1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
# Copyright 2012, 2013, 2014 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# A072732
# A072733 inverse
# A072736 X coord
# A072737 Y coord
#
# A072734
# A072740 X coord
# A072741 Y coord
package Math::PlanePath::NxNinv;
use 5.004;
use strict;
use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
# uncomment this to run the ### lines
#use Smart::Comments;
use constant n_start => 0;
use constant class_x_negative => 0;
use constant class_y_negative => 0;
sub n_to_xy {
my ($self, $n) = @_;
### NxN n_to_xy(): $n
if ($n < 0) { return; }
if (is_infinite($n)) { return ($n,$n); }
{
# fractions on straight line ?
my $int = int($n);
if ($n != $int) {
my $frac = $n - $int; # inherit possible BigFloat/BigRat
my ($x1,$y1) = $self->n_to_xy($int);
my ($x2,$y2) = $self->n_to_xy($int+1);
my $dx = $x2-$x1;
my $dy = $y2-$y1;
return ($frac*$dx + $x1, $frac*$dy + $y1);
}
$n = $int;
}
# d = [ 0, 1, 2, 3, 4 ]
# n = [ 0, 1, 3, 6, 10 ]
# N = (d+1)*d/2
# d = (-1 + sqrt(8*$n+1))/2
#
my $d = int((sqrt(8*$n+1) - 1) / 2);
$n -= $d*($d+1)/2;
### $d
### $n
my $x = $d-$n; # downwards
my $y = $n; # upwards
my $diff = $x-$y;
### diagonals xy: "$x, $y diff=$diff"
if ($x <= $y) {
my $h = int($x/2);
return ($h,
$h + ($x%2) + 2*($y - 2*$h - ($x%2)));
} else {
my $h = int($y/2);
return (1 + $h + ($y%2) + 2*($x-1 - 2*$h - ($y%2)),
$h);
}
}
sub xy_to_n {
my ($self, $x, $y) = @_;
### NxN xy_to_n(): "$x, $y"
$x = round_nearest ($x);
$y = round_nearest ($y);
if ($x < 0 || $y < 0) {
return undef;
}
my $diff = $x-$y;
if ($diff <= 0) {
($x,$y) = (2*$x + ($diff % 2),
2*$x + int((1-$diff)/2));
} else {
### pos diff, use y ...
($x,$y) = (2*($y+1) - 1 + int($diff/2),
2*$y + (($diff+1) % 2));
}
return (($x+$y)**2 + $x+3*$y)/2;
}
# not exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### NxN rect_to_n_range(): "$x1,$y1 $x2,$y2"
$x1 = round_nearest ($x1);
$y1 = round_nearest ($y1);
$x2 = round_nearest ($x2);
$y2 = round_nearest ($y2);
($x1,$x2) = ($x2,$x1) if $x1 > $x2;
($y1,$y2) = ($y2,$y1) if $y1 > $y2;
if ($x2 < 0 || $y2 < 0) {
### all outside first quadrant ...
return (1, 0);
}
return (0, $self->xy_to_n($x2,0));
return (0, $self->xy_to_n($x2,$y2));
}
1;
__END__
|