to_y[$dir+1] - $digit_to_y[$dir]) + $y);
}


#                            61-62 67-68-69-70            4
#                             |  |  |        |
#                            60 63 66 73-72-71            3
#                             |  |  |  |
#                            59 64-65 74-75-76            2
#                             |              |
# 11-10  5--4--3--2          58-57-56 83-82 77            1
#  |  |  |        |                 |  |  |  |
# 12  9  6     0--1          53-54-55 84 81 78       <- Y=0
#  |  |  |                    |        |  |  |
# 13  8--7                   52-51-50 85 80-79           -1
#  |                                |  |
# 14-15-16 25-26 31-32-33-34 43-44 49 86-87-88 97-98     -2
#        |  |  |  |        |  |  |  |        |  |  |
# 19-18-17 24 27 30 37-36-35 42 45 48 91-90-89 96 99     -3
#  |        |  |  |  |        |  |  |  |        |  |
# 20-21-22-23 28-29 38-39-40-41 46-47 92-93-94-95 ...    -4

# 40 -3*9 = 40-27=13
# 13 -8   = 5
#

# bottom right corner "40" N=(9^level-1)/2
# bottom left corner "20"
#   N=(9^level-1)/2 - 3*3^level
# len=3 Nr=(9*len*len-1)/2=40
#       Nl=Nr - 2*len*len - (len-1)
#         = (9*len*len-1)/2 - 2*len*len - (len-1)
#         = (9*len*len-1 - 4*len*len - 2*(len-1))/2
#         = (9*len*len - 1 - 4*len*len - 2*len + 2)/2
#         = (5*len*len - 2*len + 1)/2
#         = ((5*len - 2)*len + 1)/2
#
# round 2,5,etc 1+(3^level-1)/2 = x
#               2*(x-1) = 3^level-1
#               3^level = 2x-2+1 = 2x-1
# offset 1,4,etc 1+...+3^(level-1) = (3^level-1)/2
#

my @yx_to_rot   = (0,3,0,   # y=0
                   1,2,1,   # y=1
                   0,3,0);  # y=2
my @yx_to_digit = (-2,-3,-4,  # y=0
                   -1,0,1,    # y=1
                   4,3,2);    # y=2

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### MooreSpiral xy_to_n(): "$x, $y"

  $x = round_nearest ($x);
  $y = round_nearest ($y);

  my ($len, $level) = round_down_pow (max(abs($x),abs($y))*2 - 1,
                                      3);
  ### $len
  ### $level

  # offset to make bottom left corner X=0,Y=0
  {
    my $offset = (3*$len-1)/2;
    $x += $offset;
    $y += $offset;
    ### $offset
    ### offset to: "$x,$y"
    ### assert: $x >= 0
    ### assert: $y >= 0
    ### assert: $x < 3*$len
    ### assert: $y < 3*$len
  }
  if (is_infinite($x)) {
    return $x;
  }
  if (is_infinite($y)) {
    return $y;
  }

  my $arms = $self->{'arms'};
  my $npow = $len*$len;
  my $n = ($x * 0 * $y); #  + (9*$npow - 1)/2;
  my $rot = ($level & 1 ? 2 : 0);

  my @x = digit_split_lowtohigh ($x, 3);
  my @y = digit_split_lowtohigh ($y, 3);
  ### @x
  ### @y

  for ( ; $level >= 0; $level--) {
    ### $n
    ### $rot

    $x = $x[$level] || 0;
    $y = $y[$level] || 0;
    ### raw xy digits: "$x,$y"

    if ($rot&1) {
      ($x,$y) = (2-$y,$x)  # rotate +90
    }
    if ($rot&2) {
      $x = 2-$x;  # rotate 180
      $y = 2-$y;
    }
    ### rotated xy digits: "$x,$y"

    my $k = $y*3+$x;
    $rot += $yx_to_rot[$k];

    my $digit = $yx_to_digit[$k];
    $n += $npow*$digit;
    ### $digit
    ### add to n: $npow*$digit

    if ($n < 0 && $self->{'arms'} < 2) {
      ### negative when only 1 arm ...
      return undef;
    }

    $npow /= 9;
  }

  ### final n: $n

  if ($arms < 2) {
    return $n;
  }
  if ($n < 0) {
    return -1-2*$n;
  } else {
    return 2*$n;
  }
}

# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### MooreSpiral rect_to_n_range(): "$x1,$y1, $x2,$y2"

  $x1 = round_nearest ($x1);
  $x2 = round_nearest ($x2);
  $y1 = round_nearest ($y1);
  $y2 = round_nearest ($y2);

  my ($len, $level) = round_down_pow (max(abs($x1),abs($y1),
                                          abs($x2),abs($y2))*2-1,
                                      3);
  ### $len
  ### $level

  return (0,
          ($x1 * 0 * $y1 * $x2 * $y2)
          + (9*$len*$len - 1) * $self->{'arms'} / 2);
}

1;
__END__

=for stopwords eg Ryde ie MooreSpiral Math-PlanePath Moore

=head1 NAME

Math::PlanePath::MooreSpiral -- 9-segment self-similar spiral

=head1 SYNOPSIS

 use Math::PlanePath::MooreSpiral;
 my $path = Math::PlanePath::MooreSpiral->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This is an integer version of a 9-segment self-similar curve by ...

                               61-62 67-68-69-70            4
                                |  |  |        |
                               60 63 66 73-72-71            3
                                |  |  |  |
                               59 64-65 74-75-76            2
                                |              |
    11-10  5--4--3--2          58-57-56 83-82 77            1
     |  |  |        |                 |  |  |  |
    12  9  6     0--1          53-54-55 84 81 78       <- Y=0
     |  |  |                    |        |  |  |
    13  8--7                   52-51-50 85 80-79           -1
     |                                |  |
    14-15-16 25-26 31-32-33-34 43-44 49 86-87-88 97-98     -2
           |  |  |  |        |  |  |  |        |  |  |
    19-18-17 24 27 30 37-36-35 42 45 48 91-90-89 96 99     -3
     |        |  |  |  |        |  |  |  |        |  |
    20-21-22-23 28-29 38-39-40-41 46-47 92-93-94-95 ...    -4

    -4 -3 -2 -1 X=0 1  2  3  4  5  6  7  8  9 10 11 12

The base pattern is the N=0 to N=9 shape.  Then there's 9 copies of that
shape in the same relative directions as those segments and with reversals
in the 3,6,7,8 parts.  The first reversed section is N=3*9=27 to N=4*9=36.

                       rev
              5------4------3------2
              |                    |
              |                    |
       9      6             0------1
       |      |rev
    rev|      |
       8------7
         rev

Notice the points N=9,18,27,...,81 are the base shape rotated 180 degrees.
Likewise for N=81,162,etc and any multiples of N=9^level, with each
successive level being rotated 180 degrees relative to the preceding.  The
effect is to spiral around with an ever fatter 3^level width,

    ******************************************************
    ******************************************************
    ******************************************************
    ******************************************************
    ******************************************************
    ******************************************************
    ******************************************************
    ******************************************************
    ******************************************************
    ***************************                  *********
    ***************************                  *********
    ***************************                  *********
    ***************************         ******   *********
    ***************************         *** **   *********
    ***************************         ***      *********
    ***************************         ******************
    ***************************         ******************
    ***************************         ******************
    ***************************
    ***************************
    ***************************
    ***************************
    ***************************
    ***************************
    ***************************
    ***************************
    ***************************

=head2 Arms

The optional C<arms =E<gt> 2> parameter can give a second copy of the spiral
rotated 180 degrees.  With two arms all points of the plane are covered.

     93--91  81--79--77--75  57--55  45--43--41--39 122-124  ..
      |   |   |           |   |   |   |           |   |   |   |
     95  89  83  69--71--73  59  53  47  33--35--37 120 126 132 
      |   |   |   |           |   |   |   |           |   |   | 
     97  87--85  67--65--63--61  51--49  31--29--27 118 128-130 
      |                                           |   |
     99-101-103  22--20  10-- 8-- 6-- 4  13--15  25 116-114-112 
              |   |   |   |           |   |   |   |           | 
    109-107-105  24  18  12   1   0-- 2  11  17  23 106-108-110 
      |           |   |   |   |           |   |   |   |         
    111-113-115  26  16--14   3-- 5-- 7-- 9  19--21 104-102-100 
              |   |                                           | 
    129-127 117  28--30--32  50--52  62--64--66--68  86--88  98 
      |   |   |           |   |   |   |           |   |   |   |
    131 125 119  38--36--34  48  54  60  74--72--70  84  90  96 
      |   |   |   |           |   |   |   |           |   |   | 
     .. 123-121  40--42--44--46  56--58  76--78--80--82  92--94 

The first arm is the even numbers N=0,2,4,etc and the second arm is the odd
numbers N=1,3,5,etc.

=head2 Wunderlich Serpentine Curve

The way the ends join makes little "S" shapes similar to the PeanoCurve.
The first is at N=5 to N=13,

    11-10  5
     |  |  |
    12  9  6
     |  |  | 
    13  8--7 

The wider parts then have these sections alternately horizontal or vertical
in the style of Walter Wunderlich's "serpentine" type 010 101 010 curve.
For example the 9x9 block N=41 to N=101,

    61--62  67--68--69--70 115-116 121
     |   |   |           |   |   |   |
    60  63  66  73--72--71 114 117 120
     |   |   |   |           |   |   |
    59  64--65  74--75--76 113 118-119
     |                   |   |        
    58--57--56  83--82  77 112-111-110
             |   |   |   |           |
    53--54--55  84  81  78 107-108-109
     |           |   |   |   |        
    52--51--50  85  80--79 106-105-104
             |   |                   |
    43--44  49  86--87--88  97--98 103
     |   |   |           |   |   |   |
    42  45  48  91--90--89  96  99 102
     |   |   |   |           |   |   |
    41  46--47  92--93--94--95 100-101

The whole curve is in fact like the Wunderlich serpentine started from the
middle.  This can be seen in the two arms picture above (in mirror image of
the usual PlanePath start direction for Wunderlich's curve).

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for the behaviour common to all path
classes.

=over 4

=item C<$path = Math::PlanePath::MooreSpiral-E<gt>new ()>

Create and return a new path object.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.

=back

=head1 FORMULAS

=head2 X,Y to N

The correspondence to Wunderlich's 3x3 serpentine curve can be used to turn
X,Y coordinates in base 3 into an N.  Reckoning the innermost 3x3 as level=1
then the smallest abs(X) or abs(Y) in a level is

    Xlevelmin = (3^level + 1) / 2
    eg. level=2 Xlevelmin=5

which can be reversed as

    level = log3floor( max(abs(X),abs(Y)) * 2 - 1 )
    eg. X=7 level=log3floor(2*7-1)=2

An offset can be applied to put X,Y in the range 0 to 3^level-1,

    offset = (3^level-1)/2
    eg. level=2 offset=4

Then a table can give the N base-9 digit corresponding to X,Y digits

    Y=2   4   3   2      N digit
    Y=1  -1   0   1
    Y=0  -2  -3  -4
         X=0 X=1 X=2

A current rotation maintains the "S" part directions and is updated by a
table

    Y=2   0  +3   0     rotation when descending
    Y=1  +1  +2  +1     into sub-part
    Y=0   0  +3   0
         X=0 X=1 X=2

The negative digits of N represent backing up a little in some higher part.
If N goes negative at any state then X,Y was off the main curve and instead
on the second arm.  If the second arm is not of interest the calculation can
stop at that stage.

It no doubt would also work to take take X,Y as balanced ternary digits
1,0,-1, but it's not clear that would be any faster or easier to calculate.

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::PeanoCurve>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013, 2014 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut