1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
# Copyright 2013, 2014 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
package Math::PlanePath::WythoffDifference;
use 5.004;
use strict;
use List::Util 'max';
use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
# uncomment this to run the ### lines
# use Smart::Comments;
use constant class_x_negative => 0;
use constant class_y_negative => 0;
use constant xy_is_visited => 1;
use Math::PlanePath::WythoffArray;
my $wythoff = Math::PlanePath::WythoffArray->new;
sub n_to_xy {
my ($self, $n) = @_;
### WythoffDifference n_to_xy(): $n
if ($n < 1) { return; }
if (is_infinite($n) || $n == 0) { return ($n,$n); }
{
# fractions on straight line ?
my $int = int($n);
if ($n != $int) {
my $frac = $n - $int; # inherit possible BigFloat/BigRat
my ($x1,$y1) = $self->n_to_xy($int);
my ($x2,$y2) = $self->n_to_xy($int+1);
my $dx = $x2-$x1;
my $dy = $y2-$y1;
return ($frac*$dx + $x1, $frac*$dy + $y1);
}
$n = $int;
}
# f1+f0 > i
# f0 > i-f1
# check i-f1 as the stopping point, so that if i=UV_MAX then won't
# overflow a UV trying to get to f1>=i
#
my @fibs;
{
my $f0 = ($n * 0); # inherit bignum 0
my $f1 = $f0 + 1; # inherit bignum 1
while ($f0 <= $n-$f1) {
($f1,$f0) = ($f1+$f0,$f1);
push @fibs, $f1; # starting $fibs[0]=1
}
}
### @fibs
my $orig_n = $n;
# indices into fib[] which are the Fibonaccis adding up to $n
my @indices;
for (my $i = $#fibs; $i >= 0; $i--) {
### at: "n=$n f=".$fibs[$i]
if ($n >= $fibs[$i]) {
push @indices, $i;
$n -= $fibs[$i];
### sub: "$fibs[$i] to n=$n"
--$i;
}
}
### @indices
my $y = 0;
my $shift;
my $x;
my $low = $indices[-1];
if ($low % 2) {
# odd trailing zeros
$x = ($low+1)/2;
$shift = $low + 2;
pop @indices;
} else {
# even trailing zeros
$x = 0;
$shift = 1;
if ($low == 0) {
pop @indices;
} else {
$y = -1;
}
}
foreach my $i (@indices) {
### y add: "ishift=".($i-$shift)." fib=".$fibs[$i-$shift]
$y += $fibs[$i-$shift];
}
### $y
return ($x, $y);
}
# 6 | 11 28 73 191 500
# 5 | 9 23 60 157 411
# 4 | 8 20 52 136 356
# 3 | 6 15 39 102 267
# 2 | 4 10 26 68 178
# 1 | 3 7 18 47 123
# 0 | 1 2 5 13 34
# +-------------------
# 0 1 2 3 4
# 9 | 100100 10001010 1000101000 100010100000 10001010000000
# 8 | 100001 10000010 1000001000 100000100000 10000010000000
# 7 | 10101 1010010 101001000 10100100000 1010010000000
# 6 | 10100 1001010 100101000 10010100000 1001010000000
# 5 | 10001 1000010 100001000 10000100000 1000010000000
# 4 | 10000 101010 10101000 1010100000 101010000000
# 3 | 1001 100010 10001000 1000100000 100010000000
# 2 | 101 10010 1001000 100100000 10010000000
# 1 | 100 1010 101000 10100000 1010000000
# 0 | 1 10 1000 100000 10000000
# +--------------------------------------------------------
# 0 1 2 3 4
sub xy_to_n {
my ($self, $x, $y) = @_;
$x = round_nearest ($x);
if ($x == 0) {
my $n1 = $wythoff->xy_to_n(1,$y);
if ($n1) {
$n1 -= $wythoff->xy_to_n(0,$y);
}
return $n1;
}
return $wythoff->xy_to_n(2*$x-1,$y);
}
# exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
### WythoffDifference rect_to_n_range(): "$x1,$y1 $x2,$y2"
$x1 = round_nearest ($x1);
$y1 = round_nearest ($y1);
$x2 = round_nearest ($x2);
$y2 = round_nearest ($y2);
($x1,$x2) = ($x2,$x1) if $x1 > $x2;
($y1,$y2) = ($y2,$y1) if $y1 > $y2;
if ($x2 < 0 || $y2 < 0) {
### all outside first quadrant ...
return (1, 0);
}
# bottom left into first quadrant
if ($x1 < 0) { $x1 *= 0; }
if ($y1 < 0) { $y1 *= 0; }
return ($self->xy_to_n($x1,$y1), # bottom left
$self->xy_to_n($x2,$y2)); # top right
}
1;
__END__
|