1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
# works, worth having separately ?
# alternating diagonals when even radix ?
# Copyright 2011, 2012, 2013, 2014 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# math-image --path=PeanoVertices --all --output=numbers
# math-image --path=PeanoVertices,radix=5 --lines
#
package Math::PlanePath::PeanoVertices;
use 5.004;
use strict;
#use List::Util 'max';
*max = \&Math::PlanePath::_max;
use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
use Math::PlanePath::Base::Digits
'round_down_pow',
'digit_split_lowtohigh';
use Math::PlanePath::PeanoCurve;
# uncomment this to run the ### lines
# use Smart::Comments;
use constant n_start => 0;
use constant class_x_negative => 0;
use constant class_y_negative => 1;
use constant parameter_info_array =>
[ { name => 'radix',
share_key => 'radix_3',
display => 'Radix',
type => 'integer',
minimum => 2,
default => 3,
width => 3,
} ];
sub new {
my $self = shift->SUPER::new(@_);
$self->{'radix'} ||= 3;
$self->{'peano'} = Math::PlanePath::PeanoCurve->new (radix => $self->{'radix'});
return $self;
}
sub n_to_xy {
my ($self, $n) = @_;
### PeanoVertices n_to_xy(): $n
if ($n < 0) { return; }
if (is_infinite($n)) { return ($n,$n); }
{
# ENHANCE-ME: for odd radix the ends join and the direction can be had
# without a full N+1 calculation
my $int = int($n);
### $int
### $n
if ($n != $int) {
my ($x1,$y1) = $self->n_to_xy($int);
my ($x2,$y2) = $self->n_to_xy($int+1);
my $frac = $n - $int; # inherit possible BigFloat
my $dx = $x2-$x1;
my $dy = $y2-$y1;
return ($frac*$dx + $x1, $frac*$dy + $y1);
}
$n = $int; # BigFloat int() gives BigInt, use that
}
my ($x,$y) = $self->{'peano'}->n_to_xy($n)
or return;
if ($x % 2) {
if ($y % 2) {
$x += 1;
$y += 1;
} else {
$x -= 0;
$y += 1;
}
} else {
if ($y % 2) {
$x += 1;
$y -= 0;
} else {
$x -= 0;
$y -= 0;
}
}
($x,$y) = (($y+$x)/2, ($y-$x)/2);
return ($x, $y);
}
sub xy_to_n {
my ($self, $x, $y) = @_;
### PeanoVertices xy_to_n(): "$x, $y"
return undef;
$x = round_nearest ($x);
$y = round_nearest ($y);
if ($x < 0 || $y < 0) {
return undef;
}
if (is_infinite($x)) {
return $x;
}
if (is_infinite($y)) {
return $y;
}
}
# not exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
return (0, 1000);
$x1 = round_nearest ($x1);
$y1 = round_nearest ($y1);
$x2 = round_nearest ($x2);
$y2 = round_nearest ($y2);
($x1,$x2) = ($x2,$x1) if $x1 > $x2;
($y1,$y2) = ($y2,$y1) if $y1 > $y2;
### rect_to_n_range(): "$x1,$y1 to $x2,$y2"
if ($x2 < 0 || $y2 < 0) {
return (1, 0);
}
my $radix = $self->{'radix'};
my ($power, $level) = round_down_pow (max($x2,$y2)*$radix/2, $radix);
if (is_infinite($level)) {
return (0, $level);
}
return (0, 2*$power*$power - 1);
}
1;
__END__
|