File: PeanoVertices.pm

package info (click to toggle)
libmath-planepath-perl 117-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 6,988 kB
  • ctags: 5,587
  • sloc: perl: 99,131; ansic: 299; sh: 233; lisp: 73; makefile: 4
file content (173 lines) | stat: -rw-r--r-- 3,797 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# works, worth having separately ?

# alternating diagonals when even radix ?



# Copyright 2011, 2012, 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# math-image --path=PeanoVertices --all --output=numbers
# math-image --path=PeanoVertices,radix=5 --lines
#


package Math::PlanePath::PeanoVertices;
use 5.004;
use strict;
#use List::Util 'max';
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'round_down_pow',
  'digit_split_lowtohigh';

use Math::PlanePath::PeanoCurve;

# uncomment this to run the ### lines
# use Smart::Comments;


use constant n_start => 0;
use constant class_x_negative => 0;
use constant class_y_negative => 1;

use constant parameter_info_array =>
  [ { name      => 'radix',
      share_key => 'radix_3',
      display   => 'Radix',
      type      => 'integer',
      minimum   => 2,
      default   => 3,
      width     => 3,
    } ];

sub new {
  my $self = shift->SUPER::new(@_);
  $self->{'radix'} ||= 3;
  $self->{'peano'} = Math::PlanePath::PeanoCurve->new (radix => $self->{'radix'});
  return $self;
}

sub n_to_xy {
  my ($self, $n) = @_;
  ### PeanoVertices n_to_xy(): $n

  if ($n < 0) { return; }
  if (is_infinite($n)) { return ($n,$n); }

  {
    # ENHANCE-ME: for odd radix the ends join and the direction can be had
    # without a full N+1 calculation
    my $int = int($n);
    ### $int
    ### $n
    if ($n != $int) {
      my ($x1,$y1) = $self->n_to_xy($int);
      my ($x2,$y2) = $self->n_to_xy($int+1);
      my $frac = $n - $int;  # inherit possible BigFloat
      my $dx = $x2-$x1;
      my $dy = $y2-$y1;
      return ($frac*$dx + $x1, $frac*$dy + $y1);
    }
    $n = $int; # BigFloat int() gives BigInt, use that
  }

  my ($x,$y) = $self->{'peano'}->n_to_xy($n)
    or return;
  if ($x % 2) {
    if ($y % 2) {
      $x += 1;
      $y += 1;
    } else {
      $x -= 0;
      $y += 1;
    }
  } else {
    if ($y % 2) {
      $x += 1;
      $y -= 0;
    } else {
      $x -= 0;
      $y -= 0;
    }
  }

  ($x,$y) = (($y+$x)/2, ($y-$x)/2);
  return ($x, $y);
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### PeanoVertices xy_to_n(): "$x, $y"

    return undef;

  $x = round_nearest ($x);
  $y = round_nearest ($y);

  if ($x < 0 || $y < 0) {
    return undef;
  }
  if (is_infinite($x)) {
    return $x;
  }
  if (is_infinite($y)) {
    return $y;
  }

}

# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;

  return (0, 1000);

  $x1 = round_nearest ($x1);
  $y1 = round_nearest ($y1);
  $x2 = round_nearest ($x2);
  $y2 = round_nearest ($y2);
  ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
  ($y1,$y2) = ($y2,$y1) if $y1 > $y2;
  ### rect_to_n_range(): "$x1,$y1 to $x2,$y2"

  if ($x2 < 0 || $y2 < 0) {
    return (1, 0);
  }

  my $radix = $self->{'radix'};

  my ($power, $level) = round_down_pow (max($x2,$y2)*$radix/2, $radix);
  if (is_infinite($level)) {
    return (0, $level);
  }
  return (0, 2*$power*$power - 1);
}

1;
__END__