File: WythoffLines.pm

package info (click to toggle)
libmath-planepath-perl 117-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 6,988 kB
  • ctags: 5,587
  • sloc: perl: 99,131; ansic: 299; sh: 233; lisp: 73; makefile: 4
file content (421 lines) | stat: -rw-r--r-- 11,209 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
# Copyright 2013, 2014 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# x=45,y=10 x=59,y=19  dx=14,dy=9 14/9=1.55
#
# x=42,y=8 x=113,y=52 dx=71,dy=44 71/44=1.613
#
# below
# 32,12 to 36,4 sqrt((32-36)^2+(12-4)^2) = 9
# 84,34 to 99,14 sqrt((84-99)^2+(34-14)^2) = 25
# 180,64 to 216,11 sqrt((180-216)^2+(64-11)^2) = 64
#
# above
# 14,20 to 5,32 sqrt((14-5)^2+(20-32)^2) = 15 = 9*1.618               3
# 34,50 to 14,85 sqrt((34-14)^2+(50-85)^2) = 40 = 25*1.618            5
# 132,158 to 77,247 sqrt((132-77)^2+(158-247)^2) = 104 = 64*1.618     8
# 8,525 to 133,280  sqrt((8-133)^2+(525-280)^2) = 275 = 169*1.618    13

package Math::PlanePath::WythoffLines;
use 5.004;
use strict;
use List::Util 'max';

use vars '$VERSION', '@ISA';
$VERSION = 117;
use Math::PlanePath;
@ISA = ('Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'bit_split_lowtohigh';

# uncomment this to run the ### lines
# use Smart::Comments;


use constant parameter_info_array =>
  [ { name      => 'shift',
      display   => 'Shift',
      type      => 'integer',
      default   => 0,
      width     => 3,
    },
  ];

# shift  x_minimum() y_minimum()
#  -4       13           8
#  -3        8           5
#  -2        5           3
#  -1        3           2
#   1        2           1
#   0        2           1          ...
#   1        1           1         fib(1)
#   2        1     /---> 0  -----^ fib(0)
#   3        0 <--/      1    a
#   4        1          -1    b
#   5       -1           2    c
#   6        2          -4    d      -4=2*-1-2
#   7       -4           4    e       4=2*2-0
#   8        4         -12          -12=2*-4-4
#   9      -12           9            9=2*4-(-1)
#  10        9         -33
#  11      -33          22           22=3*9-4-1   a(n)=3a(n-2)-a(n-4)-1
#  12       22         -88          -88=2*-33-22     2*a(n-2)-a(n-1)
#  13      -88          56           56=2*22+12        2*a(n-2)-a(n-5)
#  14       56        -232         -232=2*-88-56     2*a(n-2)-a(n-1)
#  15     -232         145          145=2*56+33        2*a(n-2)-a(n-5)
#  16                 -609         -609=2*-232-145
#  17     -609         378          378=2*145-(-88)
#
# shift -4,-12,-33,-88,-232 = 1-Fib(2*s+1)
# shift 9,22,56,145,378,988
#       a(n)=3*a(n-1)-a(n-2)-1

# with $shift reckoned for y_minimum()
sub _calc_minimum {
  my ($shift) = @_;
  if ($shift <= 2) {
    return _fibonacci(2-$shift);
  }
  if ($shift & 1) {
    # shift odd >= 3, so (shift-1)/2 >= 1
    my $a = 1;
    my $b = 2;
    foreach (2 .. ($shift-1)/2) {
      ($a,$b) = ($b, 3*$b-$a-1);
    }
    return $a;
  } else {
    # shift even >= 4
    return 1 - _fibonacci($shift-1);
  }

  # $a = 1;
  # $b = -1;
  # my $c = 2;
  # my $d = -4;
  # my $e = 4;
  # for (my $i = 2; $i < $shift; $i++) {
  #   ($a,$b,$c,$d,$e) = ($b,$c,$d,$e, 2*$d-$e);
  #   $i++;
  #   last unless $i < $shift;
  #   ($a,$b,$c,$d,$e) = ($b,$c,$d,$e, 2*$d-$a);
  # }
  # return $a;
}
sub _fibonacci {
  my ($n) = @_;
  $a = 0;
  $b = 1;
  foreach (1 .. $n) {
    ($a,$b) = ($b,$a+$b);
  }
  return $a;
}
sub x_minimum {
  my ($self) = @_;
  return _calc_minimum($self->{'shift'}-1);
}
sub y_minimum {
  my ($self) = @_;
  return _calc_minimum($self->{'shift'});
}

#------------------------------------------------------------------------------

use Math::PlanePath::WythoffArray;
my $wythoff = Math::PlanePath::WythoffArray->new;

sub new {
  my $self = shift->SUPER::new(@_);
  $self->{'shift'} ||= 0;
  return $self;
}

sub n_to_xy {
  my ($self, $n) = @_;
  ### WythoffLines n_to_xy(): $n

  if ($n < 1) { return; }
  if (is_infinite($n) || $n == 0) { return ($n,$n); }

  {
    # fractions on straight line
    my $int = int($n);
    if ($n != $int) {
      my $frac = $n - $int;  # inherit possible BigFloat/BigRat
      my ($x1,$y1) = $self->n_to_xy($int);
      my ($x2,$y2) = $self->n_to_xy($int+1);
      my $dx = $x2-$x1;
      my $dy = $y2-$y1;
      return ($frac*$dx + $x1, $frac*$dy + $y1);
    }
    $n = $int;
  }

  #   $n -= 1;
  #   my $y = $wythoff->xy_to_n(0,$n);
  #   my $x = $wythoff->xy_to_n(1,$n);



  # 1   2.000,  1.000     1  1_100000  5.000,3.000(5.831)
  # 2   7.000,  4.000     2  1_100000  3.000,2.000(3.606)
  # 3  10.000,  6.000     3  1_100000  5.000,3.000(5.831)
  # 4  15.000,  9.000     4  1_100000  5.000,3.000(5.831)
  # 5  20.000, 12.000     5  1_100000  3.000,2.000(3.606)
  # 6  23.000, 14.000     6  1_100000  5.000,3.000(5.831)
  # 7  28.000, 17.000     7  1_100000  3.000,2.000(3.606)

  my $zero = $n*0;
  # spectrum(Y+1) so Y,Ybefore are notional two values at X=-2 and X=-1
  my $y = $n-1;
  my $x = int((sqrt(5*$n*$n) + $n) / 2);
  # ($y,$x) = (1*$x + 1*$y,
  #            2*$x + 1*$y);

  # shift   s to -1
  #         1 to s
  # but forward by 2 extra
  #         s to -1+2=1
  #         1+2=3 to s
  foreach ($self->{'shift'} .. 1) {
    ($y,$x) = ($x,$x+$y);
  }
  foreach (3 .. $self->{'shift'}) {
    # prev+y=x
    # prev = x-y
    ($y,$x) = ($x-$y,$y);
  }
  return ($x,$y);
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### WythoffLines xy_to_n(): "$x, $y"

  $x = round_nearest ($x);
  $y = round_nearest ($y);
  # if (is_infinite($y)) { return $y; }

  # unshift
  # 
  foreach ($self->{'shift'} .. -1) {
    ($y,$x) = ($x-$y,$y);
  }
  foreach (1 .. $self->{'shift'}) {
    ($y,$x) = ($x,$x+$y);
  }
  ### unshifted to: "$x,$y"

  if (my ($cy,$ny) = $wythoff->n_to_xy($y)) {
    ### y: "cy=$cy ny=$ny"
    if ($cy == 0) {
      if (my ($cx,$nx) = $wythoff->n_to_xy($x)) {
        if ($cx == 1 && $nx == $ny) {
          return $nx+1;
        }
      }
    }
  }
  return undef;

  # my $y = $wythoff->xy_to_n(0,$n);
  # my $x = $wythoff->xy_to_n(1,$n);
}

sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### WythoffLines rect_to_n_range(): "$x1,$y1  $x2,$y2"

  my $zero = $x1 * 0 * $y1 * $x2 * $y2;
  $x1 = round_nearest ($x1);
  $y1 = round_nearest ($y1);
  $x2 = round_nearest ($x2);
  $y2 = round_nearest ($y2);

  # FIXME: probably not quite right
  my $phi = (1 + sqrt(5+$zero)) / 2;
  return (1,
          max (1,
               int($phi**($self->{'shift'}-2)
                   * max ($x1,$x2, max($y1,$y2)*$phi))));
}

1;
__END__

=for stopwords eg Ryde Math-PlanePath Moore Wythoff Zeckendorf concecutive fibbinary OEIS

=head1 NAME

Math::PlanePath::WythoffLines -- table of Fibonacci recurrences

=head1 SYNOPSIS

 use Math::PlanePath::WythoffLines;
 my $path = Math::PlanePath::WythoffLines->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

X<Kimberling, Clark>This path is the Wythoff preliminary triangle by Clark
Kimberling,

=cut

# math-image  --path=WythoffLines --output=numbers --all --size=60x14

=pod

     13  | 105 118 131 144  60  65  70  75  80  85  90  95 100
     12  |  97 110  47  52  57  62  67  72  77  82  87  92
     11  |  34  39  44  49  54  59  64  69  74  79  84
     10  |  31  36  41  46  51  56  61  66  71  76
      9  |  28  33  38  43  48  53  58  63  26
      8  |  25  30  35  40  45  50  55  23
      7  |  22  27  32  37  42  18  20
      6  |  19  24  29  13  15  17
      5  |  16  21  10  12  14
      4  |   5   7   9  11
      3  |   4   6   8
      2  |   3   2
      1  |   1
    Y=0  |
         +-----------------------------------------------------
           X=0   1   2   3   4   5   6   7   8   9  10  11  12

A coordinate pair Y and X are the start of a Fibonacci style recurrence,

    F[1]=Y, F[2]=X    F[i+i] = F[i] + F[i-1]

Any such sequence eventually becomes a row of the Wythoff array
(L<Math::PlanePath::WythoffArray>) after some number of initial iterations.
The N value at X,Y is the row number of the Wythoff array containing
sequence beginning Y and X.  Rows are numbered starting from 1.  Eg.

    Y=4,X=1 sequence:       4, 1, 5, 6, 11, 17, 28, 45, ...
    row 7 of WythoffArray:                  17, 28, 45, ...
    so N=7 at Y=4,X=1

Conversely a given N is positioned in the triangle according to where row
number N of the Wythoff array "precurses" by running the recurrence in
reverse,

    F[i-1] = F[i+i] - F[i]

It can be shown that such a precurse always reaches a pair Y and X with
YE<gt>=1 and 0E<lt>=XE<lt>Y, hence making the triangular X,Y arrangement
above.

    N=7 WythoffArray row 7 is 17,28,45,73,...
    go backwards from 17,28 by subtraction
       11 = 28 - 17
        6 = 17 - 11
        5 = 11 - 6
        1 = 6 - 5
        4 = 5 - 1
    stop on reaching 4,1 which is Y=4,X=1 satisfying Y>=1 and 0<=X<Y

=head2 Phi Slope Blocks

The effect of each step backwards is to move to successive blocks of values,
with slope golden ratio phi=(sqrt(5)+1)/2.

Suppose no backwards steps were applied, so Y,X were the first two values of
Wythoff row N.  In the example above that would be N=7 at Y=17,X=28.  The
first two values of the Wythoff array are

    Y = W[0,r] = r-1 + floor(r*phi)       # r = row numbered from 1
    X = W[1,r] = r-1 + 2*floor(r*phi)

So this would put N values on a line of slope Y/X = 1/phi = 0.618.  The
portion of that line which falls within 0E<lt>=XE<lt>Y

=cut

# (r-1 + floor(r*phi)) / (r-1 + 2*floor(r*phi))
#   ~= (r-1+r*phi)/(r-1+2*r*phi)
#    = (r*(phi+1) - 1) / (r*(2phi+1) - 1)
#   -> r*(phi+1) / r*(2*phi+1)
#    = (phi+1) / (2*phi+1)
#    = 1/phi = 0.618


=pod

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for the behaviour common to all path
classes.

=over 4

=item C<$path = Math::PlanePath::WythoffLines-E<gt>new ()>

Create and return a new path object.

=back

=head1 OEIS

The Wythoff array is in Sloane's Online Encyclopedia of Integer Sequences
in various forms,

=over

L<http://oeis.org/A035614> (etc)

=back

    A165360     X
    A165359     Y
    A166309     N by rows

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::WythoffArray>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2013, 2014 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut