File: WythoffDifference.pm

package info (click to toggle)
libmath-planepath-perl 117-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 6,988 kB
  • ctags: 5,587
  • sloc: perl: 99,131; ansic: 299; sh: 233; lisp: 73; makefile: 4
file content (189 lines) | stat: -rw-r--r-- 4,717 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# Copyright 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


package Math::PlanePath::WythoffDifference;
use 5.004;
use strict;
use List::Util 'max';

use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';

# uncomment this to run the ### lines
# use Smart::Comments;


use constant class_x_negative => 0;
use constant class_y_negative => 0;
use constant xy_is_visited => 1;

use Math::PlanePath::WythoffArray;
my $wythoff = Math::PlanePath::WythoffArray->new;

sub n_to_xy {
  my ($self, $n) = @_;
  ### WythoffDifference n_to_xy(): $n

  if ($n < 1) { return; }
  if (is_infinite($n) || $n == 0) { return ($n,$n); }

  {
    # fractions on straight line ?
    my $int = int($n);
    if ($n != $int) {
      my $frac = $n - $int;  # inherit possible BigFloat/BigRat
      my ($x1,$y1) = $self->n_to_xy($int);
      my ($x2,$y2) = $self->n_to_xy($int+1);
      my $dx = $x2-$x1;
      my $dy = $y2-$y1;
      return ($frac*$dx + $x1, $frac*$dy + $y1);
    }
    $n = $int;
  }

  # f1+f0 > i
  # f0 > i-f1
  # check i-f1 as the stopping point, so that if i=UV_MAX then won't
  # overflow a UV trying to get to f1>=i
  #
  my @fibs;
  {
    my $f0 = ($n * 0);  # inherit bignum 0
    my $f1 = $f0 + 1;   # inherit bignum 1
    while ($f0 <= $n-$f1) {
      ($f1,$f0) = ($f1+$f0,$f1);
      push @fibs, $f1;      # starting $fibs[0]=1
    }
  }
  ### @fibs

  my $orig_n = $n;

  # indices into fib[] which are the Fibonaccis adding up to $n
  my @indices;
  for (my $i = $#fibs; $i >= 0; $i--) {
    ### at: "n=$n f=".$fibs[$i]
    if ($n >= $fibs[$i]) {
      push @indices, $i;
      $n -= $fibs[$i];
      ### sub: "$fibs[$i] to n=$n"
      --$i;
    }
  }
  ### @indices

  my $y = 0;
  my $shift;
  my $x;
  my $low = $indices[-1];
  if ($low % 2) {
    # odd trailing zeros
    $x = ($low+1)/2;
    $shift = $low + 2;
    pop @indices;
  } else {
    # even trailing zeros
    $x = 0;
    $shift = 1;
    if ($low == 0) {
      pop @indices;
    } else {
      $y = -1;
    }
  }

  foreach my $i (@indices) {
    ### y add: "ishift=".($i-$shift)." fib=".$fibs[$i-$shift]
    $y += $fibs[$i-$shift];
  }
  ### $y
  return ($x, $y);
}

# 6 | 11 28  73 191 500
# 5 |  9 23  60 157 411
# 4 |  8 20  52 136 356
# 3 |  6 15  39 102 267
# 2 |  4 10  26  68 178
# 1 |  3  7  18  47 123
# 0 |  1  2   5  13  34
#   +-------------------
#      0  1   2   3   4

# 9 | 100100 10001010 1000101000 100010100000 10001010000000
# 8 | 100001 10000010 1000001000 100000100000 10000010000000
# 7 |  10101  1010010  101001000  10100100000  1010010000000
# 6 |  10100  1001010  100101000  10010100000  1001010000000
# 5 |  10001  1000010  100001000  10000100000  1000010000000
# 4 |  10000   101010   10101000   1010100000   101010000000
# 3 |   1001   100010   10001000   1000100000   100010000000
# 2 |    101    10010    1001000    100100000    10010000000
# 1 |    100     1010     101000     10100000     1010000000
# 0 |      1       10       1000       100000       10000000
#   +--------------------------------------------------------
#          0        1          2            3              4

sub xy_to_n {
  my ($self, $x, $y) = @_;

  $x = round_nearest ($x);
  if ($x == 0) {
    my $n1 = $wythoff->xy_to_n(1,$y);
    if ($n1) {
      $n1 -= $wythoff->xy_to_n(0,$y);
    }
    return $n1;
  }
  return $wythoff->xy_to_n(2*$x-1,$y);
}

# exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### WythoffDifference rect_to_n_range(): "$x1,$y1  $x2,$y2"

  $x1 = round_nearest ($x1);
  $y1 = round_nearest ($y1);
  $x2 = round_nearest ($x2);
  $y2 = round_nearest ($y2);

  ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
  ($y1,$y2) = ($y2,$y1) if $y1 > $y2;

  if ($x2 < 0 || $y2 < 0) {
    ### all outside first quadrant ...
    return (1, 0);
  }

  # bottom left into first quadrant
  if ($x1 < 0) { $x1 *= 0; }
  if ($y1 < 0) { $y1 *= 0; }

  return ($self->xy_to_n($x1,$y1),    # bottom left
          $self->xy_to_n($x2,$y2));   # top right
}

1;
__END__